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I. I. NISHCHENKO

DISCRETE TIME APPROXIMATION OF COALESCING
STOCHASTIC FLOWS ON THE REAL LINE

We have constructed an approximation for the Harris and Arratia flows using a
sequence of independent stationary Gaussian processes as a perturbation. We have
established which relationship should be between the step of approximation and the
smoothness of the covariance of perturbing processes in order that the approximating
functions converge to the Arratia flow.

1. Introduction

It is well-known [1] that the solution to the Cauchy problem for the SDE

(1)

{
dx(t) = a(x(t))dt + b(x(t))dw(t)
x(0) = u0

with continuously differentiable functions a and b having bounded derivatives can be
obtained via the discrete time approximation. Namely, if we define a sequence {xmn } by
the rule

(2) xm0 = x0 ∈ R, xmn+1 = xmn +
1
m
a(xmn ) +

1√
m
b(xmn )ξn,

where {ξn, n ≥ 1} is a sequence of independent standard Gaussian random variables,
then the random functions

xm(t) = m

(
k + 1
m

− t

)
xmk +m

(
t− k

m

)
xmk+1, t ∈

[
k

m
;
k + 1
m

]
, k = 0, . . . ,m− 1

weakly converge in C([0, 1]) to the solution of (1).
In this paper, we study a difference approximation similar to (2) for coalescing sto-

chastic flows. As is known [2], such flows are not generated by a Gaussian white noise
in the space of vector fields. In order to understand how the flow with coalescence is
arranged, we can consider its difference approximation. As a perturbation, we select a
sequence of Gaussian stationary processes. In order to allow the coalescence of the tra-
jectories of individual particles in the limit, the covariance functions of these processes
are chosen to be less and less smooth at the origin. On the other hand, for the limit
flow to preserve the order, the step of approximation must be sufficiently small. The
relationship between the step of approximation and the smoothness of the covariance of
perturbing processes explains, to some extent, the structure of singular stochastic flows.

2. SDE and stochastic flows on the real line

The main object of the article is the Harris flow of Brownian motions on R. Let ϕ be
a continuous real positive definite function on R such that ϕ(0) = 1 and ϕ is Lipschitz
outside any neighborhood of zero.
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Definition 1. The Harris flow with ϕ being its local characteristic is a family {x(u, ·);u ∈
R} of Brownian martingales with respect to the joint filtration such that

1) for every u1 ≤ u2 and t ≥ 0,

x(u1, t) ≤ x(u2, t),

2) the joint characteristics are

d〈x(u1, ·), x(u2, ·)〉(t) = ϕ(x(u1, t) − x(u2, t))dt.

It is known that the Harris flow exists [3]. If the function ϕ is smooth enough, the
Harris flow can be obtained as a flow of solutions to SDE. Namely, for a sequence of
standard Wiener processes {wk; k ≥ 1}, consider the SDE

(3) dx(u, t) =
∞∑
k=1

ak(x(u, t))dwk(t),

where a = (ak)k≥1 is a Lipschitz mapping from R to l2 such that
∞∑
k=1

a2
k ≡ 1

and
∞∑
k=1

ak(u)ak(v) = ϕ(u − v).

Then the flow corresponding to (3) is the Harris flow with the local characteristic
ϕ, and furthermore it is a flow of homeomorphisms. Note, that the Harris flow could
be coalescent [3] and, in this case, may not be generated by SDE. For this reason, it
is interesting to consider discrete approximations for the flow built in a similar way,
as approximations to SDE. Consider a sequence of independent stationary Gaussian
processes {ξn(u);u ∈ R, n ≥ 1} with zero mean and a covariation function Γ. Suppose
that Γ is continuous. Define a sequence of random mappings {xn;n ≥ 0} by the rule

(4) x0(u) = u, xn+1(u) = xn(u) + ξn+1(xn(u)), u ∈ R.

Note that the continuity of Γ implies that the processes {ξn;n ≥ 1} have measurable
modifications. This allows us to substitute xn into ξn+1. The independence of {ξn;n ≥ 1}
guarantees that ξn+1(xn(u)) does not depend on the choice of these modifications. We
need the following description of one and two-point motions of {xn;n ≥ 0}.

Lemma 1. The sequences {xn(u);n ≥ 0} and {xn(u2) − xn(u1);n ≥ 0} have the same
distributions as the sequences {yn(u);n ≥ 0}, {zn(u);n ≥ 0}, which are defined by the
rules

y0 = u, yn+1 = yn + ηn,

z0 = u2 − u1, zn+1 = zn +
√

2Γ(0) − 2Γ(zn)ηn,

where {ηn;n ≥ 1} is a sequence of independent standard normal variables.

The proof of the lemma can be obtained easily by calculating the conditional distrib-
utions of xn+1 under given x0, . . . , xn, and is omitted.

It follows from Lemma 1 that the sequence of random mappings {xn;n ≥ 0} is similar
to the Harris flow. All its one-point motions are Gaussian symmetric random walks. But
the mappings xn for n ≥ 1 are not monotone. In the next section, we will prove that
any m-point motion of {xn;n ≥ 0} approximates the m-point motion of the Harris flow.
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3. m-point motions

In this section, we consider the limit behavior of xn under a suitable normalization.
Let us define the random functions

x̃n(u, t) = n

(
k + 1
n

− t

)
xk(u) + n

(
t− k

n

)
xk+1(u),

u ∈ R, t ∈
[
k

n
;
k + 1
n

]
, k = 0, . . . , n− 1.

Our first result is related to the n-point motions of x̃n.

Theorem 1. Let Γ be a continuous positive definite function on R such that Γ(0) = 1,
and Γ has two continuous bounded derivatives. Suppose that x̃n is built upon a sequence
{ξk; k ≥ 1} with covariance 1√

n
Γ.

Then, for every u1, . . . , ul ∈ R, the random processes {x̃n(uj , ·), j = 1, . . . , l} weakly
converge in C([0; 1],Rl) to the l-point motion of the Harris flow with the local character-
istic Γ.

Proof. It follows from Lemma 1 and the invariance principle that, for every j = 1, . . . , l,
x̃n(uj, ·) weakly converges in C([0; 1]) to the Brownian motion which starts from uj .
Then it remains to prove that any limit point of {x̃n(uj , ·), j = 1, . . . , l} coincides with
the l-point motion of the Harris flow. Without loss of generality, we suppose that the
whole sequence {x̃n(uj , ·), j = 1, . . . , l} weakly converges. For a function f ∈ C3(R) with
bounded derivatives, consider the random processes

yn(t) = x̃n(uj+1, t) − x̃n(uj , t),

zn(t) = f(yn(t)) − f(uj+1 − uj) −
∫ t

0

(1 − Γ(yn(s)))f ′′(s)ds.

Following the known procedure (see, e.g., [4]), it is easy to verify that {zn;n ≥ 1}
weakly converges to a certain martingale. Consequently, the weak limit of yn satisfies
the martingale problem for the operator

Af(x) = (1 − Γ(x))
d2

dx2
f(x).

Since the martingale problem now has a unique solution [4], the weak limit of yn is the
solution to the Cauchy problem{

dy(t) =
√

2 − 2Γ(y(t))dw(t),
y(0) = uj+1 − uj .

The solution to this SDE has the strong Markov property. Consequently, y is nonnegative
for uj+1 − uj > 0. Hence, the weak limit of {x̃n(uj , ·); j = 1, . . . , l} preserves the order.
It remains to check the form of the joint characteristic, which can be done in a standard
way. The theorem is proved. �

The previous result is based on the uniqueness of a solution to the SDE related to
a stochastic flow. We now consider the convergence of difference approximations to the
n-point motions of the Arratia flow. We recall that Arratia’s flow [5] is the Harris flow
with the local characteristic Γ = 1I{0}. In this flow, any two trajectories coalesce into a
single one in a finite time.
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Theorem 2. Suppose that, for every m ≥ 1, x̃m is built upon a sequence {ξmn ;n ≥ 1},
where the independent identically distributed processes ξmn have the covariance function
Γm which satisfies the Lipschitz condition. For m ≥ 1, we define

Cm = sup
R

2 − 2Γm(x)
x2

.

If
1) limm→∞ Cme

Cm

m = 0,
2) for every δ > 0 sup

R\[−δ;δ] |Γm(x)| → 0,m→ ∞,

then the random processes {x̃m(u1, ·), . . . , x̃m(ul, ·);m ≥ 1} weakly converge to the
l-point motion of Arratia’s flow starting from u1, . . . , ul.

Proof. Like the proof of Theorem 1, we have the weak compactness of
{(x̃m(u1, ·), . . . , x̃m(ul, ·);m ≥ 1)} in C([0; 1],Rl) and the weak convergence of xm(ui, ·)
to a Wiener process. Consequently, for any limit point of
{(x̃m(u1, ·), . . . , x̃m(ul, ·);m ≥ 1)}, it is enough to check the mutual characteristics and
the order preserving property. For ui < ui+1, the difference process ym(t) = x̃m(ui+1, t)−
x̃m(ui+1, t) are equidistributed with the difference approximation vm to the solution of
the SDE {

dỹm(t) =
√

2 − 2Γm(ỹm(t))dw(t),
ỹm(0) = ui+1 − ui.

It is known [1] that

E sup
[0;1]

(vm(t) − ỹm(t))2 ≤ C
Cme

Cm

m
.

Note that ỹm is nonnegative. Consequently, for every r > 0,

P{ inf
[0;1]

ym < −r} = P{ inf
[0;1]

vm < −r} → 0,m→ ∞.

Hence, the weak limit of any subsequence of {ym;m ≥ 1} is nonnegative. The completion
of the proof can be done exactly as in the previous theorem, by using the martingale
approximation and the fact that any nonnegative martingale remains at zero after hitting
zero. The theorem is proved. �

4. Convergence of random maps

In this section, we will consider the convergence of {x̃n;n ≥ 1} as random maps to
the corresponding maps from a stochastic flow. Let us begin with the case of smooth Γ.
Define the sequence

(5) xmn+1(u) = xmn (u) +
1√
m
ξn+1(xmn (u)),

where {ξn;n ≥ 1} is a sequence of independent stationary centered Gaussian processes
with the covariance function Γ satisfying the inequality

∀ u ∈ R : 1 − Γ(u) ≤ Cu2

with some constant C. Define the Harris flow x corresponding to Γ. Note that x has a
modification x(u, t), u ∈ R, t ∈ [0; 1] continuous with respect to both variables. Really,
using the martingale inequality, we can obtain

E sup
s∈[0;t]

(x(u, s) − x(v, s))2 ≤

≤ 2(u− v)2 + 2E
∫ t

0

(2 − 2Γ(x(u, s) − x(v, s)))ds ≤
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≤ 2(u− v)2 + 4C
∫ t

0

sup
r∈[0;s]

(x(u, r) − x(v, r))2ds.

Consequently, for some c̃,

E sup
t∈[0;1]

(x(u, t) − x(v, t))2 ≤ c̃(u− v)2.

This inequality together with the Kolmogorov condition gives us the desired property.
The next statement asserts the convergence of our approximations to a stochastic flow

in the case of smooth Γ.

Theorem 3. The random functions {x̃m = xmm;m ≥ 1} converge in distribution in the
space C([a; b]) to the random function x for an arbitrary interval [a; b].

Proof. The convergence of finite-dimensional distributions was proved in Theorem 1. It
remains to check the weak compactness of {x̃m;m ≥ 1}. For arbitrary u, v ∈ R, we have

E(xmn+1(u) − xmn+1(v))
2 = E(xmn (u) − xmn (v))2 +

1
m
E(2 − 2Γ(xmn (u) − xmn (v))) ≤

≤ E(xmn (u) − xmn (v))2 + 2Cm−1E(xmn (u) − xmn (v))2.

Consequently,

E(x̃m(u) − x̃m(v))2 ≤ (u− v)2(1 +
2C
m

)m ≤ e2C(u− v)2.

The obtained estimation gives the desired weak compactness. The theorem is proved. �

To obtain an approximation of Arratia’s flow, we need some additional results about
the convergence of smooth stochastic flows to Arratia’s flow. Let us consider the following
SDE with the space-time white noise (Wiener sheet) W :

dz(u, t) =
∫

R

ϕ(z(u, t) − p)W (dp, dt),

z(u, 0) = u, u ∈ R.

(6)

Here, ϕ ∈ C∞
0 (R) and

∫
R
ϕ2(u)du = 1 (see [6, 7] about equations of type (6)). All what

we need here is a statement that, under our condition on ϕ, the unique strong solution
to (6) exists and is the Harris flow corresponding to the local characteristic

Γ(u) =
∫

R

ϕ(−p)ϕ(u − p)dp.

It was proved in [8] that the n-point motions of solutions zε to (6), which corresponds to
ϕε with the property suppϕε ⊂ [−ε; ε], converge in distribution to the n-point motions
of the Arratia flow when ε→ 0.

Consider discrete approximations of z. For every n ≥ 1, we define

zn0 (u) = u,

znk+1(u) = znk (u) +
∫ k+1

n

k
n

∫
R

ϕ(znk (u) − p)W (dp, dt),

k = 0, . . . , n− 1.

(7)

It can be easily checked that every znk has a continuous modification. The next theorem
gives a speed of convergence of znn to z(·, 1) in the space C([0; 1]). Define

L2 =
∫

R

ϕ′(p)2dp.
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Theorem 4. There exist such positive constants C′, C′′, and C′′′ that, for every n ≥ 1,

(8) E‖znn − z(·, 1)‖ ≤ C′
√
n

exp{(C′′L2 + C′′′L4)e4L
2
+ L2}(L2 + 1),

where ‖ · ‖ is the uniform norm in C([0; 1]).

Proof. For k = 1, . . . , n, let us consider

E

(
znk (0) − z

(
0,
k

n

))2

= E

(
znk−1(0) − z

(
0,
k − 1
n

))2

+

+E
∫ k

n

k−1
n

∫
R

(ϕ(znk−1(0) − p) − ϕ(z(0, s) − p))2dpds ≤

≤ E

(
znk−1(0) − z

(
0,
k − 1
n

))2

+ L2E

∫ k
n

k−1
n

(znk−1(0) − z(0, s))2ds =

= E

(
znk−1(0) − z

(
0,
k − 1
n

))2 (
1 + L2 1

n

)
+

+L2E

∫ k
n

k−1
n

(
z(0) − z

(
0,
k − 1
n

))2

ds =

= E

(
znk−1(0) − z

(
0,
k − 1
n

))2 (
1 +

L2

n

)
+

L2

2n2
.

Consequently,

E(znn(0) − z(0, 1))2 ≤ L2

n2
eL

2
.

Note that, under our conditions on ϕ, the random functions {znk } and z have continuous
derivatives with respect to the spatial variable.

We denote these derivatives by ynk and y. Then, for k = 1, . . . , n,

ynk (u) = ynk−1(u)

(
1 +

∫ k
n

k−1
n

∫
R

ϕ′(znk−1(u) − p)W (dp, dt)

)
,

and
dy(u, t) = y(u, t)

∫
R

ϕ′(z(u, t) − p)W (dp, dt).

Hence,

ynk (u) − y

(
u,
k

n

)
= ynk−1(u) − y

(
u,
k

n

)
+

+
∫ k

n

k−1
n

∫
R

[ynk−1(u)ϕ′(znk−1(u) − p) − y(u, s)ϕ′(z(u, s) − p)]W (dp, dt) =

= ynk−1(u) − y

(
u,
k − 1
n

)
+

+
∫ k

n

k−1
n

∫
R

[(
ynk−1(u) − y

(
u,
k − 1
n

))
ϕ′(znk−1(u) − p)+

+y
(
u,
k − 1
n

)(
ϕ′(znk−1(u) − p

)
− ϕ′

(
z

(
u,
k − 1
n

− p

)
+

+y
(
u,
k − 1
n

)(
ϕ′

(
z

(
u,
k − 1
n

)
− p

)
− ϕ′(z(u, s) − p)

)
+

+ϕ′(z(u, s) − p)
(
y

(
u,
k − 1
n

)
− y(u, s)

)]
W (dp, ds).
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Then

E

(
ynk (u) − y

(
u,
k

n

))2

= E

(
ynk−1(u) − y

(
u,
k − 1
n

))2

+

+4E
∫ k

n

k−1
n

∫
R

(
ynk−1(u) − y

(
u,
k − 1
n

))2

ϕ′(znk−1(u) − p)2dpds+

+4E
∫ k

n

k−1
n

∫
R

y

(
u,
k − 1
n

)2

(ϕ′(znk−1(u) − p) − ϕ′
(
z

(
u,
k − 1
n

)
− p

)2

dpds+

+4E
∫ k

n

k−1
n

∫
R

y

(
u,
k − 1
n

)2 (
ϕ′(z

(
u,
k − 1
n

)
− p

)
− ϕ′(z(u, s) − p))2dpds+

+4E
∫ k

n

k−1
n

∫
R

ϕ′(z(u, s) − p)2
(
y

(
u,
k − 1
n

)
− y(u, s)

)2

dpds ≤

≤ E

(
ynk−1(u) − y

(
u,
k − 1
n

))2

· (1 +
4
n
L2)+

+
4
n
Ey

(
u,
k − 1
n

)2

· L2

(
znk−1(u) − z

(
u,
k − 1
n

))2

+

+4Ey
(
u,
k − 1
n

)2

L2

∫ k
n

k−1
n

(
z

(
u,
k − 1
n

)
− z(u, s)

)2

ds+

+4L2E

∫ k
n

k−1
n

(
y

(
u,
k − 1
n

)
− y(u, s)

)2

ds.

Note that the processes z(u, t), t ∈ [0; 1] and

η(t) =
∫ t

0

∫
R

ϕ′(z(u, s) − p)W (dp, ds), t ∈ [0; 1]

are continuous martingales with the characteristics

〈z(u, ·)〉(t) = t, 〈η〉(t) = L2t.

Consequently, z(u, ·) and η are Wiener processes. It follows from this that

y(u, t) = exp{η(t) − t

2
L2}.

Hence,

Ey

(
u,
k − 1
n

)2 ∫ k
n

k−1
n

(
z

(
u,
k − 1
n

)
− z(u, s)

)2

ds =

= Ey

(
u,
k − 1
n

)2

E

∫ k
n

k−1
n

(
z

(
u,
k − 1
n

)
− z(u, s)

)2

ds ≤ 1
2n2

eL
2
,

E

∫ k
n

k−1
n

(
y

(
u,
k − 1
n

)
− y(u, s)

)2

ds =

= E

∫ k
n

k−1
n

(∫ s

k−1
n

∫
R

y(u, r)ϕ′(z(u, r) − p)W (dp, dr)

)2

ds =

= L2E

∫ k
n

k−1
n

∫ s

k−1
n

y(u, r)2drds ≤ 1
2n2

L2 · eL2
.

Furthermore,

Ey

(
u,
k − 1
n

)2 (
znk−1(u) − z

(
u,
k − 1
n

))2

≤
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≤

√
Ey

(
u,
k − 1
n

)4
√
E

(
znk−1(u) − z

(
u,
k − 1
n

))4

≤ e3L
2
C2
L2

n
eL

2
.

In the last inequality, the martingale property of xn and x was used.
Finally, we obtain

E

(
ynk (u) − y

(
u,
k

n

))2

≤

≤ E

(
ynk−1(u) − y

(
u,
k

n

))2 (
1 +

4L2

n
+

4
n
L4C2e

4L2
)

+
c3
n2

(L2 + 1)eL
2
.

Consequently,

E(ynn(u) − y(u, 1))2 ≤ c4
n

exp{(c5L2 + c6L
4)e4L

2
+ L2}(L2 + 1).

To obtain an estimation for the uniform norm ‖znn − z(·, 1)‖, we proceed as follows:

E‖znn − z(·, 1)‖ ≤ E|znn(0) − z(0, 1)| + E

∫ 1

0

|ynn(u) − y(u, 1)|du ≤

≤ c7√
n

exp{(c8L2 + c9L
4)e4L

2
+ L2}(L2 + 1).

The theorem is proved. �

The obtained estimation can be used to prove the convergence of the difference approx-
imation to Arratia’s flow. We will establish this convergence using the Lévy–Prokhorov
distance. Let us recall its definition.

Definition 2. [9]. For two nondecreasing càdlàg functions f, g on [0; 1], the Lévy–
Prokhorov distance is

ρ(f, g) = inf{ε > 0 : ∀ u ∈ [0; 1] :

f(u− ε) − ε ≤ g(u) ≤ f(u+ ε) + ε

g(u− ε) − ε ≤ f(u) ≤ g(u+ ε) + ε}.

It is well known [9] that the convergence in this distance is equivalent to the conver-
gence at every point of continuity of the limit function. Also note that

ρ(f, g) ≥ d(f, g),

where d(f, g) is the Skorokhod distance between f and g [9].
Take a function ψ ∈ C∞

0 with suppψ ⊂ [−1; 1] such that∫
R

ψ2(u)du = 1.

For arbitrary ε > 0, we define

ψε(u) =
1
ε1/2

ψ
(u
ε

)
,

Γε(u) =
1
ε

∫
R

ψε(p)ψε(u+ p)dp.

Here, the parameter ε is associated with the smoothness of Γε. In order to approximate
the Arratia flow, we have to take ε→ 0. For independent Gaussian processes {ξn;n ≥ 1}
with the covariance {Γεn}, let us construct the sequences

xnk+1(u) = xnk (u) +
1√
n
ξn(xnk (u)).

The next theorem shows that xnn can be used to approximate the Arratia flow.
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Theorem 5. Suppose that εn → 0, n→ ∞,

1
ε2n

= o(llnn), n→ ∞.

Then the random functions xnn converge weakly in D([0; 1]) to the value of the Arratia
flow x(·, 1).

Proof. Consider the sequence of SDE

dzεn(u, t) =
∫

R

ψε(zεn(u, t) − p)W (dp, dt).

As was mentioned at the beginning of this section, for every u1, . . . , um ∈ [0; 1],

(zεn(u1, 1), . . . , zεn(um, 1)) weakly converge to (x(u1, 1), . . . , x(um, 1)).

Hence [10], zεn(·, 1) weakly converge to x(·, 1) in the Lévy–Prokhorov distance. For every
n ≥ 1, the sequence xn1 , . . . , x

n
n is equidistributed with the discrete approximations to zεn

from Theorem 4. Consequently, xnn is equidistributed with x̃n such that

E‖x̃n − zεn(·, 1)‖ ≤ C′
√
n

exp{(C′′L2
εn

+ C′′′L4
εn

)e4L
2
εn + L2

εn
}(L2

εn
+ 1),

where L2
εn

= 1
εn

∫
R
ψ′(p)2dp. Hence,

E‖x̃n − zεn(·, 1)‖ → 0, n→ ∞.

Since, for continuous functions f and g, the Skorokhod distance

d(f, g) ≤ ‖f − g‖,
xnn weakly converges to x(·, 1) in D([0; 1]). The theorem is proved. �
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