ON ASYMPTOTIC BEHAVIOR OF CONDITIONAL PROBABILITY OF CROSSING THE NONLINEAR BOUNDARY BY A PERTURBED RANDOM WALK

Abstract

We prove a theorem on the limit behavior of the conditional probability of crossing the nonlinear boundary by a perturbed random walk with a distribution which belongs to the domain of attraction of the stable law with index $\alpha \in(1,2]$.

1. Introduction.

Let a sequence $\xi_{n} n \geq 1$, of independent identically distributed random variables with $E\left|\xi_{1}\right|<\infty$ be given on the probability space (Ω, \mathcal{F}, P), and let the distribution F of the random variable ξ_{1} have an interval-support $X \subseteq R=(-\infty, \infty)$, for which $F(X)=1$ and $\nu=E \xi_{1} \in X$.

Assume that the function $\Delta(x), x \in X$, is determined on X and is continuous. Moreover, $\mu=\Delta(\nu)>0$. We set

$$
S_{n}=\sum_{k=1}^{n} \xi_{k}, \bar{S}_{n}=\frac{S_{n}}{n} \text { and } T_{n}=n \Delta\left(\bar{S}_{n}\right) n \geq 1
$$

Consider the first passage time

$$
\begin{equation*}
\tau_{a}=\inf \left\{n \geq 1: T_{n}>f_{a}(n)\right\} \tag{1}
\end{equation*}
$$

where $f_{a}(t), t>0, a>0$, is some family of nonlinear boundaries, and we set $\inf \{\oslash\}=$ ∞.

Many important stopping times, arising in nonlinear renewal theory and in sequential analysis are of the form (1). In this case,, T_{n} is the statistics of likelihood ratio test, and τ_{a} is the number of necessary observations ([7], [8], [9]).

Asymptotic properties and limit theorems for τ_{a} were studied in papers [1]-[4] (see also monographs [5], [7], [8]).

In the present paper for a sufficiently wide class of functions $\Delta(x)$ and boundaries $f_{a}(t)$, we will study the limit behavior of the conditional probability $P\left(\tau_{a} \geq n \mid \bar{S}_{n}=x\right)$ of crossing the nonlinear boundary by a perturbed random walk T_{n}, when $n=n(a) \rightarrow \infty$ and $x=x(a) \rightarrow \nu$ as $a \rightarrow \infty$. This problem was studied in the case of a finite variance $D \xi_{1}<\infty$ for a linear boundary $f_{a}(t)=a$ in [8] and for a nonlinear boundary $f_{a}(t) \neq a$ in [2].

For $\Delta(x)=x$, the limit behavior of the indicated conditional probability of crossing a nonlinear boundary was studied in paper [1], where it was supposed that the distribution of the step of a random walk belongs to the domain of attraction of a stable distribution with a parameter $\alpha \in(1,2]$.

Notice that the conditional probabilities of crossing the boundary arise in the problems on the asymptotic behavior of local probabilities of crossing the boundary by a random walk ([3]).

[^0]
2. Conditions and formulation of the main result.

We assume that the function $\Delta(x)$ is continuously differentiable in a neighborhood of the point $x=\nu$ with $\Delta(\nu)>0$ and $\Delta^{\prime}(\nu) \neq 0$.

For the boundary $f_{a}(t)$, we assume that it satisfies the following regularity conditions:

1) For each a, the function $f_{a}(t)$ increases monotonically, is continuously differentiable for $t>0$, and $f_{a}(1) \uparrow \infty$ as $a \rightarrow \infty$;
2) For any function $n=n(a) \rightarrow \infty$ satisfying the condition $\frac{1}{n} f_{a}(n) \rightarrow \mu=\Delta(\nu)>0$ as $a \rightarrow \infty$, the relation $f_{a}^{\prime}(n) \rightarrow \theta \in[0, \mu)$ holds as $a \rightarrow \infty$;
3) For each a, the function $f_{a}^{\prime}(t)$ weakly oscillates at infinity, i.e. $\frac{f_{a}^{\prime}(m)}{f_{a}^{\prime}(n)} \rightarrow 1$ as $\frac{n}{m} \rightarrow 1$, $n \rightarrow \infty$.

We note that the family of functions of the form $f_{a}(t)=a t^{\beta}, 0 \leq \beta<1$, satisfies conditions 1)-3). It is easy to show that condition 2) is valid for this family with $\theta=\beta \mu$. Other examples of such functions are given in papers [3], [4].

We assume that the distribution F of a random variable ξ_{1} belongs to the domain of attraction of a stable law $G_{\alpha}(x)$ with characteristic index $\alpha \in(1,2]$, i.e.

$$
\begin{equation*}
P\left(\frac{S_{n}-n \nu}{A(n)} \leq x\right) \rightarrow G_{a}(x), \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

where $x \in R, A(t)=t^{1 / \alpha} L(t)$, and $L(t), t>0$, is a slowly varying function at infinity [6].

The assumptions on the function $\Delta(x)$ yield

$$
\begin{equation*}
T_{n}=Z_{n}+\varepsilon_{n} \tag{3}
\end{equation*}
$$

where

$$
Z_{n}=\sum_{k=1}^{n} X_{k}, X_{k}=\Delta(\nu)+\Delta^{\prime}(\nu)\left(\xi_{k}-\nu\right)
$$

and

$$
\varepsilon_{n}=n\left[\Delta\left(\bar{S}_{n}\right)-\Delta(\nu)-\Delta^{\prime}(\nu)\left(\bar{S}_{n}-\nu\right) .\right]
$$

From the strong law of large numbers, it follows that

$$
\frac{\varepsilon_{n}}{n} \xrightarrow{\text { a.s. }} 0 \text { and } \frac{T_{n}}{n} \xrightarrow{\text { a.s. }} \Delta(\nu)=E X_{1}>0 \quad \text { as } n \rightarrow \infty .
$$

Representation (3) shows that the sequence $T_{n}, n \geq 1$, is a perturbed random walk, i.e. it is the sum of an ordinary random walk $\left(Z_{n}\right)$ and a random perturbation $\left(\varepsilon_{n}\right)$.

Introduce the following notation:

$$
\begin{gathered}
J=\inf _{n \geq 1}\left(Z_{n}-n \theta\right) \\
\Psi(r)=P(J \geq r), r \in R \\
\varphi(t)=M e^{i t \xi_{1}} ; \\
\delta_{a}(n, x)=n \Delta(x)-f_{a}(n) \\
l_{a}(n, x)=P\left(\tau_{a} \geq n \mid \bar{S}_{n}=x\right)
\end{gathered}
$$

and

$$
L(n, x, r)=P\left(J_{n}>r \mid \bar{S}_{n}=x\right), \quad r \in R
$$

where

$$
J_{n}=\min _{1 \leq i<n}\left(T_{n}-T_{n-i}-i \theta\right)
$$

We note that, for each $x \in(-\infty, \infty)$, the function $L(n, x, r)$ doesn't increase and is continuous from the left at each point $r \in(-\infty, \infty)$.

The following proposition holds.

Theorem. Assume that the conditions enumerated above are satisfied and, for some integer $m \geq 1$,

$$
\begin{equation*}
\int_{-\infty}^{\infty}|\varphi(t)|^{m} d t<\infty \tag{4}
\end{equation*}
$$

Let $x=x(a) \rightarrow \nu$ and $n=n(a) \rightarrow \infty$ as $a \rightarrow \infty$ so that $x-\nu=O(A(n) / n)$ and $\delta_{a}(n, x)=O(1)$.

Then

$$
L(n, x, r) \rightarrow \Psi(r) \text { as } a \rightarrow \infty
$$

for all $r \geq 0$.
Corollary. Let the conditions of the theorem be fulfilled and $\delta_{a}(n, x) \rightarrow r \geq 0$. Then

$$
l_{a}(n, x) \rightarrow \Psi(r) \text { as } a \rightarrow \infty
$$

It follows from condition (3) that the sum S_{n} has a bounded continuous density $P_{n}(x)$ for all $n \geq m$.

We also note that relation (4) implies that the function $\Psi(r)$ is continuous at each point $r \geq 0$, and Theorem 2.7 in [8] yields

$$
\Psi(r)=(\mu-\theta) h(r)
$$

where

$$
h(r)=\frac{P\left(Z_{\tau}-\tau \theta>r\right)}{E\left(Z_{\tau}-\tau \theta\right)}, r \geq 0
$$

and

$$
\tau=\inf \left\{n \geq 1: Z_{n}-\theta n>0\right\}
$$

The function $h(r), r \geq 0$, is the limit distribution density for the overshoot of a random walk $Z_{n}-n \theta, n \geq 1$ for the level [8].

3. Auxiliary facts.

To prove the theorem, we need the following facts formulated in the form of lemmas.
For $1 \leq k \leq n-1$ and $n \geq m$, we set

$$
Q_{n k}=Q_{n k}(B \mid x)=\int_{B} q_{n k}\left(x_{1}, \ldots, x_{k} \mid x\right) F\left(d x_{1}\right) \ldots F\left(d x_{k}\right),
$$

where

$$
q_{n k}\left(x_{1}, \ldots, x_{k} / x\right)= \begin{cases}\frac{P_{n-k}\left(n x-\sum_{k=1}^{n} x_{k}\right)}{P_{n}(n x)}, & \text { if } P_{n}(n x)>0 \\ 1 & \text { if } P_{n}(n x)=0\end{cases}
$$

$B \in \beta\left(R^{k}\right)$ is the σ-algebra of Borel sets in R^{k} and $F(x)=P\left(\xi_{1} \leq x\right)$.
We note that $Q_{n k}$ is the conditional probability distribution of a random vector $\left(\xi_{1}, \ldots, \xi_{k}\right)$ under condition that $\bar{S}_{n}=x$.

Lemma 1. Let conditions (2) and (4) be satisfied. Then

1) For each k, the conditional distribution $Q_{n k}$ weakly converges as $n \rightarrow \infty$ to an unconditional distribution of a random vector $\left(\xi_{1}, \ldots, \xi_{k}\right)$, and the convergence is uniform in $x: x-\nu=O(A(n) / n)$;
2) For any $\delta \in(0,1)$, there exists a constant $M=M(\delta)$ such that

$$
q_{n k}\left(x_{1}, \ldots, x_{k} \mid x\right) \leq M
$$

for all $x_{1}, \ldots, x_{n}, k \leq(1-\delta) n, n \geq m$ and $x: x-\nu=O(A(n) / n)$.
The statement of this lemma is proved in paper [1] (see also [8]).
Lemma 2. Let conditions (2), (4) be satisfied. Let $x=x(a) \rightarrow \nu$ and $n=n(a) \rightarrow \infty$ as $a \rightarrow \infty$ so that $x-\nu=O(A(n) / n)$. Then the joint conditional distribution of random variables

$$
J_{n k}=T_{n}-T_{n-i}, \quad i=\overline{1, k},
$$

under condition that $\bar{S}_{n}=x$ weakly converges to an unconditional joint distribution of random variables Z_{1}, \ldots, Z_{k}.

Proof. Assume

$$
\eta_{n i}=\xi_{i}-\bar{S}_{n}, \quad 1 \leq i \leq n
$$

and

$$
\Gamma_{n k}=\sum_{i=1}^{k} \eta_{n i}, 1 \leq k \leq n
$$

It follows from the first part of Lemma 1 that, for each fixed k, the conditional distribution $\left(\eta_{n 1}, \ldots, \eta_{n k}\right)$ weakly converges to an unconditional distribution $\left(\xi_{1}-\nu, \ldots, \xi_{k}-\nu\right)$.

It is clear that, for $\bar{S}_{n}=x$ and $1 \leq k \leq n$,

$$
\begin{equation*}
J_{n k}=(n-k)\left(\Delta\left(\bar{S}_{n}\right)-\Delta\left(\bar{S}_{n-k}\right)\right)+k \Delta(x) \tag{5}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
(n-k)\left(\bar{S}_{n}-\bar{S}_{n-k}\right)=\sum_{i=n-k+1}^{n} \eta_{n i} \stackrel{d}{=} \Gamma_{n k}, \tag{6}
\end{equation*}
$$

where the symbol $\xi \stackrel{d}{=} \eta$ means the equality in distribution.
It follows from (5) and (6) that the joint conditional distribution of random variables $J_{n k}, 1 \leq k \leq n-1$ under condition that $\bar{S}_{n}=x$ coincides with the joint conditional distribution of random variables

$$
W_{n k}=(n-k)\left[\Delta(x)-\Delta\left(x-\frac{1}{n-k} \Gamma_{n k}\right)\right]+k \Delta(x), 1 \leq k=n-1
$$

Assume

$$
U_{n k}(t)=(n-k)\left[\Delta(x)-\Delta\left(x-\frac{1}{n-k} t\right)\right]+k \Delta(x)
$$

Taking into account that $x=x(a) \rightarrow \nu$ as $a \rightarrow \infty$, the mean-value theorem for each fixed k yields

$$
\begin{equation*}
U_{n k}(t) \rightarrow \Delta^{\prime}(\nu) t+k \Delta(\nu) \text { as } a \rightarrow \infty \tag{7}
\end{equation*}
$$

uniformly with respect to t from the bounded set in $(-\infty, \infty)$.
Then it follows from (7) that, for each k, the conditional distribution of the vector ($W_{n 1}, \ldots, W_{n k}$) under condition that $\bar{S}_{n}=x$ weakly converges to an unconditional distribution $\left(Z_{1}, \ldots, Z_{k}\right)$, where $Z_{k}=\Delta^{\prime}(\nu)\left(S_{k}-k \nu\right)+k \Delta(\nu)$, since the conditional distribution $\Gamma_{n k}$ under condition that $\bar{S}_{n}=x$ weakly converges to an unconditional distribution $S_{k}-k \nu$ for each k.

Lemma 3. Let $x=x(a) \rightarrow \nu$ and $n=n(a) \rightarrow \infty$ as $a \rightarrow \infty$ so that $x-\nu=$ $O(A(n) / n)$. Then, for $\theta \in[0, \Delta(\nu))$,

1) $\varepsilon_{1}=\varepsilon_{1}(a, \delta, y)=P\left(J_{n i}-i \theta<y, \exists i \in(n \delta, n-1] \mid \bar{S}_{n}=x\right) \rightarrow 0$ as $a \rightarrow \infty$ uniformly in y from a bounded set of R and $x: x-\nu=O(A(n) / n), f$
2) $\varepsilon_{2}=\varepsilon_{2}(a, k, \delta, y)=P\left(J_{n i}-i \theta<y, \exists i \in(k, n \delta] \mid \bar{S}_{n}=x\right) \rightarrow 0$ as $k \rightarrow \infty$ uniformly in y from a bounded set of R and $x: x-\nu=O(A(n) / n)$ for sufficiently large a.

Proof. Assuming $T_{n}^{\prime}=T_{n}-n \theta$ and $b=n(\Delta(x)-\theta)-y$, we have

$$
\begin{align*}
\varepsilon_{1} & =P\left(T_{n-i}^{\prime}>b, \exists i \in(n \delta, n-1] \mid \bar{S}_{n}=x\right)= \\
& =P\left(T_{j}^{\prime}>b, \exists j \in[1, n(1-\delta)) \mid \bar{S}_{n}=x\right) \tag{8}
\end{align*}
$$

By the second part of Lemma 1, relation (8) yields

$$
\begin{gather*}
\varepsilon_{1} \leq M P\left(T_{j}^{\prime}>b, \exists i \in[1, n(1-\delta))\right)= \\
=M P\left(t_{b}<n(1-\delta)\right) \tag{9}
\end{gather*}
$$

where

$$
t_{b}=\inf \left\{n \geq 1: T_{n}^{\prime}>b\right\}
$$

is the first passage time of a random walk for the level b.
By (3), it follows from Lemma 2.4 in [8] that

$$
\begin{equation*}
\frac{t_{b}}{b} \xrightarrow{a . n} \frac{1}{\mu-\theta} \text { as } a \rightarrow \infty . \tag{10}
\end{equation*}
$$

Taking into account that $b \sim n(\Delta(\nu)-\theta)$ as $a \rightarrow \infty$, it follows from (10) that

$$
\frac{t_{b}}{n} \xrightarrow{a . n} 1 \text { as } a \rightarrow \infty
$$

Hence, we obtain easily that, for any $\delta \in(0,1)$,

$$
P\left(t_{b} \leq n(1-\delta)\right) \rightarrow 0 \text { as } a \rightarrow \infty
$$

Statement 1) of the proved lemma follows from (9).
We now prove statement 2). It suffices to show that

$$
\varepsilon_{2}=P\left(W_{n i}-i \theta<y, \exists i \in(k, n \delta] \mid \bar{S}_{n}=x\right) \rightarrow 0, k \rightarrow \infty
$$

From the differentiability of the function $\Delta(x)$ in a neighborhood of the point $x=\nu$, it follows that there exist an integer N and a positive number $\gamma>0$ such that, for $i \leq n \delta$ and $n \geq N$ on the set $\left\{\omega: \frac{1}{n-i}\left|\Gamma_{n i}\right| \leq \gamma\right\}$,

$$
\left|(n-i)\left[\Delta(x)-\Delta\left(x-\frac{1}{n-i} \Gamma_{n i}\right)\right]\right| \leq 2\left|\Delta^{\prime}(x)\right|\left|\Gamma_{n i}\right|
$$

or

$$
\begin{equation*}
\left|W_{n i}-i(\mu-\theta)\right| \leq 2\left|\Delta^{\prime}(\nu)\right|\left|\Gamma_{n i}\right| \tag{11}
\end{equation*}
$$

It follows from inequality (11) that the event $C=\left\{\omega: W_{n i}<y\right\}$ implies the event $A=\left\{\omega:\left|\Gamma_{n i}\right|>\gamma(1-\delta) n\right\}$ or the event

$$
B=\left\{\omega:\left|\Gamma_{n i}\right|>\frac{i(\mu-\theta)-y}{2\left|\Delta^{\prime}(\nu)\right|}\right\} \quad(C \subseteq A \cup B)
$$

It is easy to understand that if $\delta>0$ is a sufficiently small number, then, for each $i \leq n \delta$, the event A implies the event $B: A \subseteq B$.

Further, the equality

$$
\Gamma_{n i}=i\left(\bar{S}_{i}-\bar{S}_{n}\right)
$$

implies that, on the set B,

$$
\left|\bar{S}_{i}-\bar{S}_{n}\right|>\frac{i(\mu-\theta)-y}{2\left|\Delta^{\prime}(\nu)\right| i}
$$

Hence, we find

$$
\begin{equation*}
\left|\bar{S}_{i}-\nu\right|>\frac{i(\mu-\theta)-y}{2\left|\Delta^{\prime}(\nu)\right| i}-\left|\bar{S}_{n}-\nu\right| \tag{12}
\end{equation*}
$$

It follows from the convergence $x=x(a) \rightarrow \nu$ as $a \rightarrow \infty$ that there exist the numbers a_{0}, k_{0}, and γ_{0} such that, for all $i>k_{0}$ and $a>a_{0}$,

$$
\begin{equation*}
\frac{i(\mu-\theta)-y}{2\left|\Delta^{\prime}(\nu)\right| i}-|x-\nu|>\gamma_{0} \tag{13}
\end{equation*}
$$

Then it follows from (12) and (13) that, for $i>k_{0}$ and $a>a_{0}$, the event B implies the event $D=\left\{\omega:\left|\bar{S}_{i}-\nu\right|>\gamma_{0}\right\}: B \subseteq D$.

Thus, it follows from the above arguments that, for sufficiently large a and k and small $\delta>0$, we have

$$
\begin{aligned}
& \varepsilon_{2}=P\left(C, \exists i \in(k, n \delta] \mid \bar{S}_{n}=x\right) \leq \\
& \quad \leq P\left(B, \exists i \in(k, n \delta] \mid \bar{S}_{n}=x\right) \leq
\end{aligned}
$$

$$
\begin{equation*}
\leq P\left(D, \exists i \in(k, n \delta] \mid S_{n}=x\right) \tag{14}
\end{equation*}
$$

From the second part of Lemma 1, we obtain

$$
\begin{gather*}
P\left(D, \exists i \in(k, n \delta] \mid \bar{S}_{n}=x\right) \leq \\
\leq P(D, \exists i \in(k, n \delta]) \leq \\
\leq M P\left(\left|\bar{S}_{i}-\nu\right|>\gamma_{0}, \exists i>k\right) \tag{15}
\end{gather*}
$$

It follows from the strong law of large numbers that

$$
\begin{equation*}
\left.P\left(\left|\bar{S}_{i}-\nu\right|\right)>\gamma_{0}, \exists i>k\right) \rightarrow 0 \text { as } k \rightarrow \infty . \tag{16}
\end{equation*}
$$

From (14), (15), and (16), we get statement 2) of Lemma 3.

4. Proof of the theorem.

Assume

$$
\begin{gathered}
L_{k}(n, x, r)=P\left(J_{n i}-i \theta \geq r, 1 \leq i \leq k \mid \bar{S}_{n}=x\right), \quad J_{n i}=T_{n}-T_{n-i}, \\
J_{k}=\min _{1 \leq i \leq k}\left(Z_{i}-i \theta\right)
\end{gathered}
$$

and

$$
\Psi_{k}(r)=P\left(J_{k} \geq r\right)=P\left(Z_{i}-i \theta \geq r, 1 \leq i \leq k\right)
$$

It follows from Lemma 2 that, for each k and $r \geq 0$,

$$
\begin{equation*}
L_{k}(n, x, r) \rightarrow \Psi_{k}(r) \text { as } a \rightarrow \infty \tag{17}
\end{equation*}
$$

Since $\Psi_{k}(r) \rightarrow \Psi(r)$ as $k \rightarrow \infty$, it remains to show that, for sufficiently large k,

$$
\begin{equation*}
\varepsilon_{3}=\varepsilon_{3}(n, x, r)=L_{k}(n, x, r)-L(n, x, r) \rightarrow 0 \text { as } a \rightarrow \infty . \tag{18}
\end{equation*}
$$

For any $\delta \in(0,1)$, we have

$$
\begin{aligned}
& 0 \leq \varepsilon_{3} \leq P\left(J_{n i}-i \theta<r, \exists i \in(k, n-1] \mid \bar{S}_{n}=x\right) \leq \\
& \leq P\left(J_{n i}-i \theta<r, \exists i \in(k, n \delta] \mid \bar{S}_{n}=x\right)+ \\
& +P\left(J_{n i}-i \theta<r, \exists i \in(n \delta, n-1] \mid \bar{S}_{n}=x\right)=\varepsilon_{2}+\varepsilon_{1},
\end{aligned}
$$

where ε_{1} and ε_{2} are from Lemma 3.
Therefore, Lemma 3 yields (18).
The statement of the theorem follows from (17) and (18).
Proof of the Corollary. Following [1], we have

$$
\begin{gathered}
l_{a}(n, x)=P\left(T_{k} \leq f_{a}(k), 1 \leq k \leq n-1 \mid \bar{S}_{n}=x\right)= \\
=P\left(T_{n}-T_{n-k} \geq T_{n}-f_{a}(n-k), 1 \leq k \leq n-1 \mid \bar{S}_{n}=x\right)= \\
=P\left(J_{n k} \geq n \Delta(x)-f_{a} n+\left(f_{a}(n)-f_{a}(n-k)\right), 1 \leq k \leq n-1 \mid \bar{S}_{n}=x\right) .
\end{gathered}
$$

Hence, recalling the notation $\delta_{a}(n, x)=n \Delta(x)-f_{a}(n)$ and taking into account that, for some intermediate point $m=m(n, k)$ from the segment $[n-k, n]$,

$$
f_{a}(n)-f_{a}(n-k)=k f_{a}^{\prime}(m),
$$

we get

$$
l_{a}(n, x)=P\left(J_{n k} \geq \delta_{a}(n, x)+k f_{a}^{\prime}(m), 1 \leq k \leq n-1 \mid \bar{S}_{n}=x\right)
$$

Denote

$$
J_{n}^{\prime}=\min _{1 \leq k \leq n-1}\left(J_{n k}-k f_{a}^{\prime}(m)\right)
$$

and

$$
L_{a}^{\prime}(n, x, r)=P\left(J_{n}^{\prime}>r \mid \bar{S}_{n}=x\right) .
$$

It is clear that

$$
l_{a}(n, x)=L^{\prime}\left(n, x, \delta_{a}(n, x)\right)
$$

By the scheme of the proof of relation (18), it is easy to show that, for each fixed $k \geq 1$,

$$
L_{a}^{\prime}(n, x, r)-L(n, x, r) \rightarrow 0 \text { as } a \rightarrow \infty .
$$

The statement of the corollary follows from the theorem.
Remark. The theorem and the corollary were established for the case $\Delta(x)=x$ in [1] and for the case of $f_{a}(t)=a$ and $D \xi_{1}<\infty$ in [8].

The authors thank the reviewer for useful remarks.

References

1. Aliyev S., Hashimova T. Asymptotic behavior of the conditional probability of crossing the nonlinear boundary by a random walk, Theory of Stoch. Process. 16 (32) (2010), no. 1, 12-17.
2. Rahimov F. On the limit behavior of conditional probabilities of crossing the nonlinear boundary by perturbed random walk, Trans. of the NAS of Azerbaijan, no 1, (2006), 163-168.
3. Rahimov F. On the local probabilities of crossing the nonlinear boundaries by the sums of independent random variables, Teoria Veroyatn. Primen. 35 (1990), 373-377.
4. Rahimov F. Integral limit theorems for first time of crossing the nonlinear boundary by the sums of independent random variables, Teoria Veroyatn. Primen. 50 (2005), 158-161.
5. Gut A. Stopped Random Walks: Limit Theorems and Applications, New York: Springer, 2009.
6. Feller W. An Introduction to Probability Theory and Its Applications, New York: Wiley, 1970.
7. Siegmund D. Sequential Analysis. Tests and Confidence Intervals, New York: Springer, 1985.
8. Woodroofe M. Nonlinear Renewal Theory in Sequential Analysis, Philadelphia: SIAM, 1982.
9. Zhang C.-H. A nonlinear renewal theory, Ann. Probab. 16 (1988), no. 2, 793-821.

Institute of Mathematics and Mechanics of the NAS of Azerbaijan
E-mail address: soltanaliyev@yahoo.com
Department of Probability Theory and Mathematical Statistics of the State University of Baku

E-mail address: ragimovf@rambler.ru

[^0]: 2000 Mathematics Subject Classification. Primary 60G50.
 Key words and phrases. Perturbed random walk, first passage time, conditional probability of crossing the boundary, overshoot of a random walk.

