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A. A. DOROGOVTSEV AND O. L. IZYUMTSEVA

ON REGULARIZATION OF THE FORMAL FOURIER–WIENER
TRANSFORM OF THE SELF-INTERSECTION LOCAL TIME OF A

PLANAR GAUSSIAN PROCESS

The Fourier–Wiener transform of the formal expression for a multiple self-intersection
local time is described in terms of an integral, which is divergent on the diagonals.
The method of regularization we used in this work is related to the regularization of
functions with nonintegrable singularities. The strong local nondeterminism prop-
erty, which is more restrictive than the property of local nondeterminism introduced
by S. Berman, is considered. Its geometrical meaning in the construction of the reg-
ularization is investigated. As an example, the problem of regularization is solved
for a compact perturbation of the planar Wiener process.

The present paper considers the multiple self-intersection local time for a planar Gauss-
ian process. To define it, we use the Fourier–Wiener transform. The Fourier–Wiener
transform of a formal expression for multiple self-intersection local time is described in
terms of the integral of the ratio of two functions, where the denominator turns to zero
on the diagonals. That is why this integral must be regularized in some way. The method
of regularization we use in this work is related to the regularization of functions with
nonintegrable singularities [1] in the theory of generalized functions. To present such a
regularization in the case of an arbitrary Gaussian process, we introduce the property of
strong local nondeterminism, which plays the key role in the construction of a regular-
ization. Among a large number of works devoted to the self-intersection local time for
random processes, we recall the papers related to our work. The problem of regulariza-
tion of the self-intersection local time for a planar Wiener process was described in [2, 3].

In [2], for fε(x) = 1
2πεe

− ‖x‖2

2ε , ε > 0, x ∈ R2, E. B. Dynkin considered the expression

Twε,k =
∫

Δk

k−1∏
i=1

fε(w(si+1) − w(si))d�s, Δk = {0 ≤ s1 ≤ . . . ≤ sk ≤ 1}

which “blows up” when ε→ 0+. He proved that, under the right choice of the coefficients
Blk(ε), the random variable

T w
k = Lp- lim

ε→0+

[
Twε,k +

k−1∑
l=1

Blk(ε)T
w
ε,l

]
is well defined.

In [3], J. Rosen showed that there exists∫
Δk

k−1∏
i=1

(δ0(w(si+1) − w(si))) − Eδ0(w(si+1) − w(si))d�s :=
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= L2- lim
ε→0+

[∫
Δk

k−1∏
i=1

(fε(w(si+1) − w(si)) − Efε(w(si+1) − w(si)))d�s

]
.

The existence of multiple points of paths of the Brownian motion in the plane, Markov
processes in a complete metric space, and Gaussian processes was proved in [4]–[6],
respectively. The concept of local nondeterminism for a Gaussian process was considered
in [7, 9]. The Fourier–Wiener transform of Brownian functionals was widely discussed in
[10].

The work consists of three parts. The necessity of a regularization of a formal ex-
pression for the Fourier–Wiener transform of the self-intersection local time for a planar
Gaussian process is established in Section 1. As an example, the problem of regularization
is considered for the case of a planar Wiener process.

In Section 2, we introduce a modification of the local nondeterminism property which
we call the strong local nondeterminism. Here, we consider the geometrical meaning of
this property describing the joint behavior of increments of the process. The main exam-
ple of a Gaussian process with strong local nondeterminism is a compact perturbation
of the Wiener process. In Section 2, we present examples of such processes arising as a
solution to the Sturm–Liouville problem with the white noise on the right-hand side.

In Section 3, we present our main result about the regularization of the Fourier–Wiener
transform for the self-intersection local time of a planar Gaussian process.

1. Formal expression of the Fourier–Wiener transform for the

self-intersection local time of a Gaussian process

Let {x(t); t ∈ [0, 1]} be a planar Gaussian process continuous in the square mean with
the mean zero. The main object of our investigation is the expression

(1) T xk =
∫

Δk

k−1∏
i=1

δ0(x(si+1) − x(si))d�s,

where δ0 is the delta-function at the point 0. Expression (1) is the formal definition of
k-multiple self-intersection local time for the process x on the time interval [0; 1].

In (1), we will consider the action of δ0 on the functionals of the white noise and use
the well-developed tools from Gaussian analysis for its study. Suppose that H is a real
separable Hilbert space. The inner product in H is denoted by (·, ·).

Let g ∈ C([0; 1], H) be a function such that the linear span of its values is dense
in H. Consider two independent Gaussian white noises in H : ξ1 and ξ2 [12]. Recall
that the Gaussian white noise ξ in H is a family of jointly Gaussian random variables
{(h, ξ);h ∈ H} linearly depending on h and such that

E(h, ξ) = 0, E(h, ξ)2 = ‖h‖.

Define the Gaussian process x as follows:

x(t) = ((g(t), ξ1), (g(t), ξ2)).

To investigate (1), consider its Fourier–Wiener transform. For h1, h2 ∈ H, we denote,
by E(h1, h2), the stochastic exponent

E(h1, h2) = e〈h1,ξ1〉+〈h2,ξ2〉− 1
2 (‖h1‖2+‖h2‖2).

We recall the following definition [13].

Definition 1. T (α)(h1, h2) := EαE(h1, h2) is called the Fourier–Wiener transform of
the random variable α.



30 A. A. DOROGOVTSEV AND O. L. IZYUMTSEVA

We note that the delta-function of a Gaussian random variable as a generalized
Gaussian functional was considered in [10, 14]. Let us give meaning to the expression∏k−1
i=1 δ0(x(si+1)− x(si)) by approximating the delta-function by the family of functions

fε(x) =
1

2πε
e−

‖x‖2

2ε , ε > 0, x ∈ R
2.

Consider approximating values
∏k−1
i=1 fε(x(si+1) − x(si)). It is not difficult to prove

that there exists a limit

T
(
k−1∏
i=1

δ0(x(si+1) − x(si))

)
(h1, h2) :=

= lim
ε→0+

T
(
k−1∏
i=1

fε(x(si+1) − x(si))

)
(h1, h2) =

(2) =
e−

1
2 (A−1

t1...tk
(u1,u1)+A

−1
t1...tk

(u2,u2))

Γt1...tk
,

where
Δg(tl) = g(tl+1) − g(tl), l = 1, . . . , k − 1,

�ui = ((Δg(t1), hi), . . . , (Δg(tk−1), hi)), i = 1, 2,

At1...tk = (Δg(tl),Δg(tj))k−1
lj=1.

During the whole article, we use the following notations. Γt1...tk is a Gram determinant
constructed on Δg(t1), . . . ,Δg(tk−1). We also suppose that the following condition is
fulfilled. For any 0 ≤ t1 < t2 < . . . < tk ≤ 1,

Γt1...tk �= 0.

Pt1...tk is a projection on the linear span of (Δg(t1) . . . ,Δg(tk−1)). It can be verified that
the following lemma holds.

Lemma 1.
A−1
t1...tk(�u1, �u1) = ‖Pt1...tkh1‖2,

if A−1
t1...tk exists.

Proof.

A−1
t1...tk(�u1, �u1) =

1
Γt1...tk

k−1∑
ij=1

(−1)i+jMij(Δg(ti), h1)(Δg(tj), h1),

where Mij is the minor of the matrix At1...tk corresponding to a row i and a column j.
Let us define Bt1...tk as follows:

Bt1...tkh1 =
1

Γt1...tk

k−1∑
ij=1

(−1)i+jMij(Δg(ti), h1)Δg(tj).

It is not difficult to check that
1) For any h1 ⊥ Δg(t1), . . . ,Δg(tk−1),

Bt1...tkh1 = 0,

2) For any i = 1, k − 1,
Bt1...tkΔg(ti) = Δg(ti).

Conditions 1), 2) yield
Bt1...tk = Pt1...tk .
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To finish the proof, it is enough to note that

A−1
t1...tk

(�u1, �u1) = (Bt1...tkh1, h1).

The lemma is proved. �

It follows from Lemma 1 that, for �t = (t1, . . . , tk) ∈ Δk,

(3) T
(
k−1∏
i=1

δ0(x(si+1) − x(si))

)
(h1, h2) =

e−
1
2 (‖Pt1...tk

h1‖2+‖Pt1...tk
h2‖2)

Γt1...tk
.

Consider expression (3) in the case of a planar Wiener process. Here, we use H =
L2([0, 1]). Then one can define a Wiener process as w(t) = ((1I[0,t], ξ1), (1I[0,t], ξ2)), where
ξ1 and ξ2 are independent white noises in L2([0, 1]). Now, (3) has the form

(4) T
(
k−1∏
i=1

δ0(w(si+1) − w(si))

)
(h1, h2) =

e−
1
2 (
�k−1

i=1 ‖Ptiti+1h1‖2+
�k−1

i=1 ‖Ptiti+1h2‖2)∏k−1
i=1 (ti+1 − ti)

.

The next statement describes the regularization of (4).

Theorem 1. The following integral is finite:∫
Δk

∑
M⊂{1,...,k−1}(−1)|M|e−

1
2 (
�

i∈M ‖Ptiti+1h1‖2+
�

i∈M ‖Ptiti+1h2‖2)∏k−1
i=1 (ti+1 − ti)

d�t.

Proof. It is enough to check that the following integral exists:∫
Δk

∣∣∣∣∣
∑

M⊂{1,...,k−1}(−1)|M|e−
1
2 (
�

i∈M ‖Ptiti+1h1‖2)∏k−1
i=1 (ti+1 − ti)

∣∣∣∣∣d�t =

∫
Δk

∣∣∣∣∣
∏k−1
i=1 (e−‖Ptiti+1h1‖2

− 1)∏k−1
i=1 (ti+1 − ti)

∣∣∣∣∣dt ≤
(5) ≤

∫
Δk

∏k−1
i=1 ‖Ptiti+1h1‖2∏k−1
i=1 (ti+1 − ti)

d�t =
∫

Δk

∏k−1
i=1

(∫ ti+1

ti
h1(s)ds

)2

∏k−1
i=1 (ti+1 − ti)2

d�t.

Let us prove that integral (5) converges. It is sufficient to consider the case h1 ≥ 0.
Let us check that ∫ 1

tk−1

(∫ tk
tk−1

h1(s)ds
)2

(tk − tk−1)2
dtk ≤ C‖h1‖2.

It is not difficult to see ∫ 1

tk−1

(∫ tk
tk−1

h1(s)ds
)2

(tk − tk−1)2
dtk =

=
∫ 1

tk−1

∫∫ tk

tk−1

h1(s1)h1(s2)ds1ds2
1

tk − tk−1
dtk =

=
∫∫ 1

tk−1

h1(s1)h1(s2)
∫ 1

s1∨s2

1
(tk − tk−1)2

dtk = dtkds1ds2 ≤

≤
∫∫ tk

tk−1

h1(s1)h1(s2)
1

s1 ∨ s2 − tk−1
ds1ds2 =

= 2
∫ 1

tk−1

h1(s1)
∫ 1

s1

h1(s2)
s2 − tk−1

ds2ds1.
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In L2([tk−1; 1]), consider the integral operator with the kernel

k(s1, s2) =
1

s2 − tk−1
1I{s2>s1}.

Let us check that k defines a bounded operator in L2([tk−1; 1]), by using the Schur test
[11]. If there exist the positive functions p, q : [tk−1; 1] → (0,+∞) and α, β such that∫ 1

tk−1

k(s1, s2)q(s2)ds2 ≤ αp(s1),

∫ 1

tk−1

k(s1, s2)p(s1)ds1 ≤ βq(s2),

then k corresponds to a bounded operator with the norm less or equal to αβ. Put

p(s1) =
1√

s1 − tk−1
, q(s2) =

1√
s2 − tk−1

.

Then ∫ 1

tk−1

k(s1, s2)q(s2)ds2 =
∫ 1

s1

1
(s2 − tk−1)3/2

ds2 ≤ 2
1√

s1 − tk−1
,

∫ 1

tk−1

k(s1, s2)p(s1)ds1 =
∫ s2

tk−1

1√
s1 − tk−1

ds1
1

s2 − tk−1
=

2√
s2 − tk−1

.

So, we get the estimation

2
∫ 1

tk−1

h(s1)
∫ 1

s1

h(s2)
s2 − tk−1

ds2ds1 ≤ 8‖h‖2.

It implies that ∫
Δk

∏k−1
i=1

(∫ ti+1

ti
h1(s)ds

)2

(ti+1 − ti)2
d�t =

=
∫

Δk−1

∏k−2
i=1

(∫ ti+1

ti
h1(s)ds

)2

(ti+1 − ti)2
·
∫ 1

tk−1

(∫ tk+1

tk
h1(s)ds

)2

(tk − tk−1)2
dtkd�t ≤

(6) ≤ 8‖h1‖2

∫
Δk−1

∏k−2
i=1

(∫ ti+1

ti
h1(s)ds

)2

(ti+1 − ti)2
d�t.

By using the same arguments, it can be checked that expression (6) is less or equal
than (8‖h1‖2)k−1.

The theorem is proved. �

The main aim of the present work is to construct the regularization of expression (3)
for a general Gaussian process x.

Let us describe the properties of the Gaussian process which are necessary for the
application of the method of regularization considered in Theorem 1.
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2. Strong local nondeterminism property

In this section, we introduce the condition under which we are able to prove the
existence of a regularization for the Fourier–Wiener transform of the self-intersection
local time of a Gaussian process. This property is a little bit stronger than the local
nondeterminism introduced by S. Berman [7]. As before, for g ∈ C([0; 1], H), we define
a Gaussian process x(t) = (g(t), ξ) with the help of a white noise ξ in the Hilbert space
H. In this section, we also suppose that,

for any 0 ≤ t1 < t2 < . . . < tk ≤ 1,

Γt1...tk �= 0.

Definition 2. The process x is strongly locally nondeterministic if, for any fixed k and
an arbitrary M ⊂ {1, . . . , k − 1},

(7) Γt1...tk ∼ G(Δg(ti), i /∈M)
∏
i∈M

‖Δg(ti)‖2,

when maxi∈M (ti+1 − ti) → 0.

It is evident that the property of local nondeterminism follows from (7). But the
condition of definition 2 is more restrictive. For example, the next lemma shows that the
strong local nondeterminism is sufficient for a weak convergence to zero of projections
on the small increments of the process.

Lemma 2. Suppose that the process x is strongly locally nondeterministic. Then

∀ h ∈ H : Pt1t2h→ 0, t2 − t1 → 0.

Proof. It is enough to consider Pt1t2g(t) for fixed t. Suppose that t ≤ t1 < t2. We now
apply condition (7) to the points 0 < t < t1 < t2 or 0 < t = t1 < t2. Note that (7)
means that the orthogonal component of Δg(ti) to the linear span of {Δg(tj); 1 ≤ j ≤
k − 1, j �= i} asymptotically coincides with Δg(ti). In particular, this means that, for
arbitrary j �= i,

(Δg(tj),Δg(ti))
‖Δg(tj)‖‖Δg(ti)‖

→ 0, ti+1 − ti → 0.

In our case, we have
(g(t),Δg(t1))
‖Δg(t1)‖

→ 0, t2 − t1 → 0.

Now suppose that 0 ≤ t1 < t2 ≤ t. Then it follows from (7) that

(g(t) − g(t2) + g(t1),Δg(t1))
‖Δg(t1)‖

→ 0, t2 − t1 → 0.

Since ‖Δg(t1)‖ → 0, t2 − t1 → 0, we have again

(g(t),Δg(t1))
‖Δg(t1)‖

→ 0, t2 − t1 → 0.

The last case t1 ≤ t ≤ t2 can be considered in the same way. The lemma is proved. �

We recall that x is locally nondeterministic on some open interval J [7] if and only if

lim
c→0+

inf
tm−t1≤c

G

(
x(t1)

(Varx(t1))1/2
, . . . ,

x(tm) − x(tm−1)
(Var(x(tm) − x(tm−1)))1/2

)
> 0,

form ≥ 2 and arbitrary points which are ordered according to their indices: t1 < . . . < tm
in J. The next example shows that there exist the locally nondeterministic processes for
which the statement of Lemma 2 does not hold. Consider
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Example 1.
x(t) = w(t) +

√
tξ, t ∈ [0, 1],

where w is a one-dimensional Wiener process, and ξ is the standard Gaussian random
variable. Suppose that w and ξ are independent. Let us check that x is locally nonde-
terministic. To prove this, we note that, for 0 < t1 < . . . < tm ≤ 1,

Var(x(ti) − x(ti−1)) = ti − ti−1 + (
√
ti −

√
ti−1)2, i = 2,m,(

x(ti) − x(ti−1)
(Var(x(ti) − x(ti−1)))1/2

,
x(ti) − x(ti−1)

(Var(x(ti) − x(ti−1)))1/2

)
= 1

and, for k �= l, (
x(tk) − x(tk−1)

(Var(x(tk) − x(tk−1)))1/2
,

x(tl) − x(tl−1)
(Var(x(tl) − x(tl−1)))1/2

)
=

=
(
√
tl −

√
tl−1)(

√
tl −

√
tl−1)√

tk − tk−1 + (
√
tk −

√
tk−1)2

√
tl − tl−1 + (

√
tl −

√
tl−1)2

=

=
(
√
tk −

√
tk−1)(

√
tl −

√
tl−1)√

(
√
tk −

√
tk−1)2

√
tk
√

(
√
tl −

√
tl−1)2

√
tl

=

=
1
2

(
1 −

√
tk−1√
tk

)1/2 (
1 −

√
tl−1√
tl

)1/2

→ 0, tm − t1 → 0.

This yields

lim
c→0+

inf
tm−t1≤c

G

(
x(t1)

(Varx(t1))1/2
, . . . ,

x(tm) − x(tm−1)
(Var(x(tm) − x(tm−1)))1/2

)
= 1 > 0.

To check that the projection related to the increment of the process x on a small time
interval does not tend to zero, we consider

g(t1) =
√
t1e+ 1I[0,t1].

Then, for h = e⊕ 0, we get

‖Pt1h‖2 =
(
√
t1)2

t1 + t1
=

1
2
�→ 0, t1 → 0.

This example shows that the strong local nondeterminism property is more restrictive
than the local nondeterminism.

In the present work, the main example of the process with strong local nondeterminism
is the process

(8) x(t) = ((I + S)g0(t), ξ),

where I is the identity operator and S is a compact operator in L2([0; 1]) such that
‖S‖ < 1,g0(t) = 1I[0;t].

Example 2. Consider the process

x(t) = w(t) + u(t),

where w is a Wiener process in R such that w(t) = (1I[0;t], ξ), ξ is a white noise in
L2([0, π2 ]), and u is a solution of the following Sturm–Liouville problem [8]:

(9)

⎧⎪⎨⎪⎩
u′′ + u = ξ

u(0) = 0
u(π2 ) = 0.

The solution of (9) is given by the formula

u(t) = (g(t, ·), ξ),
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where g is the Green function.
It is not difficult to check that

g(t, s) = − cos t sin s1I{s<t} − sin t cos s1I{s>t}.

We want that g describe the law of action of the operator S on g0(t). We have

(10) (Sg0(t))(u) = (S1I[0,t])(u) = − cos t sinu1I{u<t} − sin t cosu1I{u>t}.

By using (10), we get

(11) (Sf)(s) =
∫ π

2

0

f(u)[1I[s,π
2 ](u) sinu sin s− 1I[0,s](u) cosu cos s]du.

It follows from (11) that S is a compact operator.

The following lemma describes one of the properties of the process x.

Lemma 3. x is strongly locally nondeterministic.

Proof. To prove the lemma, let us check that

lim
max
i∈M

(ti+1−ti)→0

Γt1...tk
G(Δg(ti), i /∈M)

∏
i∈M ‖Δg(ti)‖2

= 1.

For an arbitrary q ∈ L2([0; 1]), we denote q̃ = q
‖q‖ .

The properties of the Gram determinant imply that

Γt1...tk
G(Δg(ti), i /∈M)

∏
i∈M ‖Δg(ti)‖2

=

G

(
Δ̃g(t1), . . . , Δ̃g(tk−1)

)
G(Δ̃g(ti), i /∈M)

.

Check that, for m ∈M, l = 1, k − 1,m �= l,(
Δ̃g(tm), Δ̃g(tl)

)
→ 0,

when maxi∈M (ti+1 − ti) → 0.
Note that, for any h ∈ L2([0, 1]) and ε > 0, there exists δ > 0 such that, for any

i ∈M, ti+1 − ti < δ.

(12)

∣∣∣∣∣(h, Δ̃g0(ti))

∣∣∣∣∣ < ε.

This implies that ‖SΔ̃g0(tm)‖ → 0, when maxi∈M (ti+1 − ti) → 0, since S is a compact
operator.

By using (12), we get

(13)
|((I + S)Δg0(tm), (I + S)Δg0(tl))|
‖(I + S)Δg0(tm)‖‖(I + S)Δg0(tl)‖

=

= (SΔ̃g0(tm), Δ̃g0(tl)) + (Δ̃g0(tm), SΔ̃g0(tl)) + (SΔ̃g0(tm), SΔ̃g0(tl))×

× (1 + 2(SΔ̃g0(tm), Δ̃g0(tm)) + (SΔ̃g0(tm), SΔ̃g0(tm)))−1/2×

× (1 + 2(SΔ̃g0(tl), Δ̃g0(tl)) + (SΔ̃g0(tl), SΔ̃g0(tl)))−1/2 → 0,

when maxi∈M (ti+1 − ti) → 0.
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Since a value of the determinant does not change under an even number of transpo-
sitions of rows and columns, we suppose that M = {1, . . . , l}. Then

G

(
Δ̃g(t1), . . . , Δ̃g(tk−1)

)

G

(
Δ̃g(ti), i /∈M

) =

=

G

(
Δ̃g(ti), i /∈M

)
+ F

(
Δ̃g(ti),M1j,m

n
ij , i, j = 1, k − 1, n = 1, l − 1

)

G

(
Δ̃g(ti), i /∈M

) ,

where

F

(
Δ̃g(ti),M1j ,m

n
ij , i, j = 1, k − 1, n = 1, l− 1

)
=

=
k−1∑
j=2

(−1)1+j
(

Δ̃g(t1), Δ̃g(tj)

)
M1j+

+
k−1∑
j=3

(−1)1+j
(

Δ̃g(t2), Δ̃g(tj)

)
m1

2j + . . .+

+
k−1∑
j=l+1

(−1)l+j
(

Δ̃g(tl), Δ̃g(tj)

)
ml−1
lj .

Here, M1j is the minor of the matrix

((
Δ̃g(ti), Δ̃g(tj)

))k−1

ij=1

,

and mk
ij is the minor of the same matrix after the deleting of k rows and k columns.

Since ‖S‖ < 1, (I + S) has a continuous inverse operator.
This and the compactness of S imply that inftG(Δ̃g(ti), i /∈M) > 0. Consequently,

G(Δ̃g(ti), i /∈M) + F

(
Δ̃g(ti),M1j ,m

n
ij , i, j = 1, k − 1, n = 1, l− 1

)
G(Δ̃g(ti), i /∈M)

→ 1,

when maxi∈M (ti+1 − ti) → 0.
The lemma is proved. �

The strong local nondeterminism property can be reformulated in terms of the condi-
tional variance.

Definition 3. A Gaussian process x has the strong local nondeterminism property if
and only if t1 < t2 < . . . < tk

Var(Δx(ti)/Δx(tj), 1 ≤ j ≤ k − 1, j �= i)
Var(Δx(ti))

→ 1, ti+1 − ti → 0.

The strong local nondeterminism property can be used to describe the asymptotic
behavior of Γt1...tk when some of differences ti+1 − ti converge to zero. Note that this
convergence holds for every i = 1, . . . , k − 1 in contrast to the Berman definition [7],
where i = k − 1.
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3. Regularization for the Fourier–Wiener transform of the

self-intersection local time

As was shown in the previous section, the Fourier–Wiener transform of the formal
expression for the self-intersection local time contains the function Γ−1

t1...tk which has
singularities along the diagonals. Here, we present the way of regularization of the
integral with Γ−1

t1...tk for the processes which are compact perturbations of the Wiener
process. Let us suppose in this section that the Gaussian process x has the form

x(t) = ((g(t), ξ1), (g(t), ξ2))

with the independent Gaussian white noises ξ1, ξ2 in L2([0; 1]) and

g(t) = g0(t) + Sg0(t),

where g0(t) = 1I[0;t], S is a compact operator in L2([0; 1]) with ‖S‖ < 1. For 0 ≤
t1 < . . . < tk ≤ 1, we denote, by Δ̃g(t1), . . . , Δ̃g(tk−1), the orthonormal system which
is obtained from Δg(t1), . . . ,Δg(tk−1) via the orthogonalization procedure. Since the
elements Δg(t1), . . . ,Δg(tk−1) are linearly independent (see Section 2), all the elements
Δ̃g(t1), . . . , Δ̃g(tk−1) are nonzero. For M ⊂ {1, . . . , k − 1}, we denote, by PM , the
projection on Δ̃g(ti), i ∈M.

Theorem 2. The following integral converges for arbitrary h ∈ L2([0; 1]):∫
Δk

Γ−1
t1...tk

(
∑

M⊂{1,...,k−1}
(−1)|M|e−

1
2‖PMh‖2

)d�t.

Proof. It is enough to check the convergence of the integral∫
Δk

|
k−1∏
j=1

(tj+1 − tj)−1(
∑

M⊂{1,...,k−1}
(−1)|M|e−

1
2‖PMh‖2

)|d�t =

=
∫

Δk

k−1∏
j=1

1 − e−
1
2 (h,�Δg(tj))2

tj+1 − tj
d�t ≤

∫
Δk

1
2k−1

k−1∏
j=1

(h, Δ̃g(tj))2

tj+1 − tj
d�t.

Let us consider ∫ 1

tk−1

(h, Δ̃g(tk−1))2

tk − tk−1
dtk.

By f(tk), we denote the difference

f(tk) = Δg(tk−1) − Pt1...tk−1Δg(tk−1).

As was proved above, the process x is strongly locally nondeterministic. Hence, uniformly
with respect to t1, . . . , tk−1, the following relations hold:

‖Pt1...tk−1

Δg(tk−1)√
tk − tk−1

‖ → 0, tk → tk−1,

‖f(tk)‖2

tk − tk−1
→ 1, tk → tk−1.

Consequently, it is enough to consider the integral∫ 1

tk−1

(h,Δg(tk−1))2

(tk − tk−1)2
dtk =

∫ 1

tk−1

(h+ S∗h,Δg0(tk−1))2

(tk − tk−1)2
dtk.

It can be shown that the last integral can be estimated above by C‖h‖2 for some absolute
constant C, as it was done in Section 1. Consequently, the initial integral absolutely
converges. The theorem is proved. �
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As a corollary, one can obtain the regularization for the formal expression of the self-
intersection local time for the process x. For 0 ≤ t1 < . . . < tk ≤ 1, we define the random
vectors Δx(t1), . . . ,Δx(tk−1) as follows:

Δx(t1) = Δx(t1),

Δx(tj) = Δx(tj) − E(Δx(tj)/Δx(t1), . . . ,Δx(tj−1)), j = 2, . . . , k − 1.
The following statement holds.

Theorem 3. The following integral of a generalized Gaussian functional has a well-
defined Fourier–Wiener transform:∫

Δk

∑
M⊂{1,...,k−1}

(−1)|M|+(k−1)
∏
j∈M

δ0(Δx(tj))
k−1∏
j=1

1
tj+1 − tj

(E
∏
j∈M

δ0(Δx(tj)))−1d�t.

The proof of this theorem is a straightforward application of Theorem 2.
Remark. Note that, for the Wiener process, Δx(tj) coincide with Δx(tj), j = 1, . . . , k−

1, and we obtain a regularization described in Section 1.
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