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P. P. KONONCHUK

ONE-DIMENSIONAL MODEL OF THE DIFFUSION PROCESS WITH
A MEMBRANE THAT IS DESCRIBED BY THE FELLER–WENTZEL

CONJUGATION CONDITION

An integral representation of the operator semigroup that corresponds to the most
general nonbreaking Feller process on a line that is pasted from two diffusion processes
is constructed, by using analytical methods.

1. Basic notations and statement of the problem

Let Di = {x : (−1)ix > 0}, i = 1, 2 be two domains on the number axis, let ∂D = {0}
be the common boundary of these domains, and let Di = Di ∪ ∂D be a closure of Di.
If D is a domain in R, and D is its closure, then Cb(D) means a Banach space of all
continuous bounded functions ϕ(x) on D with norm ‖ϕ‖ = supx∈D|ϕ(x)|, and C0(D)
denotes a space of bounded uniformly continuous functions on D. For every function
ϕ ∈ Cb(R), we denote a section of ϕ on Di by ϕi. By C2(Di), we denote a subset of
Cb(Di) that consists of all functions such that ϕi, ϕ′

i, ϕ
′′
i ∈ C0(Di), i = 1, 2.

Assume that the differential operators Li, i = 1, 2, are given in domains Di. Let they
generate some diffusion processes on C2(Di):

(1) Liϕ(x) =
1
2
bi(x)

d2ϕi
dx2

(x) + ai(x)
dϕi
dx

(x), i = 1, 2,

where bi(x) and ai(x) are bounded continuous functions on Di, and bi(x) ≥ 0. By C2(R),
we denote a subset of Cb(R) that consists of all functions ϕ(x) such that ϕi ∈ C2(Di),
i = 1, 2, and L1ϕ1(0) = L2ϕ2(0). We also define an operator L that acts on C2(R) by
the following rule:

(2) Lϕ(x) =
{
L1ϕ(x), ifx ∈ D1,
L2ϕ(x), ifx ∈ D2.

We will write an additional conjugation condition at the point x = 0 that contracts
the operator L (or its closure) to some infinitesimal operator of Feller semigroups on
C0(R). This conditions is as follows:

(3) L0ϕ(0) ≡ σLϕ(0) + q1ϕ
′(0−) − q2ϕ

′(0+) +
∫
D1∪D2

(ϕ(0) − ϕ(y))μ(dy) = 0.

Here, σ, qi, i = 1, 2, are nonnegative numbers, and μ(·) is a nonnegative measure on
D1 ∪D2 and such that

(4)
∫

(D1∪D2)\Dδ

|y|μ(dy) <∞, μ(Dδ) <∞,

whereDδ = {x ∈ R : |x| > δ > 0}. In this case, the numbers σ, q1, q2, andm = μ(D1∪D2)
are not equal to zero simultaneously.

We note (see [1]–[3]) that if we consider only nonbreaking Markov processes on the line,
then condition (3) describes various continuations of the given processes after reaching
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the point x = 0. In our case, the the right-hand side of equality (3) corresponds to
possible continuations of the process such as their delay, partial reflection, and jumps
into one of the domains D1 or D2.

In the present work, we consider the problem of existence of an operator semigroup
{Tt}t≥0 that describes a Feller process (not necessarily continuous) on R such that, in the
domains Di, i = 1, 2, it coincides with diffusion processes controlled by the operators Li,
i = 1, 2, and its behavior at the point x = 0 is determined by the conjugation condition
(3). We consider the case where σ from (3) is not equal to zero, i.e., where σ > 0. The
considered problem is often called the problem of the pasting of two diffusion processes
on a line (see, e.g., [1, 4, 5, 6, 7]).

We will use analytical methods to construct a semigroup. Within these methods (see
[4, 5, 6, 7]), solving the problem is reduced to studying the corresponding conjugation
problem for a second-order linear parabolic equation with discontinuous coefficients. The
last problem consists in finding a function u(t, x) (t > 0, x ∈ R) that satisfies the following
conditions:

(5)
∂u

∂t
(t, x) = Liu(t, x), t > 0, x ∈ Di, i = 1, 2,

(6) u(0, x) = ϕ(x), x ∈ R,

(7) u(t, 0−) = u(t, 0+), t ≥ 0,

(8) L0u(t, 0) = 0, t > 0,

where ϕ ∈ Cb(R) is a given function.
We note that the conjugation condition (7) from problem (5)–(8) corresponds to the

Feller property of the process, and equality (8) corresponds to the conjugation condition
(3).

Under some additional assumptions on coefficients of the operator Li, i = 1, 2, we first
proved the classical solvability of problem (5)–(8) by the method of boundary integral
equations, by using the ordinary fundamental solution of the parabolic equation, as well
as the potentials generated by it.

We note that a similar problem was studied in [5] and [6] (also see [4]) under assump-
tions that σ = 0, m = 0 and σ �= 0, m = 0, respectively, and in [7] in the case where
σ = q1 = q2 = 0 and the measure μ(·) is finite. We also mention paper [8] where a Markov
process pasted from two diffusion processes was first obtained under assumptions that
σ = m = 0 and q1 = q2 with the use of a somewhat different method (we call this case
as the classical pasting of two diffusion processes).

In what follows, we use the following notations: T is a fixed positive number; R2
T ≡

(0, T ] × R, R2∞ ≡ (0,∞) × R; (t, x) is a point in R∞, Dr
t and Dp

x are symbols of the
r-th partial derivatives with respect to the variable t and the p-th partial derivative with
respect to the variable x, respectively, where r and p are nonnegative integers; Cm,l(Ω)
(Cm,l(Ω)), m = 0, 1, l = 0, 1, 2 (C0,0(Ω) ≡ C(Ω), C0,0(Ω) ≡ C(Ω)) are sets of functions
continuous in Ω (in Ω) with continuous derivatives Dr

t , D
p
x, r ≤ m, p ≤ m, in Ω (Ω), and

Ω is a subset of R
2
∞; and Hα(R), α ∈ (0, 1), is a Hölder space as in [8]. By C and c,

we denote some constants that do not depend on (t, x), and their exact values are of no
interest to us.

2. Fundamental solution of the second-order parabolic equation and the

potentials generated by it

Consider the parabolic operators Dt−Li, i = 1, 2, in a domain R2
∞. Without any loss

of generality, we assume that coefficients of the operators are defined on R and satisfy
the following conditions:
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a) bi, ai ∈ Hα(R), i = 1, 2;
b) there exist positive constants bi0, i = 1, 2, such that bi(x) ≥ bi0 for all x ∈ R.

Let gi(t, x, y) (t > 0, x, y ∈ R) be the fundamental solution (f.s.) of the equation with
the operators Dt − Li, i = 1, 2 (see [4, Ch. II, §2] and [8, Ch. IV, §11]):

(9) gi(t, x, y) = gi0(t, x, y) + gi1(t, x, y), i = 1, 2,

where

(10) gi0(t, x, y) = (2πbi(y)t)−
1
2 exp

(
− (y − x)2

2bi(y)t

)
,

gi1 are integral terms with a weaker singularity than g0i, when t → 0; in addition,
gi(t, x, y) = 0, when t ≤ 0. We recall that the functions gi(t, x, y), i = 1, 2, are continuous
and positive in all variables, satisfy Eq. (5) at a fixed y in the domain (t, x) ∈ R

2
∞, and

are such that, for every x ∈ R and ϕ ∈ Cb(R),

lim
t↓0

∫
R

gi(t, x, y)ϕ(y)dy = ϕ(x), i = 1, 2.

We present the estimations (i = 1, 2, x, y ∈ R)

(11) |Dr
tD

p
xgi(t, x, y)| ≤ Ct−

1+2r+p
2 exp

(
−c (y − x)2

t

)
, 2r + p ≤ 2, t ∈ (0, T ],

(12) |Dr
tD

p
xgi1(t, x, y)| ≤ Ct−

1+2r+p−α
2 exp

(
−c (y − x)2

t

)
, 2r + p ≤ 2, t ∈ (0, T ]

and equalities (t > 0, x ∈ R)∫
R

gi(t, x, y)dy = 1, i = 1, 2,∫
R

gi(t, x, y)(y − x)dy =
∫ t

0

dτ

∫
R

gi(τ, x, y)ai(y)dy, i = 1, 2,∫
R

gi(t, x, y)(y − x)2dy =
∫ t

0

dτ

∫
R

gi(τ, x, y)bi(y)dy +

+ 2
∫ t

0

dτ

∫
R

gi(τ, x, y)ai(y)(y − x)dy, i = 1, 2.(13)

Consider the integrals

ui0(t, x) =
∫

R

gi(t, x, y)ϕ(y)dy, i = 1, 2,(14)

ui1(t, x) =
∫ t

0

gi(t− τ, x, 0)Vi(τ)dτ, i = 1, 2.(15)

Here, ϕ(x) and Vi(t), i = 1, 2, are given functions. In the theory of parabolic equations,
the functions ui0 and ui1 are called the Poisson potential and the simple-layer potential,
respectively. It follows from the definition and properties of f.s. gi, i = 1, 2, that if a
function ϕ ∈ Cb(R), then ui0(t, x) are continuous in R2∞, bounded in the variable x, and
satisfy Eq. (5) in a domain (t, x) ∈ R2

∞ and the initial condition (6). The following
inequality holds in R2

T :

(16) |Dr
tD

p
xui0(t, x)| ≤ C‖ϕ‖t−

2r+p
2 , 2r + p ≤ 2, i = 1, 2.

Let us assume that the functions Vi(t), i = 1, 2, from (15) are bounded and continuous
in [0,∞). Then the functions ui1(t, x) are continuous in R2∞, bounded in the variable x,
and satisfy Eq. (5) in domains (t, x) ∈ (0,∞) × D1 and (t, x) ∈ (0,∞) × D2 and the
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initial condition ui1(0, x) = 0, x ∈ R, i = 1, 2. We mention another important property
of the simple-layer potential ui1(t, x). It concerns with a behavior of the derivatives with
respect to the variable x in a neighborhood of the point x = 0. It is well known (see
[4, Ch. II, §5], [8, Ch. IV, §15]) that the so-called jump formula for the derivative of a
simple-layer potential holds and has, in our case, the form

(17) Dxui1(t, 0±) =
∫ t

0

Dxgi1(t− τ, 0, 0)Vi(τ)dτ ∓
Vi(t)
bi(0)

, t > 0, i = 1, 2.

We note that the existence of the integral in (17) follows from inequality (12) at r =
0, p = 1, x = y = 0.

We also mention that the stated properties of the simple-layer potential will hold
under more general assumptions on the functions Vi, i = 1, 2, from (15).

3. Solution of the parabolic conjugation problem

Consider problem (5)–(8). First, we prove the existence of a solution u(t, x). We will
try to find it as a sum of potentials:

(18) u(t, x) = ui0(t, x) + ui1(t, x), (t, x) ∈ [0,∞) ×Di, i = 1, 2,

where the functions ui0 and ui1 are defined by formulas (14) and (15), respectively. In
addition, the densities Vi, i = 1, 2, are unknown functions. To find them, we use the
conjugation conditions (7) and (8). We denote, by v(t), the value of the function u(t, x)
at x = 0 and substitute (18) in the conjugation condition (8). Using relations (9), (10),
and (17), we obtain the equality

dv(t)
dt

=
2∑
j=1

(−1)j
qi
σ

∂uj0(t, 0)
∂x

+
1
σ

2∑
j=1

∫
Dj

(uj0(t, y) − uj0(t, 0))μ(dy) −

−
2∑
j=1

qj
σbj(0)

Vj(t) +
2∑
j=1

∫ t

0

Vj(τ)dτ

(
(−1)j

qj
σ

∂gj1(t− τ, 0, 0)
∂x

+

+
1
σ

∫
Dj

(gj(t− τ, y, 0) − gj(t− τ, 0, 0))μ(dy)

)
, t > 0.

In view of the initial condition (7), we obtain

v(t) =
2∑
j=1

∫ t

0

(
(−1)j

qj
σ

∂uj0(τ, 0)
∂x

+
1
σ

∫
Dj

(uj0(τ, y) − uj0(τ, 0))μ(dy)

)
dτ −

−
2∑
j=1

qj
σbj(0)

∫ t

0

Vj(τ)dτ +
2∑
j=1

∫ t

0

Vj(τ)dτ
∫ t

τ

(
(−1)j

qj
σ

∂gj1(β − τ, 0, 0)
∂x

+(19)

+
1
σ

∫
Dj

(gj(β − τ, y, 0) − gj(β − τ, 0, 0))μ(dy)

)
dβ + ϕ(0), t > 0.

Now, we have obtained three different expressions for the function v(t) = u(t, 0): the
first one is defined by Eq. (19), and two others are defined by formula (18), where we
have to put x = 0 and use the conjugation condition (7). Equating the right-hand sides
of the expressions for v(t) and u(t, 0−) and then for v(t) and u(t, 0+), we obtain the
system of integral equations for V1 and V2,

(20)
∫ t

0

gi(t− τ, 0, 0)Vi(τ)dτ +
2∑
j=1

∫ t

0

Kj0(t− τ)Vj(τ)dτ = Φi(t), t > 0, i = 1, 2,
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where

Φi(t) =
2∑
j=1

∫ t

0

(
(−1)j

qj
σ

∂uj0(τ, 0)
∂x

+
1
σ

∫
Dj

(uj0(τ, y) − uj0(τ, 0))μ(dy)

)
dτ −

− ui0(t, 0) + ϕ(0), i = 1, 2,

Kj0(t− τ) =
qj

σbj(0)
−

∫ t

τ

(
(−1)j

qj
σ

∂gj1(β − τ, 0, 0)
∂x

+

+
1
σ

∫
Dj

(gj(β − τ, y, 0)− gj(β − τ, 0, 0))μ(dy)

)
dβ, j = 1, 2.

The system of equations (20) is a system of Volterra integral equations of the first
kind, in which their right-hand sides, i.e. Φi(t), i = 1, 2, are continuous at t ≥ 0 and
continuously differentiable at t > 0. Using the Holmgren method (see, e.g., [10]), we
reduce the system of equations to a system of Volterra integral equations of the second
kind. For this purpose, we define the integro-differential operator E :

(21) Φ̂i(t) = E(t)Φi =

√
2
π

d

dt

∫ t

0

(t− s)−
1
2 Φi(s)ds, t > 0, i = 1, 2.

Since the functions Φi(t), i = 1, 2 are continuously differentiable at t > 0, then it is easy
to verify that the right-hand side of Eq. (21) can be re-arranged into the form

(22) Φ̂i(t) =
1√
2π

∫ t

0

(t− s)−
3
2 (Φi(t) − Φi(s))ds+

√
2
π

Φi(t)t−
1
2 , i = 1, 2, t > 0.

Using formula (22), inequality (16), and condition (4), we prove that the functions
Φ̂i(t), i = 1, 2, satisfy the following estimate in every domain t ∈ (0, T ]:

(23) |Φ̂i(t)| ≤ C‖ϕ‖t− 1
2 , i = 1, 2.

Applying the operator E from (21) to both sides of each of the equations in system
(20), we obtain, after easy transformations, an equivalent system of Volterra integral
equations of the second kind

(24) Vi(t) =
2∑
j=1

∫ t

0

Kij(t− τ)Vj(τ)dτ + Ψi(t), t > 0, i = 1, 2,

where

Ψi(t) =
√
bi(0)Φ̂i(t) =

√
bi(0)E(t)Φi, i = 1, 2,

Kii(t− τ) =

√
2bi(0)
π

(Ri(t− τ) +Ki(t− τ)), i = 1, 2,

Kij(t− τ) =

√
2bi(0)
π

Kj(t− τ), i, j = 1, 2, i �= j,

Ri(t− τ) =
1
2

∫ t

τ

(t− s)−
3
2 (gi1(s− τ, 0, 0)− gi1(t− τ, 0, 0))ds−

− (t− τ)−
1
2 gi1(t− τ, 0, 0), i = 1, 2,

Kj(t− τ) = − qj
σbj(0)

(t− τ)−
1
2 +

1
σ

∫ t

τ

(t− s)−
1
2

(
(−1)jqj

∂gj1(s− τ, 0, 0)
∂x

+

+
∫
Dj

(gj(s− τ, y, 0)− gj(s− τ, 0, 0))μ(dy)

)
ds, j = 1, 2.
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Using inequalities (11) and (12) and condition (4), we obtain an estimate for the functions
Kij(t− τ), i, j = 1, 2 (0 ≤ τ < t ≤ T ):

(25) |Kij(t− τ)| ≤ C(t− τ)−1+ α
2 .

Since the kernels of each equation from system (24) are weakly integrable, we find
Vi(t), i = 1, 2 within the method of successive approximations. As a consequence, we
obtain that the functions Vi(t), i = 1, 2 are continuous at t > 0 and satisfy estimation
(23) in the domain t ∈ (0, T ]. Estimation (23) for Vi, i = 1, 2, together with estimation
(11) give us the existence of the simple-layer potentials (18) and the same inequality as
that for Poisson potentials (see estimation (16)):

(26) |ui1(t, x)| ≤ C‖ϕ‖, i = 1, 2, (t, x) ∈ R2
T .

Hence, the existence of a classical solution of the parabolic conjugation problem (5)–
(8) is proved. As concerns the conclusion of its uniqueness, we only notice that the
computed function u(t, x) can be interpreted as the unique solution of the first parabolic
boundary-value problem in every domain t > 0, x ∈ D1 and t > 0, x ∈ D2:

∂u

∂t
= Liu, t > 0, x ∈ Di, i = 1, 2,

u(0, x) = ϕ(x), x ∈ Di, i = 1, 2,

u(t, 0) = v(t), t ≥ 0,

where the function v(t) is defined by relation (19).
The results obtained in this part of the study can be formulated as the following

theorems.

Theorem 3.1. Assume that the coefficients of operators Li, i = 1, 2 from (1) satisfy
conditions a) and b). The parameters σ, qi, i = 1, 2, from (3) are such that σ > 0,
qi ≥ 0, i = 1, 2, and the measure μ satisfies condition (4). Then problem (5)–(8) has the
unique solution

(27) u ∈ C(R2∞) ∩ C1,2((0,∞) ×Di), i = 1, 2,

for any function ϕ ∈ Cb(R), and

(28) |u(t, x)| ≤ C‖ϕ‖, (t, x) ∈ R2
T .

Theorem 3.2. The solution of problem (5)–(8) from class (27) is of the form of the sum
of potentials (14) and (15), where the densities Vi, i = 1, 2 from simple-layer potentials
are determined by the solution of the system of integral equations (24).

4. Construction of the process

Theorems 3.1 and 3.2 imply that, using the solution of problem (5)–(8), we can deter-
mine a family of linear operators (Tt)t≥0 that act on the space Cb(R). For t > 0, x ∈ R,
and ϕ ∈ Cb(R), we set

(29) Ttϕ(x) =
∫

R

gi(t, x, xy)ϕ(y)dy +
∫ t

0

gi(t− τ, x, 0)Vi(τ, ϕ)dτ, x ∈ Di, i = 1, 2,

where gi(t, x, y), i = 1, 2, are f.s. of the equation with the operators Dt−Li, i = 1, 2, and
Vi(t, ϕ) ≡ Vi(t), i = 1, 2 is a solution of the system of Volterra integral equations of the
second kind (24). In this case, T0 = I, where I is the identity operator, and inequality
(28) holds for Ttϕ(x) in the domain (t, x) ∈ R2

T .
The existence of an integral representation for the operator family (Tt) makes it pos-

sible to easily verify the following statements:
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1) if ϕn ∈ Cb(R), n ∈ N, supn ‖ϕn‖ <∞, and, for all x ∈ R, limn→∞ ϕn(x) = ϕ(x),
where ϕ ∈ Cb(R), then, for every t ≥ 0, x ∈ R, the following relation holds:

lim
n→∞ Ttϕn(x) = Ttϕ(x);

2) for all t1 ≥ 0, t2 ≥ 0, the following relation holds:

Tt1+t2 = Tt1 · Tt2 ;
3) Ttϕ(x) ≥ 0 for all t ≥ 0, x ∈ R, if ϕ ∈ Cb(R) and ϕ(x) ≥ 0;
4) ‖Tt‖ ≤ 1 for all t ≥ 0.

We now describe briefly a scheme of the proof of the above-stated properties. Property
1) is a corollary of the obvious equality for the solution of the system of integral equations
(24) limn→∞ Vi(t, ϕn) = Vi(t, ϕ), t > 0, i = 1, 2 and the Lebesgue theorem on a limiting
transition under the sign of integral. The second property also known as the semigroup
property of the operators Tt follows from the statement of Theorem 3.1 of the uniqueness
of the solution of problem (5)–(8).

Assuming that ϕ ∈ Cb(R) and ϕ(x) ≥ 0 for all x ∈ R, we now prove that Ttϕ(x) ≥ 0
for all t > 0, x ∈ R. With regard for statement 1), it is sufficient to consider the case
where the function ϕ is finite. Assume the contrary. Let, for some T > 0, we have

(30) inf
(t,x)∈R2

T

Ttϕ(x) = γ < 0.

We recall that the function Ttϕ(x) satisfies Eq. (5) in the domains (t, x) ∈ (0,∞) ×Di,
i = 1, 2 and the initial condition limt↓0 Ttϕ(x) = ϕ(x). In addition, since ϕ is the function
with a compact carrier, we obtain that Ttϕ(x) → 0 as |x| → ∞. This fact and the
maximum principle for parabolic equations imply (see [11]) that, if ϕ is nonnegative and
condition (30) holds, then there exists such t0 ∈ (0, T ] that u(t0, 0) = γ.

Since the function Ttϕ(x) obviously is not constant, there exists a neighborhood U of
the point (t0, 0) such that Tt0ϕ(x) > γ for (t, x) ∈ U ∩ {(0, T ] ×Di}, i = 1, 2. But then
the following relations must hold:

∂Tt0−
∂x

≤ 0,
∂Tt0+
∂x

≥ 0,
∂Tt0
∂x

= 0.

Moreover, it follows from Theorem 14 [11, Ch. II, §5] that the equality signs in two last
inequalities are eliminated. Hence, if (30) holds, then, for some t0 > 0 and x = 0, we
have

(31)
∂Tt0−
∂x

< 0,
∂Tt0+
∂x

> 0,
∂Tt0
∂x

= 0.

From (31) and the inequality Tt0ϕ(0) − Tt0ϕ(x) < 0, x ∈ D1 ∪D2, that is also a simple
corollary of the maximum principle, we conclude that none of the possible versions of the
conjugation condition (8) holds at t = t0. This contradiction follows from assumption
(30), which means that γ > 0, and property 3) is proved.

Using property 3), it is possible to prove property 4). Indeed, it follows from (29) and
(24) that Ttϕ0(x) = 1 for all t > 0, x ∈ R, if ϕ0(x) ≡ 1. Second, since ϕ(x) ≤ ‖ϕ(x)‖
for all x ∈ R, we obtain Ttϕ(x) ≤ ‖ϕ‖ for all t > 0, x ∈ R, according to property 3). By
changing ϕ to −ϕ in the last inequality, we obtain Ttϕ(x) ≥ −‖ϕ‖ for all t > 0, x ∈ R.
So, property 4) is proved.

It follows from 1)–4) that the semigroup Tt, t ≥ 0, constructed by formulas (29)
and (24) defines a homogeneous Feller process in R (see [4]). We denote its transition
probability by P (t, x, dy), so that

(32) Ttϕ(x) =
∫

R

P (t, x, dy)ϕ(y).
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The existence of an integral representation of the semigroup Ttϕ makes it possible to
easily calculate its infinitesimal generator denoted by A. We recall that, by definition
(see [4]),

(33) Aϕ(x) = lim
t↓0

Ttϕ(x) − ϕ(x)
t

under condition that the limit exists (in a topology generated by the norm). We denote
the domain of definition of the operator A (e.g., a set of all ϕ ∈ Cb(R), for which the
limit exists) by DA. By calculating the limit on the right-hand side of (33), we obtain
that a bounded continuous function ϕ(x) belongs to DA if and only if ϕ ∈ C2(R) and
L0ϕ(0) = 0. At the same time, Aϕ(x) = Lϕ(x), where the operator L is defined by
relation (2).

So, we have proved the following theorem.

Theorem 4.1. The operator semigroup that is defined by formulas (29) and (24) gener-
ates a homogeneous Feller process in R that coincides with the given diffusion processes
defined by the operators L1 and L2 at inner points of the domains D1 and D2, respec-
tively, and its behavior on the boundary of these domains ∂Di, i = 1, 2, is determined by
the conjugation condition (3).

Analyzing the constructed process, we note that the presence of the integral term in
the conjugation condition (3) means that, generally speaking, trajectories of the process
are discontinuous. On the other hand, the fulfillment of the condition σ > 0, qi ≥ 0,
i = 1, 2, for the coefficients σ, qi, i = 1, 2, guarantees the existence of a positive probability
of the fact that continuations of the considered diffusion processes can have continuous
trajectories after their falling at the point x = 0. In this connection, there appears
a question about the influence of the given parameters and the measure μ(·) on a local
behavior of the particle that is diffusing along the trajectory of a continuous continuation
of processes at the point x = 0. Calculating the local diffusion characteristics gives us a
partial answer to the question. The existence of the characteristics is verified under the
assumption that the measure μ(·) from (3) satisfies the additional conditions

(34)
∫
D1∪D2

|y|μ(dy) <∞,

∫
D1∪D2

y2μ(dy) <∞.

Under conditions (34) with the use of equalities (13), the direct computations result
in that the transition function P (t, x, dy) satisfies the relations

lim
t↓0

1
t

∫
R

(y − x)P (t, x, dy) = a(x),

lim
t↓0

1
t

∫
R

(y − x)2P (t, x, dy) = b(x),(35)

where

a(x) =
{
ai(x), x ∈ Di, i = 1, 2,
q2−q1+m1

σ , x = 0,

b(x) =
{
bi(x), x ∈ Di, i = 1, 2,
m2
σ , x = 0,

m1 =
∫
D1∪D2

yμ(dy), m2 =
∫
D1∪D2

y2μ(dy).

Equalities (35) mean that, for the constructed process with the transition function
P (t, x, dy), there exist the ordinary diffusion coefficient equal to b(x) and the drift coef-
ficient equal to a(x).

Then, in addition to Theorem 4.1, we obtain the following proposition.
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Theorem 4.2. If, for the coefficients of the operators Li, i = 1, 2, from (1) and the
numerical parameters that determine the operator L0 from (2), the conditions of Theorem
1 hold, and the measure μ(·) from (2) satisfies condition (34), then the operator semigroup
constructed by formulas (29) and (24) describes a Feller process on R, and its transition
probability satisfies relation (35).
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