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S. ALIYEV, F. RAHIMOV, AND M. NAVIDI

ON ASYMPTOTIC BEHAVIOR OF CONDITIONAL PROBABILITY
OF CROSSING THE NONLINEAR BOUNDARY BY A PERTURBED

RANDOM WALK

We prove a theorem on the limit behavior of the conditional probability of crossing the
nonlinear boundary by a perturbed random walk with a distribution which belongs
to the domain of attraction of the stable law with index α ∈ (1, 2].

1. Introduction.

Let a sequence ξn n ≥ 1, of independent identically distributed random variables with
E |ξ1| <∞ be given on the probability space (Ω,F , P ) , and let the distribution F of the
random variable ξ1 have an interval-support X ⊆ R = (−∞,∞) , for which F (X) = 1
and ν = Eξ1 ∈ X.

Assume that the function Δ (x) , x ∈ X, is determined on X and is continuous. More-
over, μ = Δ (ν) > 0. We set

Sn =
n∑
k=1

ξk, Sn =
Sn
n

and Tn = nΔ
(
Sn

)
n ≥ 1.

Consider the first passage time

τa = inf {n ≥ 1 : Tn > fa (n)} , (1)

where fa (t) , t > 0, a > 0, is some family of nonlinear boundaries, and we set inf {�} =
∞.

Many important stopping times, arising in nonlinear renewal theory and in sequential
analysis are of the form (1). In this case,, Tn is the statistics of likelihood ratio test, and
τa is the number of necessary observations ([7], [8], [9]).

Asymptotic properties and limit theorems for τa were studied in papers [1]-[4] (see
also monographs [5], [7], [8]).

In the present paper for a sufficiently wide class of functions Δ (x) and boundaries
fa (t) , we will study the limit behavior of the conditional probability P

(
τa ≥ n|Sn = x

)
of crossing the nonlinear boundary by a perturbed random walk Tn, when n = n (a) → ∞
and x = x (a) → ν as a → ∞. This problem was studied in the case of a finite variance
Dξ1 <∞ for a linear boundary fa (t) = a in [8] and for a nonlinear boundary fa (t) �= a
in [2].

For Δ (x) = x, the limit behavior of the indicated conditional probability of crossing a
nonlinear boundary was studied in paper [1], where it was supposed that the distribution
of the step of a random walk belongs to the domain of attraction of a stable distribution
with a parameter α ∈ (1, 2] .

Notice that the conditional probabilities of crossing the boundary arise in the problems
on the asymptotic behavior of local probabilities of crossing the boundary by a random
walk ([3]).
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2. Conditions and formulation of the main result.

We assume that the function Δ (x) is continuously differentiable in a neighborhood of
the point x = ν with Δ (ν) > 0 and Δ′ (ν) �= 0.

For the boundary fa (t) , we assume that it satisfies the following regularity conditions:
1) For each a, the function fa (t) increases monotonically, is continuously differentiable

for t > 0, and fa (1) ↑ ∞ as a→ ∞;
2) For any function n = n (a) → ∞ satisfying the condition 1

nfa (n) → μ = Δ (ν) > 0
as a→ ∞, the relation f ′

a (n) → θ ∈ [0, μ) holds as a→ ∞;
3) For each a, the function f ′

a (t) weakly oscillates at infinity, i.e. f ′
a(m)
f ′

a(n) → 1 as n
m → 1,

n→ ∞.
We note that the family of functions of the form fa (t) = atβ , 0 ≤ β < 1, satisfies

conditions 1)-3). It is easy to show that condition 2) is valid for this family with θ = βμ.
Other examples of such functions are given in papers [3], [4].

We assume that the distribution F of a random variable ξ1 belongs to the domain of
attraction of a stable law Gα (x) with characteristic index α ∈ (1, 2] , i.e.

P

(
Sn − nν

A (n)
≤ x

)
→ Ga (x) , as n→ ∞, (2)

where x ∈ R, A (t) = t1/αL (t) , and L (t) , t > 0, is a slowly varying function at infinity
[6].

The assumptions on the function Δ (x) yield

Tn = Zn + εn, (3)

where

Zn =
n∑
k=1

Xk, Xk = Δ (ν) + Δ′ (ν) (ξk − ν)

and
εn = n

[
Δ

(
Sn

)
− Δ (ν) − Δ′ (ν)

(
Sn − ν

)
.
]

From the strong law of large numbers, it follows that
εn
n

a.s.→ 0 and
Tn
n

a.s.→ Δ (ν) = EX1 > 0 as n→ ∞.

Representation (3) shows that the sequence Tn, n ≥ 1, is a perturbed random walk,
i.e. it is the sum of an ordinary random walk (Zn) and a random perturbation (εn) .

Introduce the following notation:

J = inf
n≥1

(Zn − nθ) ,

Ψ (r) = P (J ≥ r) , r ∈ R;

ϕ (t) = Meitξ1 ;

δa (n, x) = nΔ (x) − fa (n) ;

la (n, x) = P
(
τa ≥ n|Sn = x

)
and

L (n, x, r) = P
(
Jn > r|Sn = x

)
, r ∈ R,

where
Jn = min

1≤i<n
(Tn − Tn−i − iθ) .

We note that, for each x ∈ (−∞,∞) , the function L (n, x, r) doesn’t increase and is
continuous from the left at each point r ∈ (−∞,∞) .

The following proposition holds.
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Theorem. Assume that the conditions enumerated above are satisfied and, for some
integer m ≥ 1, ∫ ∞

−∞
|ϕ (t)|m dt <∞. (4)

Let x = x (a) → ν and n = n (a) → ∞ as a → ∞ so that x − ν = O (A (n) /n) and
δa (n, x) = O (1).

Then
L (n, x, r) → Ψ (r) as a→ ∞

for all r ≥ 0.
Corollary. Let the conditions of the theorem be fulfilled and δa (n, x) → r ≥ 0. Then

la (n, x) → Ψ (r) as a→ ∞.

It follows from condition (3) that the sum Sn has a bounded continuous density Pn (x)
for all n ≥ m.

We also note that relation (4) implies that the function Ψ (r) is continuous at each
point r ≥ 0, and Theorem 2.7 in [8] yields

Ψ (r) = (μ− θ) h (r) ,

where

h (r) =
P (Zτ − τθ > r)
E (Zτ − τθ)

, r ≥ 0

and
τ = inf {n ≥ 1 : Zn − θn > 0} .

The function h (r) , r ≥ 0, is the limit distribution density for the overshoot of a
random walk Zn − nθ, n ≥ 1 for the level [8].

3. Auxiliary facts.

To prove the theorem, we need the following facts formulated in the form of lemmas.
For 1 ≤ k ≤ n− 1 and n ≥ m, we set

Qnk = Qnk (B|x) =
∫
B

qnk (x1, . . . , xk|x)F (dx1) . . . F (dxk) ,

where

qnk (x1, . . . , xk/x) =

⎧⎨⎩ Pn−k

�
nx−

n�
k=1

xk

�
Pn(nx) , if Pn (nx) > 0

1 , if Pn (nx) = 0
,

B ∈ β
(
Rk

)
is the σ-algebra of Borel sets in Rk and F (x) = P (ξ1 ≤ x) .

We note that Qnk is the conditional probability distribution of a random vector
(ξ1, . . . , ξk) under condition that Sn = x.

Lemma 1. Let conditions (2) and (4) be satisfied. Then
1) For each k, the conditional distribution Qnk weakly converges as n → ∞ to an

unconditional distribution of a random vector (ξ1, . . . , ξk) , and the convergence is uniform
in x : x− ν = O (A (n) /n);

2) For any δ ∈ (0, 1) , there exists a constant M = M (δ) such that

qnk (x1, . . . , xk|x) ≤M

for all x1, . . . , xn, k ≤ (1 − δ)n, n ≥ m and x : x− ν = O (A (n) /n) .
The statement of this lemma is proved in paper [1] (see also [8]).
Lemma 2. Let conditions (2), (4) be satisfied. Let x = x (a) → ν and n = n (a) → ∞

as a→ ∞ so that x−ν = O (A (n) /n) . Then the joint conditional distribution of random
variables

Jnk = Tn − Tn−i, i = 1, k,
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under condition that Sn = x weakly converges to an unconditional joint distribution of
random variables Z1, . . . , Zk.

Proof. Assume
ηni = ξi − Sn, 1 ≤ i ≤ n

and

Γnk =
k∑
i=1

ηni, 1 ≤ k ≤ n.

It follows from the first part of Lemma 1 that, for each fixed k, the conditional distribu-
tion (ηn1, . . . , ηnk) weakly converges to an unconditional distribution (ξ1 − ν, . . . , ξk − ν) .

It is clear that, for Sn = x and 1 ≤ k ≤ n,

Jnk = (n− k)
(
Δ

(
Sn

)
− Δ

(
Sn−k

))
+ kΔ (x) . (5)

It is easy to see that

(n− k)
(
Sn − Sn−k

)
=

n∑
i=n−k+1

ηni
d= Γnk, (6)

where the symbol ξ d= η means the equality in distribution.
It follows from (5) and (6) that the joint conditional distribution of random variables

Jnk, 1 ≤ k ≤ n − 1 under condition that Sn = x coincides with the joint conditional
distribution of random variables

Wnk = (n− k)
[
Δ (x) − Δ

(
x− 1

n− k
Γnk

)]
+ kΔ (x) , 1 ≤ k = n− 1.

Assume

Unk (t) = (n− k)
[
Δ (x) − Δ

(
x− 1

n− k
t

)]
+ kΔ (x) .

Taking into account that x = x (a) → ν as a → ∞, the mean-value theorem for each
fixed k yields

Unk (t) → Δ′ (ν) t+ kΔ (ν) as a→ ∞ (7)
uniformly with respect to t from the bounded set in (−∞,∞) .

Then it follows from (7) that, for each k, the conditional distribution of the vector
(Wn1, . . . ,Wnk) under condition that Sn = x weakly converges to an unconditional
distribution (Z1, . . . , Zk) , where Zk = Δ′ (ν) (Sk − kν) + kΔ (ν) , since the conditional
distribution Γnk under condition that Sn = x weakly converges to an unconditional
distribution Sk − kν for each k.

Lemma 3. Let x = x (a) → ν and n = n (a) → ∞ as a → ∞ so that x − ν =
O (A (n) /n) . Then, for θ ∈ [0,Δ (ν)) ,

1) ε1 = ε1 (a, δ, y) = P
(
Jni − iθ < y, ∃i ∈ (nδ, n− 1] | Sn = x

)
→ 0 as a → ∞ uni-

formly in y from a bounded set of R and x : x− ν = O (A (n) /n) , f
2) ε2 = ε2 (a, k, δ, y) = P

(
Jni − iθ < y, ∃i ∈ (k, nδ] | Sn = x

)
→ 0 as k → ∞ uni-

formly in y from a bounded set of R and x : x− ν = O (A (n) /n) for sufficiently large
a.

Proof. Assuming T ′
n = Tn − nθ and b = n (Δ (x) − θ) − y, we have

ε1 = P
(
T ′
n−i > b, ∃i ∈ ( nδ, n− 1] | Sn = x

)
=

= P
(
T ′
j > b, ∃j ∈ [1, n (1 − δ)) | Sn = x

)
. (8)

By the second part of Lemma 1, relation (8) yields

ε1 ≤MP
(
T ′
j > b, ∃i ∈ [1, n (1 − δ))

)
=

= MP (tb < n (1 − δ)) , (9)
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where
tb = inf {n ≥ 1 : T ′

n > b}
is the first passage time of a random walk for the level b.

By (3), it follows from Lemma 2.4 in [8] that
tb
b

a.n→ 1
μ− θ

as a→ ∞. (10)

Taking into account that b ∼ n (Δ (ν) − θ) as a→ ∞, it follows from (10) that
tb
n

a.n→ 1 as a→ ∞.

Hence, we obtain easily that, for any δ ∈ (0, 1) ,

P (tb ≤ n (1 − δ)) → 0 as a→ ∞.

Statement 1) of the proved lemma follows from (9).
We now prove statement 2). It suffices to show that

ε2 = P
(
Wni − iθ < y, ∃i ∈ ( k, nδ] | Sn = x

)
→ 0, k → ∞.

From the differentiability of the function Δ (x) in a neighborhood of the point x = ν,
it follows that there exist an integer N and a positive number γ > 0 such that, for i ≤ nδ

and n ≥ N on the set
{
ω : 1

n−i |Γni| ≤ γ
}
,∣∣∣∣(n− i)

[
Δ (x) − Δ

(
x− 1

n− i
Γni

)]∣∣∣∣ ≤ 2 |Δ′ (x)| |Γni|

or
|Wni − i (μ− θ)| ≤ 2 |Δ′ (ν)| |Γni| . (11)

It follows from inequality (11) that the event C = {ω : Wni < y} implies the event
A = {ω : |Γni| > γ (1 − δ)n} or the event

B =
{
ω : |Γni| >

i (μ− θ) − y

2 |Δ′ (ν)|

}
(C ⊆ A ∪B) .

It is easy to understand that if δ > 0 is a sufficiently small number, then, for each
i ≤ nδ, the event A implies the event B : A ⊆ B.

Further, the equality
Γni = i

(
Si − Sn

)
implies that, on the set B, ∣∣Si − Sn

∣∣ > i (μ− θ) − y

2 |Δ′ (ν)| i .

Hence, we find ∣∣Si − ν
∣∣ > i (μ− θ) − y

2 |Δ′ (ν)| i −
∣∣Sn − ν

∣∣ . (12)

It follows from the convergence x = x (a) → ν as a→ ∞ that there exist the numbers
a0, k0, and γ0 such that, for all i > k0 and a > a0,

i (μ− θ) − y

2 |Δ′ (ν)| i − |x− ν| > γ0. (13)

Then it follows from (12) and (13) that, for i > k0 and a > a0, the event B implies
the event D =

{
ω :

∣∣Si − ν
∣∣ > γ0

}
: B ⊆ D.

Thus, it follows from the above arguments that, for sufficiently large a and k and small
δ > 0, we have

ε2 = P
(
C, ∃i ∈ (k, nδ] | Sn = x

)
≤

≤ P
(
B, ∃i ∈ (k, nδ] | Sn = x

)
≤
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≤ P (D, ∃i ∈ ( k, nδ] | Sn = x) . (14)
From the second part of Lemma 1, we obtain

P
(
D, ∃i ∈ (k, nδ] | Sn = x

)
≤

≤ P (D, ∃i ∈ (k, nδ]) ≤
≤MP

(∣∣Si − ν
∣∣ > γ0, ∃i > k

)
. (15)

It follows from the strong law of large numbers that

P
(∣∣Si − ν

∣∣) > γ0, ∃i > k
)
→ 0 as k → ∞. (16)

From (14), (15), and (16), we get statement 2) of Lemma 3.

4. Proof of the theorem.

Assume

Lk (n, x, r) = P
(
Jni − iθ ≥ r, 1 ≤ i ≤ k | Sn = x

)
, Jni = Tn − Tn−i,

Jk = min
1≤i≤k

(Zi − iθ)

and
Ψk (r) = P (Jk ≥ r) = P (Zi − iθ ≥ r, 1 ≤ i ≤ k) .

It follows from Lemma 2 that, for each k and r ≥ 0,

Lk (n, x, r) → Ψk (r) as a→ ∞. (17)

Since Ψk (r) → Ψ (r) as k → ∞, it remains to show that, for sufficiently large k,

ε3 = ε3 (n, x, r) = Lk (n, x, r) − L (n, x, r) → 0 as a→ ∞. (18)

For any δ ∈ (0, 1) , we have

0 ≤ ε3 ≤ P
(
Jni − iθ < r, ∃i ∈ (k, n− 1] | Sn = x

)
≤

≤ P
(
Jni − iθ < r, ∃i ∈ (k, nδ] | Sn = x

)
+

+P
(
Jni − iθ < r, ∃i ∈ (nδ, n− 1] | Sn = x

)
= ε2 + ε1,

where ε1 and ε2 are from Lemma 3.
Therefore, Lemma 3 yields (18).
The statement of the theorem follows from (17) and (18).
Proof of the Corollary. Following [1], we have

la (n, x) = P
(
Tk ≤ fa (k) , 1 ≤ k ≤ n− 1 | Sn = x

)
=

= P
(
Tn − Tn−k ≥ Tn − fa (n− k) , 1 ≤ k ≤ n− 1 | Sn = x

)
=

= P
(
Jnk ≥ nΔ (x) − fan+ (fa (n) − fa (n− k)) , 1 ≤ k ≤ n− 1 | Sn = x

)
.

Hence, recalling the notation δa (n, x) = nΔ (x)− fa (n) and taking into account that,
for some intermediate point m = m (n, k) from the segment [n− k, n] ,

fa (n) − fa (n− k) = kf ′
a (m) ,

we get

la (n, x) = P
(
Jnk ≥ δa (n, x) + kf ′

a (m) , 1 ≤ k ≤ n− 1 | Sn = x
)
.

Denote
J ′
n = min

1≤k≤n−1
(Jnk − kf ′

a (m))

and
L′
a (n, x, r) = P

(
J ′
n > r | Sn = x

)
.

It is clear that
la (n, x) = L′ (n, x, δa (n, x)) .
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By the scheme of the proof of relation (18), it is easy to show that, for each fixed
k ≥ 1,

L′
a (n, x, r) − L (n, x, r) → 0 as a→ ∞.

The statement of the corollary follows from the theorem.
Remark. The theorem and the corollary were established for the case Δ (x) = x in

[1] and for the case of fa (t) = a and Dξ1 <∞ in [8].

The authors thank the reviewer for useful remarks.
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