
Theory of Stochastic Processes
Vol. 17 (33), no. 1, 2011, pp. 79–89

ANDREY PILIPENKO

ON PROPERTIES OF BROWNIAN REFLECTING FLOW IN A
WEDGE

Consider a planar Brownian flow in a wedge with oblique reflection on the sides. The
necessary and sufficient conditions are obtained for the vertex to be reached by the
flow.

Introduction

Consider a wedge K ⊂ R2 with a vertex at the origin. Assume that one side of the
wedge belongs to the abscissa axis. Let ξ be the angle of the wedge, let l1 and l2 be
sides of the wedge, let n1 and n2 be inner normal vectors to the sides, and let v1 and
v2 be vectors such that (n1, v1) = (n2, v2) = 1. By α1, α2 ∈

(
−π

2 ,
π
2

)
, we denote angles

between n1 and v1, n2 and v2 (the angle αi is referred to as a positive one if and only if
vi points toward the origin); see Fig. 1 with α1 > 0, α2 < 0. Set K0 = K \ {0}.

Consider the Skorokhod SDE for a reflected Brownian motion ϕt = ϕt(x) in the wedge
K with oblique reflection on its sides:

dϕt(x) = dw(t) + v1L1(dt, x) + v2L2(dt, x),(1)

ϕ0(x) = x, ϕt(x) ∈ K, x ∈ K,(2)

where {w(t), t ≥ 0} is two-dimensional Wiener process, and, for any x, the processes

L1(t, x), L2(t, x) are continuous and non-decreasing in t,(3)

L1(0, x) = L2(0, x) = 0,(4)

Li(t, x) =
∫ t

0

1I{ϕs(x)∈li}Li(ds, x), i = 1, 2.(5)
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Condition (5) means that Li(t, x) may increase in t only at instants, when a process
ϕt(x) hits li.

It is easy to construct a solution of (1)–(5) for fixed x on a time interval [0, τ(x)),
where

(6) τ(x) = sup
n

inf
s
{s : |ϕs(x)| ≤

1
n
}.

We will say τ(x) is the vertex hitting moment.
The problem of existence of a strong solution to system (1)–(5) defined for all t ≥ 0

and fixed x is non-trivial. Some sufficient conditions are given, for example, in [1, 2].
Varadhan and Williams [3] obtained necessary and sufficient conditions for the existence
and the uniqueness of a weak solution satisfying

∫∞
0

1I{ϕs(x)=0}ds = 0. The general
necessary and sufficient conditions ensuring the existence and the uniqueness of a strong
solution to (1)–(5) are seemed to be absent.

This paper is the first step of the construction of a flow {ϕt(x), t ≥ 0, x ∈ K0} and a
study of a joint behavior of solutions to (1)–(5) started simultaneously from all x ∈ K0.
A sufficient condition that guarantees the existence of the flow {ϕt(x), t ≥ 0, x ∈ K0}
on the initial probability space is the simultaneous inaccessibility of 0 by solutions to
(1)–(5) for any initial point x ∈ K0, i.e.,

(7) P (∀ x ∈ K0 : τ(x) = +∞) = 1.

The main aim of the paper is to calculate the probability of the vertex accessibility
p = P (∃ x ∈ K0 : τ(x) < ∞) in terms of ξ, α1, α2. In particular, it will be proved that
either p = 0 or p = 1. Moreover, if ξ > π

2 , then p = 1 and there exists a random initial
point x = x(ω) ∈ K0 such that x+w(·) hits the corner with probability 1 without hitting
the sides of the wedge before this moment.

The problem on the vertex accessibility for a solution started from a fixed x ∈ K0

was completely solved by Varadhan and Williams (see [3] and also some generalizations
[4]-[8] and references therein). It was proved that

∀ x ∈ K0 : P (τ(x) <∞) = 0 ⇔ α1 + α2 ≤ 0,(8)

P (τ(x) <∞) = 1 ⇔ α1 + α2 > 0.(9)

It may be conjectured that condition (8) is a criterion of the vertex inaccessibility by
the flow. However, it easy to show that this is not true. Really, let ξ = π, v1 = v2 = (0, 1).
Then {ϕt(x), t ≥ 0} is a Brownian motion in the upper half-plane R2

+ with a normal
reflection at the abscissa axis. Then, for any fixed x ∈ R

2
+ \ {0}, the process ϕt(x) does

not hit the origin with probability 1. However,

P (∃ x �= 0 : τ(x) <∞) = 1.

Indeed, take x = (x1, x2), where x2 > 0. Let w(t) = (w1(t), w2(t)). Denote, by σ, the
first instant of hitting the point (−x2) by the process w2:

σ = inf{s : x2 + ω2(s) = 0}.
Let x̃ = −w(σ). It can be easily checked that the process ϕt(x̃) gets into the point 0 for
t = σ, and this is the first instant, when the process ϕt(x̃) hits the abscissa axis.

The paper is organized as follows. In Section 1, we construct and study a flow gen-
erated by the (deterministic) Skorokhod problem in the upper half-plane with constant
reflection on the X-axis. Properties of the (deterministic) Skorokhod problem in a wedge
are studied in §2. The probability P (∃ x �= 0 : τ(x) <∞) is calculated in §3. In §4, we
use the properties of a flow discussed in §2, §3 and give a new proof of the existence of
the Brownian motion for a one-sided cone point for angles greater than π/2. The corre-
sponding fact about cone points of the Brownian motion was discovered by Burdzy and
Shimura [9, 10].
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1. Skorokhod equation in a half-plane

In this Section, we consider an auxiliary problem on the behavior of a reflected Brown-
ian flow in the upper half-plane with a constant oblique reflection at the abscissa axis.

Let R2
+ = R× [0,∞) be the upper half-plane, v = (a, 1) ∈ R2, and let w ∈ C0(R2,R2)

be a continuous function, w(0) = 0. Consider the Skorokhod problem in R2
+ with an

oblique reflection at the Ox axis:

dψt(x) = dw(t) + vL(dt, x), t ≥ 0,

ψ0(x) = x, x = (x1, x2) ∈ R
2
+.

(10)

Here, L(0, x) = 0, L is non-decreasing and continuous in t for fixed x,

(11) L(t, x) =
∫ t

0

1Iψs(x)∈OxL(ds, x).

Let ψt(x) = (ψ1
t (x), ψ

2
t (x)). Let us write system (10), (11) in the coordinate form

dψ1
t (x) = dw1(t) + aL(dt, x), t ≥ 0,

dψ2
t (x) = dw2(t) + L(dt, x), t ≥ 0,

ψ1
t (x) = x1, ψ

2
t (x) = x2,

L(t, x) =
∫ t

0

1Iψ2
s(x)=0L(ds, x).

Note that the process {ψ2
t (x), t ≥ 0} is a solution of the one-dimensional Skorokhod

problem with reflection at 0. It is well known that

(12)

{
ψ2
t (x) = x2 + w2(t) + Γ(x2 + ω2(·))(t),
L(t, x) = Γ(x2 + ω2(·))(t),

where Γf(t) := sups∈[0,t](−f(s) ∨ 0).
Hence,

(13) ψ1
t (x) = x1 + w1(t) + aΓ(x2 + ω2(·))(t).

Fix ξ ∈ (0, π). Let rx = {x+ s(cos ξ, sin ξ), s ≥ 0} be a ray in R2
+.

Denote, by rxt = ψt(rx), the image of the ray rx under the mapping ψt : R2
+ → R2

+.
Let us describe rxt .

Set m(t) = −mins∈[0,t] w2(s). At first, we observe that if x2 −m(t) ≥ 0, then rxt =
rx +w(t) = rx+w(t) is a shift of the ray rx by the vector w(t). If x2 −m(t) < 0, then the
set rxt can be described as follows (see Fig. 2).

Let us take a point c(t) ∈ rx with ordinate m(t),

(14) c(t) = (c1(t),m(t)) = (x1 + (m(t) − x2) cot ξ,m(t)) =

= (x1, x2) + (m(t) − x2)(cot ξ, 1) = (x1, x2) + (m(t) − x2)(sin ξ)−1(cos ξ, sin ξ).

Note that rc(t) is the infinite part of the ray rx with the vertex in c(t). Then

(15) ψt(rc(t)) = rc(t) + w(t) = rc(t)+w(t)

is a shift of rc(t) by a vector w(t). From (12) and (13), we get that the image of [x; c(t)]
under the map ψt is a horizontal segment with one end-point at ψt(x) and another
end-point at c̃(t) = c(t) + w(t) = ψt(c(t)); moreover,

(16) ψt(x) = c(t) + w(t) + (x1 − c1(t))m(t)a(1, 0).

That is,

(17) ψt(rx) = r�c(t) ∪ [ψt(x); c̃(t)].
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Remark 1. It follows from (12)–(14) that the point c̃(t) has the form c̃(t) = (c̃1(t), c̃2(t)),
where

c̃2(t) = x2 + ω2(t) + Γ(x2 + ω2(·))(t),
c̃1(t) = x1 + ω1(t) + cot ξΓ(x2 + ω2(·))(t).

In other words, c̃(t) satisfies the Skorokhod equation in R2
+ with reflection along the

vector (cot ξ, 1) which is parallel to the ray rx.

Remark 2. If the ray rx is parallel to the X axis, then it is easy to check that rxt is a
shift of rx by the vector (ψt(x) − x) :

(18) rxt = rx + ψt(x) − x = rψt(x),

and

(19) ψt(x+ s(1, 0)) = ψt(x) + s(1, 0), s ∈ R.

Denote, by Sx, the wedge

Sx = {x+ s(cos ξ, sin ξ) + t(1, 0), s ≥ 0, t ≥ 0} ⊂ R
2
+

with vertex in x and with angle ξ.
Let us introduce a partial order in R2 generated by S0. We say that x ≤ y if

y − x ∈ S0 = {s(cos ξ, sin ξ) + t(1, 0) : s ≥ 0, t ≥ 0}.
Lemma 1. Let x, y ∈ R

2
+, x ≤ y and v /∈ S0. Then ψt(x) ≤ ψt(y) for any t ≥ 0, i.e., the

flow ψt is monotonous w.r.t. the partial order “ ≤ ”.

Proof. Suppose at first that y = x + s1(cos ξ, sin ξ), where s1 ≥ 0. It follows from
(15) and (16) that ψt(x) ≤ ψt(y). If y = x + s2(1, 0), where s2 ≥ 0, then the inequality
ψt(x) ≤ ψt(y) follows from (19). Combining these two cases, we obtain the general
inequality

∀ s1, s2 ≥ 0 : ψt(x) ≤ ψt(x+ s1(cos ξ, sin ξ)) ≤ ψt(x+ s1(cos ξ, sin ξ) + s2(1, 0)).

Combining all reasonings of this Section, we get the following statement:

Lemma 2.

ψt(Sx) =

{
S�c(t), if v ∈ S0,

S�c(t) ∪ [ψt(x); c̃(t)], if v /∈ S0,

where S�c(t) is a wedge with vertex in c̃(t), and a function c̃(t) is a solution of the Skorokhod
equation with reflection at Ox along the vector (cot ξ, 1).

There exists the minimal point of the set ψt(Sx) w.r.t. the partial order “ ≤′′ . It
equals

a) c̃(t) if v ∈ S0,
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b) ψt(x) if v /∈ S0.
Moreover, in case a), the ray {c̃(t) + s(cos ξ, sin ξ) : s ≥ 0} belongs to the set ψt({x+

s(cos ξ, sin ξ) : s ≥ 0}), in particular,

min
y∈Sx

ψt(y) = c̃(t) ∈ ψt({x+ s(cos ξ, sin ξ) : s ≥ 0}).

In case b), the ray {ψt(x) + s(1, 0) : s ≥ 0} is equal to ψt({x + s(1, 0) : s ≥ 0}), in
particular,

min
y∈Sx

ψt(y) = ψt(x) ∈ ψt({x+ s(1, 0) : s ≥ 0}).

2. Construction of a reflecting flow up to the vertex hitting moment

In this Section, we construct a flow {ϕt(x)} that satisfies (1)–(5) up to the vertex
hitting moment.

Lemma 3. Let w ∈ C0(R2,R2) be any continuous function, w(0) = 0. Then there exist
unique functions

τ :K0 → (0,∞), ϕ = ϕt(x) : {(t, x) | t ∈ [0, τ(x)), x ∈ K0} → K0,

Li = Li(t, x) : {(t, x) | t ∈ [0, τ(x)), x ∈ K0} → R+, i = 1, 2,

such that (ϕ,L1, L2) satisfies relations (1) – (5) for any x ∈ K0, t ∈ [0, τ(x)), where τ(x)
is defined in (6). The functions ϕ,L1, L2 are continuous in t, x on the set {(t, x) | t ∈
[0, τ(x)), x ∈ K0}.

Moreover, for any x ∈ K0 and t < τ(x), there exists a neighborhood U(x) of the point
x such that τ(y) > t for any y ∈ U(x), and ϕ satisfies the following Lipschitz condition
in U(x):

∃ L > 0 ∀ y1, y2 ∈ U(x) : sup
s∈[0,t]

|ϕs(y1) − ϕs(y2)| ≤ L|y1 − y2|.

Remark 3. In this Lemma, w is an arbitrary non-random function (it is not a Wiener
process), and Eqs. (1) – (5) are non-random ones (and not stochastic equations).

The proof of the Lemma can be easily done, by using the localization technique. Let
us sketch the main steps only.

Denote, by r = r(x), φ = φ(x), the polar coordinates of a point x ∈ R2, r =
√
x2

1 + x2
2,

tanφ = x2
x1
. Represent K0 as a union K0 = B1∪B2, where B1 =

{
x ∈ K0 : φ ∈

[
0, 2ξ

3

)}
,

B2 =
{
x ∈ K0 : φ ∈

(
ξ
3 , ξ

]}
.

Let x ∈ K0. For the sake of definiteness, we assume that x ∈ B1. Note that, until the
exit from B1, the process ϕt(x) is a solution of the Skorokhod problem considered in the
upper half-plane with a constant reflection direction at Ox.

It is well known that the solution exists, and it is unique. Moreover, the explicit
formula for ϕt(x) can be written (see §1). Really, let x = (x1, x2), ϕt(x) = (ϕ1

t (x), ϕ2
t (x)),
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w(t) = (w1(t), w2(t)), v1 = (a1, 1). Then the function ϕ2
t (x) is a solution of the one-

dimensional Skorokhod problem with reflection at zero, and

ϕ2
t (x1, x2) = x2 + w2(t) + Γ(x2 + w2(·))(t), t ≤ σ1,

L1(t, x) = Γ(x2 + w2(·))(t), t ≤ σ1,
(20)

where Γf(t) := sups∈[0,t](−f(s) ∨ 0), σ1 = σ1(x) is the exit moment of ϕ·(x) from B1.
Hence,

ϕ1
t (x) = x1 + w1(t) + a1L1(t, x), t ≤ σ1.

The process ϕt(x) does not hit l2 until σ1; thus,

L2(t, x) = 0, t ≤ σ1.

Assume that ϕσ1(x) �= 0. It is easy to check that there exists a constant C1 independent of
x and σ1, and there exists a neighborhood U1(x) of a point x such that, for any y ∈ U1(x),
the processes {ϕt(y), t ∈ [0, σ1]} had not hit l2, ϕσ1(y) ∈ B2, ϕt(y) is continuous in (t, y)
on a set [0, σ1] × U(x), and

(21) ∀ y1, y2 ∈ U1(x) : sup
s∈[0,σ1]

|ϕs(y1) − ϕs(y2)| ≤ C1|y1 − y2|.

Arguing as above, we can extend a solution ϕt(x) to a time interval [σ1, σ2], where σ2

is the exit moment from B2. Moreover, there is a neighborhood U2(x) ⊂ U1(x) such that
ϕt(y), y ∈ U2(x) is defined for all t ≤ σ2, ϕ is continuous in (t, y) and Lipschitzian in y
(cf. (21)) with some constant C2.

Similarly, we may define a solution ϕt(x) on a set {(t, x)|x ∈ K0, t < supn σn(x)}.
Note that the function ϕ·(x) obviously cannot reach the infinity in a finite moment of

time staying in one of the sets B1 or B2 (see representation (20)).

Remark 4. Actually, we have also considered a case where there exists n such that
ϕσn(x) = 0. This situation can be treated similarly, and we omit the corresponding
consideration.

To conclude the proof, it is sufficient to verify that a function ϕs(x), s ∈ [0, supn σn(x))
does not visit, in turn, the sets B1 and B2 the infinite number of times if

inf
n

inf
s∈[0,supn σn(x))

|ϕs(x)| > 0

and supn σn(x) < ∞. Assume the converse. Then there exists the infinite number of
disjoint segments [sk, tk] ⊂ [0, supn σn(x)) such that ϕsk

(x) ∈ B1, ϕtk(x) ∈ B2, ϕs(x) /∈
l1 ∪ l2 for s ∈ [sk, tk]. Therefore,

(22) ϕtk(x) − ϕsk
(x) = w(tk) − w(sk).

Put
r := inf

s∈[0,supn σn(x))
|ϕs(x)|,

C := inf
x∈B1, y∈B2, ‖x‖≥r, ‖y‖≥r

‖x− y‖.

Let r > 0. Then C > 0. So,

inf
k
|ϕtk(x) − ϕsk

(x)| ≥ C > 0.

Since the intervals [sk, tk] are disjoint, we have infk |tk − sk| = 0. This and (22) imply
that the function w(t), t ∈ [0, supn σn(x)] is not uniformly continuous. This contradiction
concludes the proof.

Remark 5. It follows from the above reasoning that limt→τ(x)− ϕt(x) = 0 if τ(x) <∞. If
v1 �= v2, then L1(τ(x)−, x) <∞, L2(τ(x)−, x) <∞, and we may extend (1) for t = τ(x),
where ϕτ(x)(x) := 0, L1(τ(x), x) := L1(τ(x)−, x), L2(τ(x), x) := L2(τ(x)−, x).
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3. Main Result

Let ϕt(x), x ∈ K0, t ∈ [0, τ(x)) be a solution to SDE (1)–(5), where τ(x) is defined in
(6).

By

(23) p = P (∃ x ∈ K0 : τ(x) <∞),

we denote the probability of hitting 0 by the flow {ϕt(x)}.

Remark 6. The process ϕt(x) is continuous in (t, x). So a set under the probability sign
on the right-hand side of (23) is measurable.

Theorem 1. The probability of hitting zero by the flow {ϕt(x)} equals either 0 or 1.
Moreover, p = 1 iff at least one of the following conditions holds:
a) α1 + α2 > 0;
b) ξ > π

2 ;
c) ξ ∈

(
0, π2

]
, ξ + α1 >

π
2 ;

d) ξ ∈
(
0, π2

]
, ξ + α2 >

π
2 .

Proof. The case α1 + α2 > 0 is trivial. Really, in this case for any x ∈ K, we have
P (τ(x) <∞) = 1 (see (8) and (9)).

If ξ ≥ π, then the probability of reaching zero is also equal to 1. This can be proved
as for ξ = π (see Introduction). So, it will be assumed further that ξ ∈ (0;π).

By
K{x} = K + x = {y : y − x ∈ K},

we denote a shift of the wedge K by a vector x.
To prove the theorem, it is sufficient to check that the probability px of hitting zero

by the set ϕt(K{x}),
px = P (∃ y ∈ K{x} : τ(y) <∞),

has the same form as that in the formulation of the theorem.
The idea of a proof is the following. We will verify that a set ϕt(K{x}) has a minimal

point ϕ̃t(x) w.r.t. the partial order generated by K; in addition, it will be shown that
ϕ̃t(x) satisfies the Skorokhod SDE in K with constant reflection at each side of the wedge
l1 and l2. Therefore, the probability of hitting zero by the set ϕt(K{x}) is equal to the
probability of hitting zero by the process ϕ̃t(x); and we will apply results of work [3] for
the study of the last probability.

Let us introduce a sequence of stopping times {τn}n≥1. Denote, by τ1, the first instant,
when ϕt(K{x}) hits l1 or l2 (to be definite, assume that it hits l1 at first). Put

τ2n = inf{t > τ2n−1 : ϕt(K{x}) ∩ l2 �= ∅},
τ2n+1 = inf{t > τ2n : ϕt(K{x}) ∩ l1 �= ∅}.

Note that if we prove the existence of the minimal point ϕ̃t(x) of the set ϕt(K{x}),
then the equality τn = τn+1 means ϕ̃τn(x) = 0. In this case, the proof is trivial (however,
it can be verified that the corresponding probability equals zero).

Observe also that, for all t ∈ [0, τ1), we have the equality ϕt(K{x}) = K{x+w(t)},
because all points ϕt(K{x}) have not reached sides of the wedge K; moreover, L1(t) =
L2(t) = 0.

Consider the following cases of arrangement of the vectors v1 and v2:
1) v1, v2 ∈ K;
2) v1, v2 /∈ K;
3a) v1 /∈ K, v2 ∈ K;
3b) v1 ∈ K, v2 /∈ K.
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Case 1. Denote, by ϕ̃t(x), a solution to the SDE

dϕ̃t(x) = dw(t) + ṽ1dL̃1(t) + ṽ2dL̃2(t),

where L̃i are non-decreasing and continuous, L̃i(0) = 0, i = 1, 2,

L̃i(t) =
∫ t

0

1I�ϕz(x)∈lidL̃i(z),

ϕ̃0(x) = x,

and the vectors ṽ1 and ṽ2 are parallel to l2 and l1, respectively, (ṽi, ni) = 1, i = 1, 2.
A process ϕ̃t(x) is uniquely defined up to the moment of hitting 0 (see Section 2).
Let us verify that

(24) ϕt(K{x}) = K{�ϕt(x)}

for all t < supn τn.
Let t ∈ [τ1, τ2). Without loss of generality, we assume that the image of K{x} hits l1

at the instant τ1.
Note that the set ϕt(K{x}), t ∈ [τ1, τ2) does not have common points with l2, so it

reflects only at l1. Hence, we may apply the reasoning of § 1 about the motion of a
wedge in the half-plane with reflection at the X-axis. Therefore, ϕt(K{x}) = ψt(K{x}),
where ψt(x) is a solution of (10) with v = v1. It follows from Lemma 2 that ϕt(K{x}) =
K{�ϕt(x)}, t ∈ [τ1, τ2).

A similar equality also holds for t ∈ [τ2, τ3). However, in this case, we have to consider
a generalization of Lemma 2 to the case of reflection at l2, rather than at the X-axis.

Arguing as above, we see that relation (24) is satisfied. Therefore, the set ϕt(K{x})
reaches 0 in a finite time if and only if the process ϕ̃t(x) reaches 0 in a finite time. It
follows from the result in [3] (see (8) and (9)) that the probability of the last event equals
either 0 or 1, if ξ ≤ π

2 or ξ > π
2 , respectively.

Note that neither of cases a)-d) of the theorem is satisfied if ξ ≤ π
2 .

Case 2. It follows from Lemma 1 that

∀ y ∈ K{x} ∀ t ∈ [0, sup
n
τn) ∀ ω : ϕt(x) ≤ ϕt(y),

where the partial order ≤ is generated by K (y1 ≤ y2 ⇔ y2 − y1 ∈ K). So, ϕt(K{x})
reaches 0 in a finite time iff ϕt(x) reaches zero in a finite time. It follows from (8) and
(9) that this is true iff α1 + α2 > 0.

Note that neither of cases a)-d) of the theorem is satisfied if α1 +α2 ≤ 0, v1 /∈ K, v2 /∈
K.

Case 3a. Let ϕ̃t(x) be a solution of (1)– (5), where we take ṽ2 in place of v2 so that
ṽ2 is parallel to l1 and (ṽ2, n2) = 1.

Let us check that, for any t ∈ [0, supn τn),
1) ϕ̃t(x) = miny∈K{x} ϕt(y),
2) a ray {ϕ̃t(x) + s(1, 0) : s ≥ 0} is contained in ϕt(K{x}).
Let t ∈ [0, τ2). Recall that ϕt(K{x}) hits l1 for the first time at an instant t = τ1, and

it does not hit l2 for all t ∈ [0, τ2).
It follows from Lemma 2 (case b)) that

min
y∈K{x}

ϕt(y) = ϕt(x) = ϕ̃t(x)

and
{ϕ̃t(x) + s(1, 0) : s ≥ 0} ⊂ ϕt(K{x}), t ∈ [0, τ2).

Since ϕt(y) ≥ ϕt(x) = ϕ̃t(x), y ∈ K{x}, we have

(25) ϕt(K{x}) ⊂ K{�ϕt(x)}.
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Let now t ∈ [τ2, τ3). Recall that ϕt(K{x})∩ l1 = ∅, t ∈ [τ2, τ3). Denote, by {ϕst(y), t ≥
s}, the solution of (1)–(5) with initial data ϕss(y) = y. Then

ϕt(K{x}) = ϕτ2t(ϕτ2(K{x})).

As was mentioned above, the following inclusions hold:

(26) {ϕ̃τ2(x) + s(1, 0), s ≥ 0} ⊂ ϕτ2(K{x}) ⊂ K{�ϕτ2(x)}.

Let us apply Lemma 2 (case a)) to the equation with reflection at l2. Then

minϕτ2t(K{�ϕτ2(x)}) = ϕ̃τ2t(ϕ̃τ2(x)) = ϕ̃t(x) =

= minϕτ2t({ϕ̃τ2(x) + s(1, 0), s ≥ 0}).
This and (26) yield

ϕ̃t(x) = minϕτ2t(ϕτ2(K{x})) = minϕt(K{x}).

Moreover (see Lemma 2 again), a ray {ϕ̃t(x) + s(1, 0) : s ≥ 0} is contained in ϕt(K{x}).
Continuing this line of reasoning for t ∈ [τ3, τ4), t ∈ [τ4, τ5), etc., we obtain

ϕ̃t(x) = min
y∈K{x}

ϕt(y), t ∈ [0, sup
n
τn).

So, ϕt(K{x}) reaches 0 in a finite time iff ϕ̃t(x) reaches 0 in a finite time.
Apply (8), (9). The angle between ṽ2 and n2 is equal to

(
ξ − π

2

)
(in agreement with

Introduction). Hence,
px = 1, if α+ ξ − π

2
> 0,

px = 0, if α+ ξ − π

2
≤ 0.

It can be easily checked that if v1 /∈ K, v2 ∈ K, then the inequality α+ ξ− π
2 ≤ 0 yields

neither of cases a)-d) from the formulation of the theorem.
The theorem is proved. �

4. Accessibility of the vertex without hitting sides of the wedge

Let us find the probability ρ that there exists a random point x ∈ K0 = K \ {0} such
that a Wiener trajectory started from x reaches the corner without hitting the sides of
the wedge, i.e.,

(27) ρ = P (∃x ∈ K0 ∃t > 0 : x+ w(t) = 0 and x+ w(s) /∈ l1 ∪ l2, s ∈ [0; t)).

This problem is equivalent to the existence of a one-sided cone point of the Brownian
motion. We now recall the corresponding definition.

Definition 1. Let t > 0. A point z = w(t) is a one-sided cone point with angle α ∈ (0;π]
if a set {w(t) − w(s), s ∈ [0; t]} is included in a wedge {(x1, x2) : x1 ≥ 0, |x2

x1
| ≤ tan α

2 }.

The main result of this section is the following.

Theorem 2. ρ = 1 if and only if ξ > π/2.
Otherwise, ρ = 0.

Remark 7. This result was proved originally by Burdzy and Shimura [9, 10]. We give
another proof based on a geometric approach.

Proof. Consider a reflecting flow {ϕt(x)} in K, where the directions of reflections v1, v2
are parallel to l2 and l1, respectively. Observe that the probability in (27) equals

P (∃x ∈ K0 : ϕτ(x)(x) = 0 and ϕs(x) /∈ l1 ∪ l2, s ∈ [0; τ(x))).

If ξ ≤ π/2, then the flow ϕt does not hit 0 (see §3). Therefore, ρ = 0.
Let ξ > π/2.
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The flow ϕt can be constructed for all t ≥ 0; moreover, the precise formula for ϕt
can be written. Really, let A be a linear operator in R2 such that Av1 = n1, Av2 = n2,
where n1 = (0, 1), n2 = (1, 0). Then A(K) = [0;∞)2. Put x̃ = Ax, w̃(t) = Aw(t), w̃(t) =
(w̃1(t), w̃2(t)), and

(28) ϕ̃t(x̃) = Aϕt(x).

It is easy to see that ϕt(x) satisfies (1)–(5) iff ϕ̃t(x) satisfies the following Skorokhod
SDE in the quadrant [0;∞)2:

dϕ̃t(x̃) = dw̃(t) + n1L̃1(dt, x̃) + n2L̃2(dt, x̃),(29)

ϕ̃0(x̃) = x̃, ϕ̃t(x̃) ∈ [0;∞)2, x̃ ∈ [0;∞)2,(30)

where L̃i(t, x̃) satisfy conditions similar to (3)–(5). It is not difficult to check that
L̃i(t, x̃) = Li(t, x).

If we write Eq. (29) in the coordinate-wise form, then we see that each coordinate
ϕ̃it(x̃), i ∈ {1; 2} satisfies the one-dimensional Skorokhod SDE

(31) dϕ̃it(x̃) = dw̃i(t) + L̃i(dt, x̃)

(with the rest needed relations on L̃i(t, x̃)).
Hence,

(32) ϕ̃it(x̃) = x̃i + w̃i(t) + Γ(x̃i + w̃i(·))(t), i ∈ {1; 2}.
Introduce a partial order generated by K. We will say that x ≤ y if y − x ∈ K and

x < y if y − x ∈ K \ ∂K.
It follows from §1 and §2 (or (28)-(32)) that the flow ϕt is monotonous in the following

sense. If x ≤ y, then ϕt(x) ≤ ϕt(y), t ∈ [0, τ(x)), and τ(x) ≤ τ(y). Recall that τ(x) <∞
a.s. (see (9)). Formulas (28)-(32) yield Li(τ(x), x) <∞, i ∈ {1; 2} a.s. and x+w(τ(x))+
v1L1(τ(x), x) + v2L2(τ(x), x) = 0. �

Lemma 4. For any x ∈ K0, the point τ(x) is a.s. a point of growth of the processes
L1(t, x), L2(t, x), t ∈ [0, τ(x)), i.e.,

P (∀t ∈ [0, τ(x)) : Li(τ(x), x) > Li(t, x)) = 1, i ∈ {1; 2}.

Proof of Lemma 4. It is well known that a.s. all points of hitting zero by the
one-dimensional reflected Brownian motion are points of growth of a local time at zero.
Therefore, all points t such that ϕt(x) ∈ l1 or ϕt(x) ∈ l2 are points of growth of L1(·, x) or
L2(·, x), respectively, with probability 1 (see (31) and relation between ϕt(x) and ϕ̃t(x̃)).

Assume the converse to the statement of the Lemma. Then there exists x ∈ K0 such
that

P (ϕτ(x)−(x) = 0 and ∃ε > 0 : ϕs(x) /∈ l1, s ∈ [τ(x) − ε; τ(x))) > 0
or

P (ϕτ(x)−(x) = 0 and ∃ε > 0 : ϕs(x) /∈ l2, s ∈ [τ(x) − ε; τ(x))) > 0.
Suppose, for instance, that the second inequality is satisfied. Let ϕ̄t(x) be the reflected
Brownian motion in the upper half-plane with reflection at Ox along v1, i.e., ϕ̄t(x) is a
solution of (10), (11) with v = v1. Observe that ϕ̄t(x) = ϕt(x), if ϕs(x) /∈ l2, s ∈ [0; t].

The process ϕ̄t(x) can be considered as the reflected Brownian motion in a wedge with
ξ = π, where v2 = v1. In this case, the angles of reflection are opposite in sign, α1 = −α2;
so α1 + α2 = 0. It follows from (9) that

0 = P (τ̄ (x) <∞) ≥ P (ϕτ(x)−(x) = 0 and ϕs(x) /∈ l2, s ∈ [0; τ(x))).

This contradiction proves the lemma.
Now we can prove Theorem 2. Let x ∈ K0 be fixed. Put x̂ = x + v1L1(τ(x)−, x) +

v2L2(τ(x)−, x). Then x̂+w(τ(x)) = 0. The monotonicity of the flow and Lemma 4 imply
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that x̂ + w(t) > 0, t ∈ [0, τ(x)) a.s., i.e., x̂ + w(t) /∈ l1 ∪ l2, t ∈ [0, τ(x)). Theorem 2 is
proved.
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hitting sides of the wedge is equivalent to the existence of one-sided cone points for the
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