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R. V. SHEVCHUK

INHOMOGENEOUS DIFFUSION PROCESSES ON A HALF-LINE
WITH JUMPS ON ITS BOUNDARY

By means of the method of classical potential theory, we construct a multiplicative
operator family that describes an inhomogeneous diffusion process on a half-line

with the Feller–Wentzel boundary condition which corresponds to the absorption
and jumps of the process.

1. Introduction

In this paper, we found an integral representation of the multiplicative operator family
which describes an inhomogeneous diffusion process on a half-line with the Feller–Wentzel
boundary condition [1, 2] represented in the form of a combination of the two terms: a
local term, which corresponds to the absorption of the process after its reaching the
domain boundary, and a nonlocal one, which indicates that, at a zero point, the discon-
tinuities of a process path are possible. A construction of the required operator family
is performed by analytical methods with the use of classical potential theory ([3], [4]),
which is applied for the solution to the corresponding boundary-value problem for a linear
parabolic equation of the second order with variable coefficients.

We note that we derived a nontrivial generalization of the corresponding result ob-
tained earlier in [5], where a similar problem was analyzed within similar methods for
in case of a homogeneous diffusion process without local terms in the Feller–Wentzel
boundary condition. In addition, a problem of existence of the Feller semigroup for
the multidimensional diffusion process with a nonlocal Wentzel boundary condition was
analyzed in work [6] and was studied by means of the methods of functional analysis.
We should also mention works [7, 8], where the diffusion processes in a half-space with
Wentzel boundary conditions were obtained as the weak solutions of some stochastic
differential equations.

2. Statement of the problem and some auxiliary facts

Let D = {x ∈ R : x > 0} be a domain on the line R with a boundary ∂D = {0},
and let a closure D = D ∪ {0};T > 0 be fixed. If Γ is D or R, then Cb(Γ) is a Banach
space of all functions f(x) real-valued, bounded, and continuous on Γ with the norm
‖f‖ = supx∈Γ |f(x)|, and C

(2)
unif(Γ) is the set of all functions f bounded and uniformly

continuous on Γ together with their first- and second-order derivatives. Assume that
an inhomogeneous diffusion process is given in D, and it is generated by a second-order
differential operator As, s ∈ [0, T ] that acts on C(2)

unif(D):

Asf(x) =
1
2
b(s, x)

d2f

dx2
(x) + a(s, x)

df

dx
(x),(1)
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where a(s, x) and b(s, x) are real continuous bounded functions in the domain [0, T ]×D,
and b(s, x) ≥ 0 for all (s, x) ∈ [0, T ] × D. We also assume that the boundary operator
Ls, s ∈ [0, T ], is given, and it is defined by the formula

Lsf(0) = γ(s)f(0) +
∫
D

[f(0) − f(y)]μ(s, dy),(2)

where the function γ(s) and the measure μ(s, dy) satisfy the following conditions:
a) γ(s) is nonnegative and continuous on a closed interval [0, T ];
b) μ(s, ·) is a nonnegative measure on D such that it is continuous on [0, T ] as a

function of the variable s;
c) γ(s) + μ(s,D) > 0 for all s ∈ [0, T ].

Note that the operator in (2) is a particular case of the Feller–Wentzel operator ([1,
2]), which describes the process behavior after it reaches the boundary of the domain.
The coefficient γ and the measure μ correspond to such properties of the process as its
absorption at zero and the jump departure from zero, respectively. Let us recall that
the general Feller–Wentzel operator consists of two more terms that correspond to the
instantaneous reflection of the process and its viscosity at the zero point.

The problem is to build a multiplicative operator family Tst, 0 ≤ s < t ≤ T, that
describes the inhomogeneous Feller process on D, whose generator Ãs is defined on the
functions f ∈ C

(2)
unif(D), such that

Lsf(0) = 0,(3)

and Ãsf = Asf for them.
According to the analytical approach to the solution of this problem, the required

operator family Tst, 0 ≤ s < t ≤ T is determined by solving the following boundary-
value problem:

∂u(s, x, t)
∂s

+
1
2
b(s, x)

∂2u(s, x, t)
∂x2

+ a(s, x)
∂u(s, x, t)

∂x
= 0, 0 ≤ s < t ≤ T, x ∈ D,(4)

lim
s↑t

u(s, x, t) = ϕ(x), x ∈ D,(5)

γ(s)u(s, 0, t) +
∫
D

[u(s, 0, t)− u(s, y, t)]μ(s, dy) = 0, 0 ≤ s < t ≤ T,(6)

where ϕ ∈ Cb(D) is the given function.
In the present paper, problem (4)-(6) is studied under the condition that the next

additional assumptions hold:
1) there exist constants b and B such that 0 < b ≤ b(s, x) ≤ B for all (s, x) ∈

[0, T ]× R;
2) the function a(s, x) is bounded on the domain [0, T ]×R and, in addition, for all

s, s′ ∈ [0, T ], x, x′ ∈ R the following inequalities hold:

|b(s, x) − b(s′, x′)| ≤ c
(
|s− s′|α

2 + |x− x′|α
)
,

|a(s, x) − a(s′, x′)| ≤ c
(
|s− s′|α

2 + |x− x′|α
)
,

where c and α are positive constants, 0 < α < 1;
3) the function ϕ belongs to a class Cb(R);
4) the function γ(s) is Hölder continuous with exponent 1+α

2 on a closed interval
[0, T ];

5) μ(s,D) = 1 for all s ∈ [0, T ];
6) for an arbitrary function f ∈ Cb(D), the function Gf (s) =

∫
D f(y)μ(s, dy) is

Hölder continuous with exponent 1+α
2 on [0, T ].
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Assumptions 1) and 2) guarantee (see [3, 4, 9]) the existence of the fundamental
solution to Eq. (4) in the domain [0, T ] × R which is denoted by G(s, x, t, y)(0 ≤ s <
t ≤ T, x, y ∈ R). Let us recall that the function G(s, x, t, y) is nonnegative, continuous
in the aggregate of the variables, continuously differentiable with respect to s, and twice
continuously differentiable with respect to x, and the following estimations hold (0 ≤
s < t ≤ T, x, y ∈ R):

|Dr
sD

p
xG(s, x, t, y)| ≤ c(t− s)−

1+2r+p
2 exp

{
−h (y − x)2

t− s

}
,(7)

where r and p are nonnegative integers such that 2r+ p ≤ 2; Dr
s is the partial derivative

with respect to s of order r; Dp
x is the partial derivative with respect to x of order p; c,

and h are positive constants. Furthermore, G(s, x, t, y) is represented as

G(s, x, t, y) = Z0(s, y − x, t, y) + Z1(s, x, t, y),(8)

where

Z0(s, x, t, y) = [2πb(t, y)(t− s)]−
1
2 exp

{
− (y − x)2

2b(t, y)(t− s)

}
.(9)

Moreover, the function Z1(s, x, t, y) satisfies the inequalities

|Dr
sD

p
xZ1(s, x, t, y)| ≤ c(t− s)−

1+2r+p−α
2 exp

{
−h (y − x)2

t− s

}
,(10)

where 0 ≤ s < t ≤ T, x, y ∈ R, 2r + p ≤ 2, c and h are positive constants, and α is the
constant from 2).

It follows from condition 6) that, for an arbitrary function f ∈ Cb(D), there exists a
Hölder constant such that, for all s, s′ ∈ [0, T ], the inequality

|Gf (s) −Gf (s′)| ≤ cf |s− s′|
1+α

2

holds.
Let us consider cf as a functional acting on the linear space Cb(D). It is easy to verify

that, for this functional, the following conditions hold:
• cf1+f2 ≤ cf1 + cf2 , for all f1, f2 ∈ Cb(D).
• cλf = |λ| · cf , for an arbitrary λ ∈ R;

So the functional cf is a seminorm (see [11]), and the next lemma is valid.

Lemma 2.1. Assume that the measure μ from (2) satisfies condition 6). Then, for
an arbitrary constant M > 0, there exists a constant c > 0 such that, for all functions
f ∈ Cb(D) bounded by M and for all s, s′ ∈ [0, T ], the function Gf (s) satisfies the relation

|Gf (s) −Gf (s′)| ≤ c|s− s′|
1+α

2 .

3. Solving the boundary-value problem (4)-(6)

In this section, we establish the classical solvability of the boundary-value problem
(4)-(6). We say that a solution to this problem is a classical one if, for all t ∈ (0, T ], it
belongs to the class

C1,2([0, t) ×D) ∩ C([0, t) ×D).(11)

Theorem 3.1. Assume that the coefficients of the operator As from (1), the function
ϕ from (5), the function γ, and the measure μ from (2) satisfy conditions a)-c) and 1)-
6). Then there exists a classical solution to problem (4)-(6) which can be represented as
follows (0 ≤ s < t ≤ T, x ∈ D):

u(s, x, t) =
∫

R

G(s, x, t, y)ϕ(y)dy +
∫ t

s

G(s, x, τ, 0)V (τ, t, ϕ)dτ,(12)
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where V (s, t, ϕ) is a solution to some Volterra integral equation of the second kind. In
addition, this solution satisfies the inequality

|u(s, x, t)| ≤ c‖ϕ‖,(13)

where 0 ≤ s < t ≤ T, x ∈ D, and c is a positive constant.

Proof. We find a solution to problem (4)-(6) in the form (12). We denote the Poisson
potential on the right-hand side of equality (12) by u0(s, x, t) and the simple-layer po-
tential by u1(s, x, t). Consider a priori that an unknown density V from the potential u1

is continuous in s ∈ [0, t).
By substituting the expression for u(s, x, t) from (12) into (6), we obtain the first-kind

Volterra integral equation for V :

Φ0(s, t, ϕ) =
∫ t

s

K0(s, τ)V (τ, t, ϕ)dτ, 0 ≤ s < t ≤ T.(14)

Here,

K0(s, τ) = γ(s)G(s, 0, τ, 0) +
∫
D

[G(s, 0, τ, 0) −G(s, y, τ, 0)]μ(s, dy),

Φ0(s, t, ϕ) = −γ(s)u0(s, 0, t) −
∫
D

[u0(s, 0, t) − u0(s, y, t)]μ(s, dy).

By means of the Holmgren’s method, we reduce this equation to an equivalent Volterra
integral equation of the second kind. To do this, we define the operator

E(s, t)ψ0 =

√
2
π

d

ds

∫ t

s

(ρ− s)−
1
2ψ0(ρ, t, ϕ)dρ, 0 ≤ s < t ≤ T,

and apply it to both sides of Eq. (14). After simple transformations, we obtain

E(s, t)Φ0 = −V (s, t, ϕ)√
b(s, 0)

+

√
2
π

d

ds

∫ t

s

V (τ, t, ϕ)dτ
∫ τ

s

(ρ− s)−
1
2

[
γ(ρ)Z0(ρ, 0, τ, 0)+

+ (γ(ρ) + 1)Z1(ρ, 0, τ, 0) −
∫
D

G(s, y, τ, 0)μ(ρ, dy)
]
dρ.(15)

To simplify the expression in the second term on the right-hand side of (15), we
introduce the notations

I1(s, τ) =
∫ τ

s

(ρ− s)−
1
2

[
γ(ρ)Z0(ρ, 0, τ, 0) + (γ(ρ) + 1)Z1(ρ, 0, τ, 0)

]
dρ,

I2(s, τ) =
∫ τ

s

(ρ− s)−
1
2 dρ

∫
D

G(s, y, τ, 0)μ(ρ, dy),

and investigate the behavior of these integrals as τ ↓ s.
Consider firstly the function I1 and rewrite it in the following way:

I1(s, τ) =
√

π

2b(τ, 0)
· γ(s) + J1(s, τ),(16)

where

J1(s, τ) =
1√

2πb(τ, 0)

∫ τ

s

(ρ− s)−
1
2 (τ − ρ)−

1
2 (γ(ρ) − γ(s))dρ+

+
∫ τ

s

(ρ− s)−
1
2 (γ(ρ) + 1)Z1(ρ, 0, τ, 0)dρ.(17)

From condition 4) and inequality (10) in the case of r = p = 0, we obtain

lim
τ↓s

J1(s, τ) = 0.(18)
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We now consider the function I2 and prove that

lim
τ↓s

I2(s, τ) = 0.(19)

To this end, we represent I2 as follows:

I2(s, τ) =
1√

2πb(τ, 0)

∫ τ

s

(ρ− s)−
1
2 (τ − ρ)−

1
2 dρ

∫
D

e−
y2

2b(τ,0)(τ−ρ) (μ(ρ, dy) − μ(s, dy)) +

+
1√

2πb(τ, 0)

∫ τ

s

(ρ− s)−
1
2 (τ − ρ)−

1
2 dρ

∫
D

e−
y2

2b(τ,0)(τ−ρ) μ(s, dy)+

+
∫ τ

s

(ρ− s)−
1
2 dρ

∫
D

Z1(ρ, y, τ, 0)μ(ρ, dy).(20)

We note that the functions fτ,ρ(y) = e−
y2

2b(τ,0)(τ−ρ) belong to the class Cb(D) for all
0 ≤ s < ρ < τ < t ≤ T and are bounded by 1. According to Lemma 2.1, the next
inequality holds:

∣∣∣∣∫
D

e−
y2

2b(τ,0)(τ−ρ) (μ(ρ, dy) − μ(s, dy))
∣∣∣∣ ≤ c|ρ− s|

1+α
2 ,(21)

where 0 ≤ s < ρ < τ < t ≤ T, c are some positive constant. We will further use c to
denote any positive constant, whose specific value is not of interest.

Estimations (21) and (10) imply that the first and third terms on the right-hand side of
(20) converge to zero as τ ↓ s. It remains to investigate the second item on the right-hand
side of (20). We denote it by J2(s, τ). It can be expressed in the form

(22) J2(s, τ) =

=
1√

2πb(τ, 0)

∫
D

e−
y2

2b(τ,0)(τ−s) μ(s, dy)
∫ τ

s

(ρ− s)−
1
2 (τ − ρ)−

1
2 e−

y2

2b(τ,0)(τ−s) · ρ−s
τ−ρ dρ =

=
1√

2πb(τ, 0)

∫
D

e−
y2

2b(τ,0)(τ−s) μ(s, dy)
∫ ∞

0

z−
1
2 (z + 1)−1e−

y2

2b(τ,0)(τ−s) ·z.

In view of (22), we obtain

J2(s, τ) ≤
4√

2πb(τ, 0)

∫
D

e−
y2

2b(τ,0)(τ−s) μ(s, dy) ≤ 4√
2πb

(
μ(s, (0, δ)) + e−

δ2
2B(τ−s)

)
,

(23)

where δ > 0 is an arbitrary positive number, and b and B are the constants from 1).
Further, it follows from the properties of the measure μ that, for an arbitrary constant
ε > 0, there exists δ = δ0 > 0 such that, for all s ∈ [0, T ], the inequality μ(s, (0, δ0)) < ε
holds.

In view of the last inequality and estimate (23), we establish that lims↓τ J2(s, τ) = 0.
The proof of (19) is completed.
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With regard for relations (16)-(19), equality (15) can be reduced to

E(s, t)Φ0 = −V (s, t, ϕ)√
b(s, 0)

+
d

ds

∫ t

s

V (τ, t, ϕ)√
b(τ, 0)

γ(s0)dτ
∣∣∣∣
s0=s

+

+
1
π

∫ t

s

V (τ, t, ϕ)√
b(τ, 0)

dτ
d

ds

∫ τ

s

(ρ− s)−
1
2 (τ − ρ)−

1
2 (γ(ρ) − γ(s0)) dρ

∣∣∣∣
s0=s

+

+

√
2
π

∫ t

s

V (τ, t, ϕ)dτ
d

ds

∫ τ

s

(ρ− s)−
1
2 (γ(ρ) + 1)Z1(ρ, 0, τ, 0)dρ−

−
√

2
π

∫ t

s

V (τ, t, ϕ)dτ
d

ds

∫ τ

s

(ρ− s)−
1
2 dρ

∫
D

G(ρ, y, τ, 0)μ(ρ, dy).

Hence, for an unknown function V, we obtain the Volterra integral equation of the
second kind

V (s, t, ϕ) =
∫ t

s

K(s, τ)V (τ, t, ϕ)dτ + ψ(s, t, ϕ), 0 ≤ s < t ≤ T,(24)

where

K(s, τ) =
1

2π(γ(s) + 1)

√
b(s, 0)
b(τ, 0)

∫ τ

s

(ρ− s)−
3
2 (τ − ρ)−

1
2 (γ(ρ) − γ(s))dρ+

+
1

γ(s) + 1

√
2b(s, 0)
π

d

ds

∫ τ

s

(ρ− s)−
1
2

[
(γ(ρ) + 1)Z1(ρ, 0, τ, 0) −

∫
D

G(ρ, y, τ, 0)μ(ρ, dy)
]
dρ,

ψ(s, t, ϕ) = − 1
γ(s) + 1

√
b(s, 0) · E(s, t)Φ0.

We now show that there exists a solution to Eq. (24) which can be found by means
of the convergence method:

V (s, t, ϕ) =
∞∑
k=0

V (k)(s, t, ϕ), 0 ≤ s < t ≤ T,(25)

where

V (0)(s, t, ϕ) = ψ(s, t, ϕ), V (k)(s, t, ϕ) =
∫ t

s

K(s, τ)V (k−1)(τ, t, ϕ)dτ, k = 1, 2, . . . .

For this purpose, we firstly investigate the kernel K(s, τ) of Eq. (24). We denote the
first term in the expression for K(s, τ) by P1(s, τ) and the second one by P2(s, τ).

Taking condition 4) into consideration, we have

|P1(s, τ)| ≤ c(τ − s)−
1
2+ α

2 .(26)

Before the investigation of the function P2(s, τ), we write it as follows:

P2(s, τ) =
1

γ(s) + 1

√
2b(s, 0)
π

(P21(s, τ) − P22(s, τ)) ,(27)



INHOMOGENEOUS DIFFUSION PROCESSES ON A HALF-LINE 125

where

P21(s, τ) = − d

ds

∫ τ

s

(ρ− s)−
1
2 dρ

∫
D

Z1(ρ, y, τ, 0)(μ(ρ, dy) − μ(s0, dy))
∣∣∣∣
s0=s

+

+
d

ds

∫ τ

s

(ρ− s)−
1
2

[
(γ(ρ) + 1)Z1(ρ, 0, τ, 0) −

∫
D

Z1(ρ, y, τ, 0)μ(s0, dy)
]
dρ

∣∣∣∣
s0=s

,

P22(s, τ) =
d

ds

∫ τ

s

(ρ− s)−
1
2 dρ

∫
D

Z0(ρ, y, τ, 0)(μ(ρ, dy) − μ(s0, dy))
∣∣∣∣
s0=s

+

+
d

ds

∫ τ

s

(ρ− s)−
1
2 dρ

∫
D

Z0(ρ, y, τ, 0)μ(s0, dy)
∣∣∣∣
s0=s

.

For the function P21(s, τ), after simple transformations, we obtain the formula

P21(s, τ) = −1
2

∫ τ

s

(ρ− s)−
3
2 dρ

(∫
D

Z1(ρ, y, τ, 0)(μ(ρ, dy) − μ(s, dy))+

+ (γ(ρ) − γ(s))Z1(ρ, 0, τ, 0) −
∫
D

(Z1(ρ, y, τ, 0) − Z1(s, y, τ, 0))μ(s, dy)+

+ (γ(s) + 1)(Z1(ρ, 0, τ, 0) − Z1(s, 0, τ, 0))
)
.(28)

Now, while estimating each term on the right-hand side of (28) by means of (10), and
using therewith the assertion of Lemma 2.1, condition 4), as well as the Lagrange formula
for the differences Z1(ρ, y, τ, 0)−Z1(s, y, τ, 0) and Z1(ρ, 0, τ, 0)−Z1(s, 0, τ, 0), we obtain

|P21(s, τ)| ≤ c(τ − s)−1+ α
2 .(29)

Consider the function P22(s, τ). It can be represented as follows:

P22(s, τ) =
1

4
√
πb(τ, 0)

∫ τ

s

(ρ− s)−
3
2 (τ − ρ)−

1
2

∫
D

e−
y2

2b(τ,0)(τ−ρ) (μ(ρ, dy) − μ(s, dy))dρ+

+

√
πb(τ, 0)

2

∫
D

∂Z0

∂y
(s, y, τ, 0)μ(s, dy) = L1(s, τ) + L2(s, τ).(30)

As a consequence of inequality (21) for L1(s, τ), the estimation

|L1(s, τ)| ≤ c(τ − s)−
1
2+ α

2(31)

holds.
To estimate the function L2(s, τ), we preliminarily represent it as follows:

L2(s, τ) =

√
πb(τ, 0)

2

∫ δ

0

∂Z0

∂y
(s, y, τ, 0)μ(s, dy) +

√
πb(τ, 0)

2

∫ ∞

δ

∂Z0

∂y
(s, y, τ, 0)μ(s, dy),

where δ is an arbitrary positive number.
According to our assumptions on the measure μ, it is easy to obtain that the second

integral in the formula for L2 satisfies the inequality∫ ∞

δ

∂Z0

∂y
(s, y, τ, 0)μ(s, dy) ≤ c(δ)(τ − s)−

1
2 ,(32)

where the constant c depends on δ. In addition, c(δ) → ∞ as δ → 0.
As far as the estimation of the first integral in the expression for L2 is concerned, it

will be executed in a combination with functions used to determine the terms of series
(25).

Further, for the kernel K(s, τ), we will use the representation

K(s, τ) = K1(s, τ) +K2(s, τ), 0 ≤ s < τ < t ≤ T,(33)
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where

K1(s, τ) = − 1
γ(s) + 1

√
b(s, 0)b(τ, 0)

∫ δ

0

∂Z0

∂y
(s, y, τ, 0)μ(s, dy).

As follows from (26), (29), (31), and (32), K2(s, τ) satisfies the inequality

|K2(s, τ)| ≤ p(δ)(τ − s)−1+ α
2 ,

where p(δ) is some positive constant depending on δ.
By means of the scheme used for the estimation of K2(s, τ), we can also estimate the

function ψ(s, t, ϕ). We prove that, for all 0 ≤ s < t ≤ T, it satisfies the inequality

|ψ(s, tϕ)| ≤ r(t − s)−
1
2 ,(34)

where r is some positive constant.
Then in the same way as in [5], by means of the mathematical induction method, we

show that, for the terms of series (25) the next inequalities are valid (0 ≤ s < t ≤ T ):∣∣∣V (k)(s, t, ϕ)
∣∣∣ ≤ r‖ϕ‖(t− s)−

1
2

k∑
n=0

Cnk · a(k−n)m(δ)n, k = 0, 1, 2,(35)

where

a(n) =

(
p(δ)T

α
2 Γ

(
α
2

))n · Γ
(

1
2

)
Γ
(

1+nα
2

) , m = 0, 1, 2, . . . , k,

m(δ) =
B

b
max
s∈[0,T ]

μ(s, (0, δ)).

Let us fix δ = δ0 such that m(δ0) < 1. Then, in view of (35), we have
∞∑
k=0

∣∣∣V (k)(s, t, ϕ)
∣∣∣ ≤ r‖ϕ‖(t− s)−

1
2

∞∑
k=0

k∑
n=0

Cnk a
(k−n)m(δ0)n =

= r‖ϕ‖(t− s)−
1
2

∞∑
k=0

a(k)
∞∑
n=0

Cnk+nm(δ0)n =

= r‖ϕ‖(t− s)−
1
2

∞∑
k=0

a(k)

(1 −m(δ0))k+1
=

= r‖ϕ‖(t− s)−
1
2

∞∑
k=0

(
p(δ0)

1−m(δ0)
T

α
2 Γ

(
α
2

))k
Γ
(

1+kα
2

) ·
Γ(1

2 )
1 −m(δ0)

.(36)

Estimation (36) ensures the absolute and uniform convergence of series (25) in 0 ≤
s < t ≤ T. Thus, the function V exists. Moreover, it is continuous in s ∈ [0, t], and the
inequality

|V (s, t, ϕ)| ≤ c‖ϕ‖(t− s)−
1
2 , 0 ≤ s < t ≤ T,(37)

holds. Note that our assumption on V is valid. Inequalities (7) and (37) yield the
existence of a solution to problem (4)-(6) which is represented by formula (12) and
satisfies estimation (13).

The proof of Theorem 3.1 is now completed. �

Remark 3.1. If we additionally assume in Theorem 3.1 that the function ϕ satisfies the
fitting condition

Lsϕ(0) = 0, s ∈ [0, T ],(38)
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then the constructed solution to problem (4)-(6) belongs to the class

C1,2([0, t) ×D) ∩ C([0, t] ×D).

Theorem 3.2. If the coefficients of the operator As from (1), the function γ, and the
measure μ from (2) satisfy the conditions of Theorem 3.1, then there cannot exist more
than one classical solution to problem (4)-(6).

Proof. Let u(1)(s, x, t) and u(2)(s, x, t) be the solutions to problem (4)-(6) from class (11).
Then the function u(s, x, t) = u(1)(s, x, t) − u(2)(s, x, t) is the solution to the following
first boundary-value parabolic problem:

∂u(s, x, t)
∂s

+
1
2
b(s, x)

∂2u(s, x, t)
∂x2

+ a(s, x)
∂u(s, x, t)

∂x
= 0, 0 ≤ s < t ≤ T, x ∈ D,(39)

lim
s↑t

u(s, x, t) = 0, x ∈ D,(40)

u(s, 0, t) = υ(s, t), 0 ≤ s < t ≤ T,(41)

where

υ(s, t) =
1

γ(s) + 1

∫
D

u(s, y, t)μ(s, dy).

We note that the function u belongs to class (11). Taking conditions a) and b) into
account, we can assert that υ(s, t) is continuous in s ∈ [0, t). In addition, it satisfies the
fitting condition

lim
s↑t

υ(s, t) = 0.(42)

Thus, u(s, x, t) is the unique solution to problem (39)-(41) and can be expressed by
the formula (see [3], [4])

u(s, x, t) =
∫ t

s

G(s, x, τ, 0)V (τ, t)dτ,(43)

where V is an unknown function which is unambiguously determined from (41). By
substituting the right-hand side of equality (43) in the boundary condition (41), we
obtain the Volterra integral equation of the second kind for V (24), where ψ ≡ 0. Taking
into account that the function V (s, t) ≡ 0 is the unique solution to this equation, it
becomes clear from (43) that

u(s, x, t) ≡ 0.
The proof of Theorem 3.2 is now completed. �

4. Construction of the process

We define a two-parameter operator family Tst, 0 ≤ s < t ≤ T acting on the function
ϕ ∈ Cb(R) by the formula

Tstϕ(x) =
∫

R

G(s, x, t, y)ϕ(y)dy +
∫ t

s

G(s, x, τ, 0)V (τ, t, ϕ)dτ,(44)

where the function V is the solution to the Volterra integral equation of the second
kind (24). Let us study the properties of the operator family Tst, 0 ≤ s < t ≤ T, in
assumption that the conditions of Theorem 3.1 are satisfied.

Note that the operators Tst are linear and bounded for all 0 ≤ s < t ≤ T. This fact
follows from the representation of the function V and estimation (13).

We mention one more property of the operator family Tst. If the sequence ϕn ∈ Cb(R)
is such that limn→∞ ϕn(x) = ϕ(x) for all x ∈ R and, in addition, supn ‖ϕn‖ < ∞, then
limn→∞ Tstϕn(x) = Tstϕ(x) for all 0 ≤ s < t ≤ T, x ∈ D. This assertion is an obvious
consequence of the Lebesgue theorem on the limiting transition under the integral sign
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and the theorem on the rearrangement of limits for a functional series. Taking into
consideration this property, all the following reasoning can be done, without loss of
generality, under condition that the function ϕ is finite.

Let us prove that the operators Tst, 0 ≤ s < t ≤ T, remain a cone of nonnegative
functions invariant.

Lemma 4.1. Assume that the coefficients of the operator As from (1), the function γ,
and the measure μ from (2) satisfy the conditions of Theorem 3.1. Then, if the function
ϕ ∈ Cb(R) is nonnegative for all x ∈ D, then the function Tstϕ(x) is also nonnegative
for all 0 ≤ s < t ≤ T, x ∈ D.

Proof. We fix an arbitrary t ∈ (0, T ] and the function ϕ ∈ Cb(R) which is finite and such
that ϕ(x) ≥ 0 on the domain D.

In the case of ϕ(x) = 0, it follows for all x ∈ D from Theorem 3.2 that Tstϕ(x) = 0
for all x ∈ D, s ∈ [0, t]. Thus, in this case, the assertion of the lemma is obvious.

Further, we can consider the function ϕ not everywhere being equal to zero on D. Let
m be a minimum of the function Tstϕ(x) on the domain (s, x) ∈ [0, t]×D. Let us assume
that m < 0. Then, according to the principle of maximum ([4]), it follows that the value
m can be possessed only on (s, x) ∈ (0, t) × {0}. Fix s0 ∈ (0, t) such that Ts0tϕ(0) = m.
Then the following inequalities hold:

γ(s0)Ts0tϕ(0) ≤ 0,
∫
D

[Ts0tϕ(0) − Ts0tϕ(y)]μ(s, dy) < 0.(45)

Thus, in case of s = s0, the fulfillment of the boundary condition (6) is impossible. A
contradiction we arrived at indicates that m ≥ 0.

The proof of Lemma 4.1 is now completed. �

Let us show that the operators Tst, 0 ≤ s < t ≤ T, are contractive, i.e., they do not
increase the norm of an element.

Lemma 4.2. Assume that the coefficients of the operator As from (1), the function γ,
and the measure μ from (2) satisfy the conditions of Theorem 3.1. Then, for an arbitrary
function ϕ ∈ Cb(R), the following inequality holds:

|Tstϕ(x)| ≤ ‖ϕ‖,(46)

where 0 ≤ s < t ≤ T, x ∈ D.

Proof. If ϕ(x) = 0 for all x ∈ D, then inequality (46) obviously holds. Thus, we can
consider that the function ϕ is not everywhere equal to zero onD. Assume thatM > ‖ϕ‖.
Then, by means of similar considerations used in the proof of Lemma 4.1, we arrive at a
contradiction. Consequently, Tstϕ(x) ≤ ‖ϕ‖ for all 0 ≤ s < t ≤ T, x ∈ D. Replacing ϕ by
−ϕ in the last inequality, we obtain that Tstϕ(x) ≥ −‖ϕ‖ for all 0 ≤ s < t ≤ T, x ∈ D.

The proof of Lemma 4.2 is now completed. �

Further, we observe that the operator family Tst is multiplicative, i.e., for all 0 ≤ s <
u < t ≤ T, x ∈ D, the relation

Tstϕ(x) = TsuTutϕ(x).(47)

holds. Equality (47) follows from Theorem 3.2 and the fact that the function ũ(s, x, t) =
TsuTutϕ(x), 0 ≤ s < u < t ≤ T, x ∈ D, is a solution to problem (4)-(6) from class (11).

The next theorem is the consequence of Lemmas 4.1 and 4.2 and relation (47) (see
[10]).

Theorem 4.1. Assume that the conditions of Theorem 3.1 are satisfied. Then the two-
parameter operator family Tst, 0 ≤ s < t ≤ T, defined by formula (44) describes the
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inhomogeneous Feller process on D such that it coincides on D with the diffusion process
generated by the operator As from (1), and its behavior on ∂D is determined by the
boundary condition (3). If P (s, x, t, dy) is the transition probability of this process, then,
for all ϕ ∈ Cb(D), the following equality holds:

Tstϕ(x) =
∫
D

P (s, x, t, dy)ϕ(y).
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