
Theory of Stochastic Processes
Vol. 17 (33), no. 1, 2011, pp. 90–99

A. POGORUI

THE DISTRIBUTION OF RANDOM EVOLUTION IN ERLANG
SEMI-MARKOV MEDIA

We study a one-dimensional random motion by using a general Erlang distribution

for the sojourn times of a switching process and obtain the solution of a four-order
hyperbolic PDE in the 2-Erlang case.

1. Introduction

In paper [1], we studied a one-dimensional random motion with the m-Erlang distrib-
ution between consequent epochs of velocity alternations. Let f(t, x) be the probability
density function (pdf) of a particle position at time t, provided that it exists. We obtained
the following higher order hyperbolic equations for f(t, x):

(1)
(
∂

∂t
− v

∂

∂x
+ λ

)m(
∂

∂t
+ v

∂

∂x
+ λ

)m
f(t, x) − λ2mf(t, x) = 0,

where v > 0 is the velocity of a particle, and λ is the parameter of the m-Erlang distri-
bution. It is assumed that the particle started at x = 0, and, hence, f(0, x) = δ(x).

The pdf f(t, x) can be represented in the form f(t, x) = fc(t, x) + fs(t, x), where
fc(t, x) is the absolute continuous part, and fs(t, x) is the singular part w.r.t. Lebesgue
measure on the line.

Lemma 1.1. The singular part fs(t, x) of the pdf f(t, x) is of the following form:

(2) fs(t, x/v) = δ(t− x/v)e−λt
m−1∑
i=0

(λt)i/i!.

Proof. It is evident that, for t = x/v, the pdf f(t, x) has the singularity given by Eq.
(2). Let us show that, for t > |x/v|, the pdf f(t, x) has no singularity w.r.t. Lebesgue
measure on R. By vk, we denote the random event ”k velocity alternations occurred”.
For Δx = [x, x + Δ], Δ > 0, let us consider

Pν̄0(x(t) ∈ Δx) =
∑
k≥1

P (x(t) ∈ Δx, νk),

which is the probability of the event where at least one alternation occurred and x(t) ∈
Δx. Let us show that, for each t > 0, there exists a constant Ct <∞ such that

sup
x

Pν̄0 (x(t) ∈ Δx)
Δx

< Ct.

By θk, k ≥ 1, we denote the time between (k − 1)-th and k-th velocity alternations.
Recall that θk, k ≥ 1, are independent m-Erlang distributed random variables. It is easy
to verify that
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Pν̄0(x(t) ∈ Δx) =
∑
k≥1

P

(
k∑
i=1

(−1)i+1θiv + (−1)k
(
t−

k∑
i=1

θiv

)
∈ Δx,

k∑
i=1

θi < t

)

=
∑
k≥1

P

((
k∑
i=1

(−1)i+1θi − (−1)k
k∑
i=1

θi

)
v ∈ Δx− (−1)kvt,

k∑
i=1

θi < t

)

=
∑
l≥0

P

(
2v(θ1 + θ3 + . . .+ θ2l+1) ∈ Δx− vt,

2l+1∑
i=1

θi < t

)

=
∑
l≥0

P

(
−2v(θ2 + θ4 + . . .+ θ2l+2) ∈ Δx+ vt,

2l+2∑
i=1

θi < t

)

≤ sup
x

∑
l≥0

P

(
2v

l∑
i=1

θ2i−1 ∈ Δx, 2v
l∑
i=1

θ2i < vt− x

)

+ sup
x

∑
l≥0

P

(
−2v

l∑
i=1

θ2i ∈ Δx, 2v
l∑
i=1

θ2i+1 < vt+ x

)
.

Since |x| ≤ vt and, for every m ≥ 1, the pdf pm(x, λ) of the m-Erlang distribution
with the parameter λ satisfies pm(x, λ) ≤ λ, we have∑

l≥1

P (2v(θ1 + θ3 + . . .+ θ2l−1) ∈ Δx, 2v(θ2 + θ4 + . . .+ θ2l) < vt− x)

≤ λΔ
2v

∑
l≥1

P (θ2 + θ4 + . . .+ θ2l < t).(3)

Since θi is m-Erlang distributed, we have, for 2lm+ 1 > t,

P (θ2 + θ4 + . . .+ θ2l < t) ≤
(
eλt −

2lm∑
i=0

(λt)i

i!

)
e−λt ≤ (λt)2lm+1e−λt

2lm!(2lm+ 1 − λt)
.

Therefore, taking (3) into account, there exists a constant At such that

sup
x

∑
l≥1

P

(
2v

l∑
i=1

θ2i−1 ∈ Δx, 2v
l∑
i=1

θ2i < vt− x

)
≤ AtΔ.

In the same way, we can show that there exists a constant Bt such that

sup
x

∑
l≥1

P

(
−2v

l∑
i=1

θ2i ∈ Δx, 2v
2l−1∑
i=1

θ2i < vt+ x

)
≤ BtΔ.

Putting Ct = At +Bt, we conclude the proof.

Corollary 1.1. The absolute continuous part fc(t, x) of the pdf f(t, x) satisfies Eq. (1)
for t < |xv |.

We now study the behavior of the continuous part fc(t, x) close to lines t = ±x
v .

Lemma 1.2. For m ≥ 2, we have

lim
ε↓0

P{0 < t− x(t) < ε}
ε

=
λmtm−1e−λt

2(m− 1)!
,

lim
ε→0

P{t+ x(t) < ε}
ε

= 0.
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Proof. It is easy to verify that

P {0 < t− x(t) ≤ ε} = P
{
t− ε

2
≤ θ1 < t

}
+

∫ t

0

P
{
θ3 ≥ t− u, θ2 ≤ ε

2
, θ1 ∈ du

}
+ o(ε),

where θi, i = 1, 2, 3 are independent m-Erlang distributed random variables with the
parameter λ. Since

∫ t
0 P (θ3 ≥ t − u, θ2 ≤ ε

2 , θ1 ∈ du) = o(ε), we pass to the limit and
obtain

lim
ε↓0

P {0 < t− x (t) < ε}
ε

= lim
ε↓0

e−λt

ε

((
m−1∑
i=0

(λt)i

i!

)
− eλ

ε
2

(
m−1∑
i=0

(
λ
(
t− ε

2

))i
i!

))

=
λmtm−1e−λt

2 (m− 1)!
.

Similarly, P {t+ x (t) ≤ ε} = P
{
θ2 ≥ t− ε

2 , θ1 ≤ ε
2

}
+ o (ε) , and it is easily seen that

lim
ε↓0

P {t+ x (t) < ε}
ε

= 0.

Remark 1.1. The case where m = 1 will be considered in what follows as an example.

Remark 1.2. We will seek solutions of Eq. (1) among functions whose continuous part
fc(t, x) satisfies the conditions

(4) lim
x↑t

fc (t, x) = lim
ε↓0

P {0 < t− x (t) < ε}
ε

, lim
x↓−t

fc (t, x) lim
ε↓0

P {t+ x (t) < ε}
ε

.

By applying the transformation f (t, x) = eλtg (t, x) and changing the variable y = x
v , we

reduce Eq. (1) to

(5)
(
∂2

∂t2
− ∂2

∂y2

)m
gc (t, y) − λ2mgc (t, y) = 0

with the singular part gs (t, y) =
(∑m−1

i=0
(λt)i

i!

)
δ (t− y) .

In the sequel, we assume, without loss of generality, that λ = 1. By introducing the
function f (t, y, z) = ezgc(t, y), we reduce Eq. (5) to the equation

(6)
(
∂2

∂t2
− ∂2

∂y2

)m
f (t, y, z) − ∂2m

∂z2m
f (t, y, z) = 0.

We will seek solutions of this equation by using the theory of differentiable functions on
commutative algebras [2].

2. Main results

Let A0 be a 2m-dimensional commutative algebra over R. We assume that the set e0,
e1, . . . , e2m−1 is a basis of A0 with the Cayley table:

eiej = ei⊕j ,

where i⊕ j = i+ j (mod 2m).
The algebra A0 has a matrix representation

ek → Pk = P k1 ,

where P1 = [pij ]2m×2m, pii+1 = 1 for 0 ≤ i ≤ 2m− 1, p2m0 = 1, and pij = 0 for the rest
of i, j.

We put
τ l0 = el, l = 0, 1, . . . , 2m− 1,
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τ l1 = eli sin s, l = 0, 1, . . . , 2m− 1,
τ l2 = el cos s, l = 0, 1, . . . , 2m− 1,

τ l2k = el cos ks, τ l2k+1 = eli sin(k + 1)s, l = 0, 1, . . . , 2m− 1,
k = 0, 1, 2, . . . .

It is easily seen that τ0
2nτ

0
2k = 1

2

(
τ0
2(n−k) + τ0

2(n+k)

)
, n ≥ k,

τ l12n+1τ
l2
2k+1 =

1
2

(
τ
l1
�
l2

2(n−k) − τ
l1
�
l2

2(n+k)

)
, n ≥ k,

τ l12n+1τ
l2
2k =

1
2

(
τ
l1
�
l2

2(n−k)+1 + τ
l1
�
l2

2(n+k)+1

)
, n ≥ k.

We now introduce the algebra

A =

{
+∞∑
k=0

2m−1∑
l=0

(
al2kτ

l
2k + al2k+1τ

l
2k+1

) ∣∣∣∣∣ alj ∈ R

}
,

where
∑+∞

k=0

∑2m−1
l=0

(∣∣al2k∣∣2 +
∣∣al2k+1

∣∣2) < +∞.

It is easy to verify that A is commutative.
We consider the subspace B =

{
a0τ

1
1 + a1τ

1
2 + a2τ

0
0

∣∣ ai ∈ R
}

of the algebra A.
Let us introduce the function f : B → A (f (t, y, z) = f (e1 (tcos s + yisin s ) + z)) as
follows:

f (t, y, z) =
+∞∑
k=0

2m−1∑
l=0

(
vl2k (t, y, z) τ l2k + vl2k+1 (t, y, z) τ l2k+1

)
.

The function f is called B/A differentiable at x0 ∈ B if there exists f
′
(x0) ∈ A such

that, for any h ∈ B,

f
′
(x0)h=lim

ε→0

f (x0 + εh) − f (x0)
ε

In [2], it was proved that if f is B/A differentiable, then

(7)
∂

∂t
f = e1cos s

∂

∂z
f

and

(8)
∂

∂y
f = e1isin s

∂

∂z
f .

In this case, all vl2k (t, y, z) are solutions of Eq. (6). Indeed,(
∂2

∂t2
− ∂2

∂y2

)m
f − ∂2m

∂z2m
f = e2m1

(
cos2s − (isin s )2

)m
− 1 = 0.

In the sequel, we denote the element e1 by e.
We will seek a solution of Eq. (5) in the form

gc (e (tcos s + yisin s )) = ee(tcos s +yisin s )

. Since f (e (tcos s + yisin s ) + z) = gc(e (tcos s + yisin s ))ez, we have

vlk (t, y, z) = ulk (t, y) ez, l = 0, 1, . . . , 2m− 1, k = 0, 1, 2, . . . ,

where gc (t, y) =
∑+∞

k=0

∑2m−1
l=0

(
ul2k (t, y) τ l2k + ul2k+1 (t, y) τ l2k+1

)
.

Therefore, we obtain the functions ul0 (t, y) for t ≥ |y| from the equation
2m−1∑
l=0

ul0 (t, y) τ l0 =
2m−1∑
l=0

ul0 (t, y) el

=
1
2π

∫ π

−π
ee(tcos s +yisin s )ds = J0

(
ei
√
y2 − t2

)
= I0

(
e
√
t2 − y2

)
,
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where Ik (resp. Jk) is the modified Bessel (resp. Bessel) function of the first kind and
k-th order [4].

Equations (7) and (8) yield the following Cauchy–Riemann-type conditions:
∂

∂t
u
l
�

1
0 =

1
2
ul2,

∂

∂t
u
l
�

1
1 =

1
2
ul3,

∂

∂t
u
l
�

1
2 = ul0 +

1
2
ul4,

∂

∂t
u
l
�

1
2k−1 =

1
2
(
ul2k−3 + ul2k+1

)
,

(9)
∂u

l
�

1
2k

∂t
=

1
2

(
ul2(k−1) + ul2(k+1)

)
,

k = 2, 3, . . . ;
and

∂

∂y
u
l
�

1
0 = −1

2
ul1,

∂u
l
�

1
1

∂y
= ul0 −

1
2
ul4,

∂

∂y
u
l
�

1
2 = −1

2
ul3,

∂u
l
�

1
2k+1

∂y
=

1
2

(
ul2k − ul2(k+2)

)
,

(10)
∂u

l
�

1
2k+2

∂y
=

1
2
(
ul2k−1 − ul2k+3

)
,

k = 1, 2, . . . .
By using Eqs. (9) and (10) and the functions ul0 (t, y) , we can obtain recurrently the

function ulk (t, y) for any k ≥ 1, which will be used to solve Eq. (1).
In the sequel, unless otherwise specified, the case where m = 2 is studied. In this case,

fs (t, y) is of the form fs (t, x) = e−t (1 + t) δ (t− x) , and, hence,

gs (t, y) = (1 + t) δ (t− y) .

The algebra A0 is as follows:

A0 = {a+ e1b+ e2c+ e3d | a, b, c, d ∈ R } .
Here, the basis el = el, l = 0, 1, 2, 3, and e has the matrix representation

e → P =

⎡⎢⎢⎣
0 1
0 0

0 0
1 0

0 0
1 0

0 1
0 0

⎤⎥⎥⎦ .
Therefore, we have τ0

0 = 1, τ0
2k = cos ks , τ l2k = elcos ks , τ l2k+1 = elisin (k + 1) s ,

l = 0, 1, 2, 3, k = 0, 1, 2, . . .
Taking into account that gc (e (tcos s + yisin s )) = ee(tcos s +yisin s ), we have

u0
0 (t, y) + eu1

0 (t, y) + e2u2
0 (t, y) + e3u3

0 (t, y) =
1
2π

∫ π

−π
ee(tcos s +yisin s )ds

= I0

(
e
√
t2 − y2

)
.
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It is easily seen that

I0

(
e
√
t2 − y2

)
=
I0

(√
t2 − y2

)
+ I0

(
i
√
t2 − y2

)
2

+ e2

⎛⎝I0

(√
t2 − y2

)
− I0

(
i
√
t2 − y2

)
2

⎞⎠
=
I0

(√
t2 − y2

)
+ J0

(√
t2 − y2

)
2

+ e2
I0

(√
t2 − y2

)
− J0

(√
t2 − y2

)
2

.

Therefore, for t ≥ |y| , we have u1
0 (t, y) = u3

0 (t, y) = 0 and

u0
0 (t, y) =

I0

(√
t2 − y2

)
+ J0

(√
t2 − y2

)
2

,

u2
0 (t, y) =

I0

(√
t2 − y2

)
− J0

(√
t2 − y2

)
2

.

It follows from the first two equations of (10) that

u1
1 = −2

∂

∂y
u2

0 = −
∂
[
I0

(√
t2 − y2

)
− J0

(√
t2 − y2

)]
∂y

=
y√

t2 − y2

(
I1

(√
t2 − y2

)
+ J1

(√
t2 − y2

))
,

u3
1 = −2

∂

∂y
u0

0 = −
∂
[
I0

(√
t2 − y2

)
+ J0

(√
t2 − y2

)]
∂y

=
y√

t2 − y2

(
I1

(√
t2 − y2

)
− J1

(√
t2 − y2

))
,

u0
1 = −2

∂

∂y
u1

0 = 0,

u2
1 = −2

∂

∂y
u3

0 = 0.

Then the Cauchy–Riemann-type conditions (9) yield

u0
2 (t, y) = 2

∂u1
0 (t, y)
∂t

= 0;

u1
2 (t, y) = 2

∂u2
0 (t, y)
∂t

=
∂
(
I0

(√
t2 − y2

)
− J0

(√
t2 − y2

))
∂t

=
t√

t2 − y2

(
I1

(√
t2 − y2

)
+ J1

(√
t2 − y2

))
;

u2
2 (t, y) = 2

∂u3
0 (t, y)
∂y

= 0;

u3
2 (t, y) = 2

∂u0
0 (t, y)
∂t

=
∂
[
I0

(√
t2 − y2

)
+ J0

(√
t2 − y2

)]
∂t

=
t√

t2 − y2

(
I1

(√
t2 − y2

)
− J1

(√
t2 − y2

))
.
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Similarly, for ul3, we have

u0
3 =2

∂

∂t
u1

1 = 2
∂

∂t

[
y√

t2 − y2

(
I1

(√
t2 − y2

)
+ J1

(√
t2 − y2

))]

= − 2ty√
(t2 − y2)3

(
I1

(√
t2 − y2

)
+ J1

(√
t2 − y2

))
+

ty

t2 − y2

(
I0

(√
t2 − y2

)
+ I2

(√
t2 − y2

)
+ J0

(√
t2 − y2

)
− J2

(√
t2 − y2

))
;

u2
3 =2

∂

∂t
u3

1 = 2
∂

∂t

[
y√

t2 − y2

(
I1

(√
t2 − y2

)
− J1

(√
t2 − y2

))]

= − 2ty√
(t2 − y2)3

(
I1

(√
t2 − y2

)
− J1

(√
t2 − y2

))
+

2ty
t2 − y2

(
I0

(√
t2 − y2

)
+ I2

(√
t2 − y2

)
− J0

(√
t2 − y2

)
+ J2

(√
t2 − y2

))
.

It is easily seen that u1
3 = u3

3 = 0.
Next, it follows from (9) that

u0
4 =2

∂u1
2

∂t
− 2u0

0 = 2
∂

∂t

t√
t2 − y2

(
I1

(√
t2 − y2

)
+ J1

(√
t2 − y2

))
− 2u0

0

=
−2y2√

(t2 − y2)3

(
I1

(√
t2 − y2

)
+ J1

(√
t2 − y2

))

+
t2

t2 − y2

(
I0

(√
t2 − y2

)
+ I2

(√
t2 − y2

)
+ J0

(√
t2 − y2

)
− J2

(√
t2 − y2

))
− I0

(√
t2 − y2

)
− J0

(√
t2 − y2

)
;

u2
4 =2

(
∂u3

2

∂t
− u2

0

)
=

−2y2√
(t2 − y2)3

(
I1

(√
t2 − y2

)
− J1

(√
t2 − y2

))

+
t2

t2 − y2

(
I0

(√
t2 − y2

)
+ I2

(√
t2 − y2

)
− J0

(√
t2 − y2

)
+ J2

(√
t2 − y2

))
−I0

(√
t2 − y2

)
+ J0

(√
t2 − y2

)
.

It is also easy to verify that u1
4 = u3

4 = 0.
By using the well-known integrals for Bessel functions [3-5], we have∫ t

−t
u0

0dy = sinh t + sin t ,
∫ t

−t
u2

0dy = sinh t − sin t ,
∫ t

−t
u1

1dy =
∫ t

−t
u3

1dy = 0,

∫ t

−t
u1

2dy =2
∫ t

−t

∂u2
0

∂t
dy = 2

(
∂

∂t

∫ t

−t
u2

0dy − u2
0 (t, t) − u2

0(t,−t)
)

=2cosh t − 2cos t ,∫ t

−t
u3

2dy =2
∫ t

−t

∂u0
0

∂t
dy = 2

(
∂

∂t

∫ t

−t
u0

0dy − u0
0 (t, t) − u0

0 (t,−t)
)

=2cosh t + 2cos t − 4.
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As an example, we obtain the pdf in the case where m = 1. In this case, e1 = 1, and,
hence, we can consider the functions

∑4
l=0 u

l
k (t, y), k = 0, 1, 2, . . . as solutions of Eq. (5)

for m = 1.
For t ≤ |y| , consider the function g (t, y) = gc (t, y) + gs (t, y) of the form

gc (t, y) =
1
2
(
u0

0 (t, y) + u2
0 (t, y)

)
+

1
4
(
u1

1 (t, y) + u3
1 (t, y) + u1

2 (t, y) + u3
2 (t, y)

)
=
I0

(√
t2 − y2

)
2

+
t+ y

2
√
t2 − y2

I1

(√
t2 − y2

)
and gs (t, y) = δ (t− y) .
It is easily seen that the function gc (t, y) is a solution of the equation for t < y:(

∂2

∂t2
− ∂2

∂y2

)
g (t, y) − g (t, y) = 0.(11)

In addition, we have limy↑t gc (t, y) = 1
2 (1 + t) and limy↓−t gc (t, y) = 1

2 .
To avoid cumbersome calculations, we put v = 1.
Therefore, f (t, x) = e−tg (t, x) is a solution of the equation(

∂

∂t
− ∂

∂x
+ 1

)(
∂

∂t
+

∂

∂x
+ 1

)
fc (t, x) − fc (t, x) = 0,(12)

fs (t, x) = δ (t− x) e−t.

In addition, fc (t, x) satisfies the conditions

lim
x↑t

fc (t, x) =
1
2
(
e−t + te−t

)
, lim

x↓−t
fc (t, x) =

1
2
e−t.

For all t > 0, we have
∫ t
−t f (t, x)dx = 1.

For a small ε > 0, consider the probability P {0 < t− x (t) < ε} .
Let us verify that limx↑t fc (t, x) = limε↓0

P{0<t−x(t)<ε}
ε , i.e.,

lim
ε↓0

P {0 < t− x (t) < ε}
ε

=
1
2
(
e−t + te−t

)
.

Indeed, it is easily seen that

P {0 < t− x (t) ≤ ε} = P
{
t− ε

2
≤ θ1 < t

}
+

∫ t

0

P
{
θ3 ≥ t− u, θ2 ≤ ε

2
, θ1 ∈ du

}
+o(ε),

where θi, i = 1, 2, 3 are independent exponentially distributed random variables.
The random variable θ1 is the time of the first velocity alternation, θ2 is the time interval
between the first and second velocity alternations, and θ3 is the time interval between
the second and third velocity alternations.
We have P

{
t− ε

2 ≤ θ1 < t
}

= e−t+
ε
2 − e−t. Moreover, it is easy to calculate∫ t

0

P
{
θ3 ≥ t− u, θ2 ≤ ε

2
, θ1 ∈ du

}
=
(
1 − e−

ε
2
) ∫ t

0

e−t+ue−udu

=
(
1 − e−

ε
2
)
te−t.

Whence, it is easy to verify that limε↓0
P{0<t−x(t)<ε}

ε = 1
2 (e−t + te−t) .

Similarly, P {t+ x (t) ≤ ε} = P
{
θ2 ≥ t− ε

2 , θ1 ≤ ε
2

}
+ o (ε) . This implies that

lim
ε↓0

P {t+ x (t) < ε}
ε

=
1
2
e−t = lim

x↓−t
fc (t, x) .
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Therefore, fc (t, x) is a solution of the Goursat problem for the linear second-order hy-
perbolic equation that ensures the uniqueness of the solution of Eq. (12) with conditions
(4). This means that f (t, x) is the pdf of the particle’s position for m = 1.
It is worth to remark that the function f (t, x) coincides with the result obtained in [5].

We now turn to the case m = 2 and continue to calculate the integrals of ulk.
It follows from u0

4 = 2∂u
1
2

∂t − 2u0
0 that∫ t

−t
u0

4dy =2
(
∂

∂t

∫ t

−t
u1

2dy − u1
2 (t, t) − u1

2 (t,−t)
)
− 2sinh t − 2sin t

=4 (sinh t + sin t − t) − 2sinh t − 2sin t = 2sinh t + 2sin t − 4t.

Next, it follows from u2
4 = 2∂u

3
2

∂t − 2u2
0 that∫ t

−t
u2

4dy =2
(
∂

∂t

∫ t

−t
u3

2dy − u3
2 (t, t) − u3

2 (t,−t)
)
− 2sinh t + 2sin t

=4sinh t − 4sin t − 2sinh t + 2sin t = 2sinh t − 2sin t .

For t ≤ |y| , we introduce the function g (t, y) = gc (t, y) + gs (t, y) , where

gc (t, y) =
1
2
u2

0 (t, y) +
1
4
(
u1

1 (t, y) + u3
1 (t, y) + u1

2 (t, y) + u3
2 (t, y) + u0

4 (t, y)
)
,

(13) gs (t, y) = δ (t− y) + tδ (t− y) .

By construction, the function gc (t, y) is a solution of the equation

(14)
(
∂2

∂t2
− ∂2

∂y2

)2

g (t, y) − g (t, y) = 0.

Therefore, the function fc (t, x) = e−tgc (t, x) is a solution of Eq. (1) for m = 2
(λ = v = 1).

We put f (t, x) = fc (t, x)+e−tgs (t, x) . Taking into account the values of the integrals
of functions, which are involved in the expression for gc (t, y) , we have

∫ t
−t f (t, x)dx = 1

for all t ≥ 0.
Let us prove that limx↑t fc (t, x) = limε↓0

P{0<t−x(t)<ε}
ε and limx↓−t fc (t, x) =

limε↓0
P{t+x(t)<ε}

ε .
It follows from Lemma 2 that, for m = 2,

lim
ε↓0

P {0 < t− x (t) < ε}
ε

=
1
2
te−t

and

lim
ε↓0

P {t+ x (t) < ε}
ε

= 0.

It is easy to verify that limy↑t u0
4 (t, y) = 0, limy↑t u2

0 (t, y) = 0, and, consequently,

lim
y↑t

gc (t, y) = lim
y↑t

t+ y

2
√
t2 − y2

I1

(√
t2 − y2

)
=
t

2
,

lim
y↓−t

gc (t, y) = lim
y↓−t

t+ y

2
√
t2 − y2

I1

(√
t2 − y2

)
= 0.(15)

Thus,

lim
x↑t

fc (t, x) =
1
2
te−t = lim

ε↓0
P {t− x (t) < ε}

ε
,

lim
x↓−t

fc (t, x) = 0 = lim
ε↓0

P {t+ x (t) < ε}
ε

.(16)
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Let us show that conditions (15) with the condition
∫ t
−t g (t, y) e−tdx = 1 insure the

uniqueness of the solution gc (t, y) for Eq. (14) and consequently, the uniqueness of the
solution fc (t, x) of Eq. (12).
It is easily seen that each solution of Eq. (11) is a solution of Eq. (14). By changing the
variables s = t+ y, p = t− y, we reduce Eq. (14) to

(17)
∂4

∂s2∂p2
G (s, p) −G (s, p) = 0.

Passing to the Fourier transform Ĝ (s, α) =
∫∞
0 G (s, p) eiαpdp in Eq. (17), we get the

ordinary differential equation of order 4. Taking into account that limy↓−t gc (t, y) = 0,
we have

(18) Ĝ (0, α) = 0.

Hence, at most four independent solutions of the ordinary differential equation satisfy
the initial condition (18) for each α. Passing to the inverse Fourier transform, we have
four independent solutions of Eq. (14) under the condition limx↓−t gc (t, x) = 0, and just
two of them satisfy Eq. (14) but not Eq. (11). By construction, one of these solutions,
gc (t, y) , is given by Eq. (13). As another solution, we can take

g2(t, y) = u2
0 (t, y) + u0

4 (t, y) .

It is easy to verify that no linear combination c(t, y) of the functions gc (t, y) and g2(t, x)
satisfies conditions (16) and

∫ t
−t (c (t, x) + gs (t, y)) e−tdx = 1 for all t > 0, but solution

gc (t, y) .
Therefore, the function f (t, x) is the pdf of the particle position at time t for m = 2,
v = λ = 1, and has the form

f (t, x) = −
J0

(√
t2 − x2

)
2

e−t +
(t+ x) e−t

2
√
t2 − x2

I1

(√
t2 − x2

)
− x2e−t

2
√

(t2 − x2)3

(
I1

(√
t2 − x2

)
+ J1

(√
t2 − x2

))

+
t2e−t

4 (t2 − x2)

(
I0

(√
t2 − x2

)
+ I2

(√
t2 − x2

)
+ J0

(√
t2 − x2

)
− J2

(√
t2 − x2

))
+δ (t− x) e−t + tδ (t− x) e−t.

In the same way as the pdf f (t, x) of the particle position for m = 2 was obtained, we
can also get solutions of Eq. (1) with conditions (2) and (4) for each m > 2.
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