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V. V. KONAROVSKII

THE MARTINGALE PROBLEM FOR A MEASURE-VALUED
PROCESS WITH HEAVY DIFFUSING PARTICLES

A mathematical model of the joint motion of diffusing particles with mass, which
influences the coefficient of diffusion, is considered. Particles start from some set of
points on a line, move independently until the time of collision, and then are stuck,
with their masses added. It is shown that the measure-valued process describing the
given model is the unique solution of the martingale problem in the introduced space
of integer-valued measures.

1. Introduction

Let us consider a mathematical model of diffusing particles on a line which begin to
move from a countable set of points. Each particle moves independently of the others
until the time of collision. Two collided particles are stuck and then move as a single
particle with a mass equal to the sum of masses. We suppose that the coefficient of
diffusion σ of any particle with mass m is equal to

σ2 =
1
m
.

Similar systems were studied in works by R.A. Arratia [1], A.A. Dorogovtsev [6], H.
Wang [13], [14], D.A. Dawson [2], [4] et al. In works [1] and [6] the model of Brownian
particles is studied, which start from every point of the real axis, move independently
until the time of collision, and then are stuck. Since the particles are Brownian, the
sticking does not influence the diffusion coefficient. In our model, the diffusion of a
separate particle depends on the behavior of all others. We note that such an interaction
of particles complicates significantly the study of the system. It is worth to mention
work [4], where it was assumed that the masses of diffusing particles vary by a certain
law, though their diffusion coefficients are constant. So, the term “particle’s mass” has
different meaning in [4] and in the present work. According to work [4], the particles
only transfer some masses. But, in our case, the mass and the diffusion coefficient are
connected with each other. Roughly speaking, a heavier particle moves more slowly.

The goal of the present work is a mathematical description of our system in terms of
the evolution of a random measure that is a distribution of particles on the real axis.
Since the interaction is singular, we cannot construct our process with the help of some
stochastic differential equation, as it was made, for example, for systems with a regular
interaction in [3]–[5], [5]. We will proceed in the following way. We define a random
process, being a mathematical description of the given model, as the unique solution
of the martingale problem in the space of locally finite integer-valued measures. In the
process, we will find a generator, for which this martingale problem is posed. In this
approach, the following problem arises. To verify that a continuous process, which is
a solution of the martingale problem, describes the evolution of the mass of the given
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collection of particles, we should derive a system of continuous processes in R from such
measure-valued process, that would define the trajectories of these particles. But we are
not able to do this. Therefore, we are forced to somewhat change the classical definition
of a solution of the martingale problem. According to the ideas proposed in monograph
[5], we will consider the space of sequences as the phase space for the trajectories of
particles along with the space of measures.

2. System of heavy diffusing particles

In this section, we define the set of processes which determine the trajectories of
particles. Despite the fact that such a system was constructed and studied in works [9]
and [10], we will discuss the idea of its construction once more. This will allow us to
obtain some new properties of the system which will be used in what follows.

Theorem 1. [10] Let {xk, k ∈ I ⊆ Z} be a nondecreasing sequence of real numbers such
that one of the following conditions is satisfied:

1�) I = {1, . . . , n};
2�) I = Z, and there exist a sequence {ni, i ∈ Z} and a constant C > 0 such that,

for any i ∈ I, xni+1 − xni ≥ C.

Then there exists a system of random processes {xk(t), k ∈ I, t ≥ 0} such that
1◦) xk(·) is a continuous square-integrable local martingale relative to

(F)t≥0 = (σ(xl(s), s ≤ t, l ∈ I))t≥0 ;
2◦) xk(0) = xk, k ∈ I;
3◦) xk(t) ≤ xl(t) for arbitrary k, l ∈ I, k < l, and t ≥ 0;
4◦) 〈xk(·)〉t =

∫ t
0

ds
mk(s) , where

mk(t) = #{l ∈ I : ∃ s ≤ t, xk(s) = xl(s)};
5◦) the common characteristic

〈xk(·), xl(·)〉tI{t≤τk,l} = 0,
where τk,l = inf{t : xk(t) = xl(t)}.

The distribution of (xk(·))k∈I in the space
(
(C(R+))I , B((C(R+))I)

)
is uniquely de-

termined by conditions 1◦)–5◦).

The set of processes {xk(·), k ∈ I}, which was constructed in Theorem 1, describes the
joint behavior of diffusing particles on a line. According to condition 5◦), the particles
move independently until the time of collision, then are stuck, and change their mass,
according to 4◦), (the masses are added), which influences the coefficient of diffusion.
Since a positive martingale after reaching zero remains there [9], the sticking effect is set
by conditions 1◦)–5◦).

Below, we describe the idea of the proof of the theorem. Let {wk, k ∈ Z} be a system
of standard independent Wiener processes. We assume that I = {1, . . . , n}. In this case,
there exists a mapping

Fn : C(R+)I → C(R+)I

such that the system of processes {xk(·), k ∈ I}, where
(x1(·), . . . , xn(·)) = Fn(x1 + w1, . . . , xn + wn),

satisfies properties 1◦)–5◦). The structure of the mapping Fn is given in [10]. We note
that Fn sticks functions in a certain way. Therefore, it is easy to verify the measurability
of this mapping and the stochastic continuity of the process Fn(x1 +w1, . . . , xn +wn) in
(x1, . . . , xn) in the space C(R+)n.

If I = Z, then condition 2�) ensures the existence of a limit of the sequence
{xnk (·)}n≥|k|, k ∈ Z, where

(xn−n(·), . . . , xnn(·)) = F2n+1(x−n + w−n, . . . , xn + wn).
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As xk(·), we take the limit of the sequence {xnk (·)}n≥|k|. The system {xk(t), k ∈ Z, t ≥ 0}
is a required one.

By the symbol U, we denote the mapping which puts the set of standard independent
Wiener processes {wk, k ∈ Z} in correspondence to the system {xk(·), k ∈ Z}, i.e.,

(xk(·))k∈Z = U(xk + wk)k∈Z.

The stochastic continuity U(xk + wk)k∈Z in (. . . , x−n, . . . , xn, . . .) in the space C(R+)Z

follows from the stochastic continuity of Fn(x1 + w1, . . . , xn + wn) and condition 2�).

3. Process with heavy diffusing particles

Here, we determine the phase spaces, in which we construct random processes defining
the evolution of our system. As was mentioned above, we consider two spaces. The first
one is the space of measures, and the second is the space of nondecreasing sequences.
Thus, let H be the set of integer-valued measures μ on a line, for which

(1) lim
n→∞

μ([0, n))
n

= 1, lim
n→∞

μ([−n, 0))
n

= 1

(by virtue of condition (1), the measure μ is locally finite). By M, we denote the set of
nondecreasing sequences (xk)k∈Z such that

(2) lim
k→±∞

xk
k

= 1.

We note that conditions (1) and (2) are equivalent in the sense that the measure
∑

k∈Z
δxk

satisfies condition (1) if and only if (xk)k∈Z satisfies condition (2). The following propo-
sition is valid.

Lemma 1. The measure μ lies in H if and only if there exists an element (xn)n∈Z from
M such that μ =

∑
n∈Z

δxn .

Proof. Let μ =
∑
n∈Z

δxn ∈ H, and let an enumeration of xk be chosen such that x1 ≥ 0
and x0 < 0. We put each number m ∈ N in correspondence to nm ∈ N by the rule
(3) nm − 1 < xm ≤ nm.

Then we have the inequality
μ([0, nm − 1]) < m ≤ μ([0, nm]).

This inequality implies that m
nm

→ 1 as m → ∞. Using (3), we see that xm

m → 1. On
the other hand, if (xn)n∈Z ∈ M, we can choose k ∈ Z so that x1+k ≥ 0 and xk < 0. We
denote x′n = xn+k. It is clear that (x′n)n∈Z ∈ M. Taking μ([0, n]) = mn, we have

xmn ≤ n < xmn+1.

Hence, since xmn

mn
→ 1, we obtain n

mn
→ 1 as n→ ∞. �

Condition (1) is needed due to several reasons. First, it follows from Theorem 1 that
the system of processes {xk(·), k ∈ Z}, which serves as the mathematical description of
our system of particles, exists under some restriction to the initial set of starting particles
(condition 2�)). It is easy to see that the existence of limits in (1) ensures the fulfillment
of this restriction, if we consider the set suppμ0, where μt =

∑
i∈Z

δxk(t), as the initial set.
Second, (1) is an invariant of the system in H. In other words, the fact that μ0 satisfies
condition (1) implies that μt also satisfies (1). The reason is that the particles have no
time to strongly deviate from the initial position for a finite time interval, because their
motion is similar to the Brownian one. Therefore, our system of particles can be seen as
a random process in H. For condition (2), the explanation is analogous.

Then we introduce metrics on H and M. Let us consider the set of mappings from R

onto [0, 1],
Φ+ = {ϕ+

k , k ∈ N},
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where the functions ϕ+
k are twice continuously differentiable for any k from N, ϕ+

k (x) = 0
for x ≤ 0 or x ≥ k+1, ϕ+

k (x) = 1 for x ∈ [ 12 , k], and the sequence {(ϕ+
k )′′}k≥1 is uniformly

bounded. We denote
Φ− = {ϕ−

k : ϕ−
k (x) = ϕ+

k (−x), x ∈ R, k ∈ N}.
Let Q̃ = {gk, k ∈ N} be the set of functions that have the following properties:

1) for any k, the functions gk are twice continuously differentiable;
2) there exists a constant C such that, for any k and x,

|g′k(x)| < C, |g′′k (x)| < C;
3) for any μ, ν ∈ H, the relation 〈gk, μ〉 = 〈gk, ν〉 yields the equality of μ and ν.
Denote Q = Q̃ ∪ {ϕ+

k (x− k/2), k ∈ N}. For μ, ν ∈ H, we define

ρH(μ, ν) = d(μ, ν) + sup
k≥1

|〈ϕ−
k , μ〉 − 〈ϕ−

k , ν〉|
k

+ sup
k≥1

|〈ϕ+
k , μ〉 − 〈ϕ+

k , ν〉|
k

,

where

d(μ, ν) =
∑
k≥1

1
2k

[|〈fk, μ〉 − 〈fk, ν〉| ∧ 1] ,

and the functions ϕ+
k , ϕ

−
k , and fk belong to Φ+, Φ−, and Q, respectively.

We introduce a metric on M in the following way:

ρM((xn)n∈Z, (yn)n∈Z) = sup
n∈Z

|xn − yn|
1 + |n| .

The following proposition is valid.

Lemma 2. (H, ρH) and (M, ρM) are complete separable metric spaces.

In the spaces H and M, we construct the processes that describe the evolution of our
system.

Definition 1. A random process {μt, t ≥ 0} in H is called a process with heavy
diffusing particles, if there exists a system of processes {xk(t), k ∈ Z, t ≥ 0}, which
satisfies conditions 1◦) – 5◦) of Theorem 1 and, for any t ≥ 0,

(4) μt =
∑
k∈Z

δxk(t).

For the process {X(t), t ≥ 0} in M, the definition is analogous, if condition (4) is
replaced by

X(t) = (xk(t))k∈Z.

By virtue of Theorem 1 and the fact that the diffusing particles which started from
the support of the measure μ ∈ H do not deviate strongly from the initial position at an
arbitrary time t > 0, we can easily prove the following lemma.

Lemma 3. For an arbitrary measure μ ∈ H (X ∈ M), there exists a continuous process
with heavy diffusing particles {μt, t ≥ 0} ({X(t), t ≥ 0}), such that μ0 = μ (X(0) = X).

4. Martingale problem for a finite number of particles

In this section, we consider a process that describes the motion of a finite collection
of particles and solve the martingale problem for it. This will allow us to show that the
process with heavy diffusing particles is the unique solution of some martingale problem.

We introduce the following notation. Let Sn = {K = (α1, . . . , αp) : αi ⊆ {1, . . . , n},
p = 1, . . . , n} be the set of partitions of the set {1, . . . , n} such that

1) l < k for any k ∈ αi, l ∈ αi+1, and i = {1, . . . , n− 1};
2)

⋃p
i=1 αi = {1, . . . , n}.

By |K|, we denote the number p, and K(i) is an element in α ∈ K, for which i ∈ α. Let
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K ∈ Sn. We denote
SnK = {(x1, . . . , xn) ∈ R

n : xi = xi+1 ⇔ K(i) = K(i+ 1), i = 1, . . . , n− 1},
En = {(x1, . . . , xn) ∈ R

n : xi ≤ xi+1, i = 1, . . . , n− 1},
and

S−
K = {(β1, . . . , βq) : q = |K| − 1, ∀ i ∃ j βi ⊇ K(j)}.

Let Ĉ(Rn) be a class of continuous functions on Rn which are symmetric relative to
all permutations of coordinates and become zero at infinity. We take f ∈ Ĉ(Rn) and
K ∈ Sn. We define

fK(y1, . . . , y|K|) = f
∣∣
Sn

K

(x1, . . . , xn),

where x ∈ SnK , (x1, . . . , xn) = (y1, . . . , y1, . . . , y|K|, . . . , y|K|). Let D(n)
R

be a collection of
functions f from Ĉ(Rn) such that

1) for any K ∈ Sn, the function fK is twice continuously differentiable on E|K|;
2) for any K = (α1, . . . , αp) ∈ Sn, any derivative of the function fK , whose order is at

most two, can be extended to a continuous function on SnK ∪
(⋃

P∈S−
K
SnP

)
. Moreover,

for any P i = (α1, . . . , αi ∪ αi+1, . . . , αp) ∈ S−
K , the relation

(5) ΔKfK
∣∣
yi=yi+1

= ΔP ifP i ,

where ΔKfK(y1, . . . , yp) =
∑p
j=1

1
#αj

∂2

∂y2
j
fK(y1, . . . , yp), is valid.

On D(n)
R
, we consider the operator

G
(n)
R
f(x1, . . . , xn) =

1
2
Δnf(x1, . . . , xn),

where Δn is the n-dimensional Laplace operator.

Remark 1. For any function f ∈ D(n)
R

and any K ∈ Sn, the equality
Δnf

∣∣
Sn

K

= ΔKfK

holds. Here, the contraction is performed gradually, by descending from one face to
another until we reach SnK .

Then we consider the system {xk(·), k = 1, . . . , n}, which satisfies conditions 1◦) –
5◦) of Theorem 1, and denote X = (x1(·), . . . , xn(·)). The following lemma is valid.

Lemma 4. {X(t), t ≥ 0} is the unique solution (G(n)
R
,D(n)

R
)-martingale problem.

Proof. First, we show that {X(t), t ≥ 0} is a solution of the (G(n)
R
,D(n)

R
)-martingale

problem. By taking f ∈ D(n)
R

and applying the Itô formula to f(X(t)), we obtain

(6) f(X(t)) − f(X(0)) − 1
2

n∑
k,l=1

∫ t

0

∂2f

∂xk∂xl
(X(s))d〈xk(·), xl(·)〉s = martingale.

We now calculate

1
2

∫ t

0

n∑
k,l=1

∂2f

∂xk∂xl
(X(s))d〈xk(·), xl(·)〉s =

=
1
2

∫ t

0

n∑
k,l=1

∂2f

∂xk∂xl
(X(s))

1
mk(s)

I{xk(s)=xl(s)}ds =

=
1
2

∫ t

0

∑
K∈Sn

⎡⎣ n∑
k,l=1

∂2f

∂xk∂xl
(X(s))

1
mk(s)

I{xk(s)=xl(s)}

⎤⎦ ISn
K

(X(s))ds.
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Since the derivatives of the function fK for any K ∈ Sn have a continuous extension
onto SnK ∪

(⋃
P∈S−

K
SnP

)
, we can rewrite (6) in the form

f(X(t)) − f(X(0)) − 1
2

∫ t

0

∑
K∈Sn

ΔKfK(X(s))ISn
K

(X(s))ds =

= f(X(t)) − f(X(0)) − 1
2

∫ t

0

Δnf(X(s))ds = martingale.

Let us verify the uniqueness of the solution. For g ∈ Ĉ(Rn)∩C2,α(Rn) and λ > 0, we
consider the equation
(7) λf − Δnf = g,

whose solution is sought in the class D(n)
R
. Since f ∈ D(n)

R
is a continuous symmetric

function satisfying condition (5), relation (7) is equivalent to the collection of equations
of the elliptic type
(8) λhK(y) − ΔKhK(y) = gK(y), y ∈ Ep,

(9) hK(y1, . . . , yp)
∣∣
yi=yi+1

= hP i(y1, . . . , yi, yi+2, . . . , yp),

where K = (α1, . . . , αp) ∈ Sn, P i = (α1, . . . , αi ∪ αi+1, . . . , αp) ∈ S−
K , i = 1, . . . , p − 1,

and the functions f and h are connected by the equality h = f
∣∣
En . Since (8) is an elliptic

equation in Ep with the continuous boundary conditions (9), problem (8)–(9) has the
unique solution (see Theorem 6.13 [8]). The possibility of a continuous extension of the
derivatives of the functions fK up to the second order inclusively follows from Lemma
6.18 [8] on the regularity of the solution of an equation of the elliptic type near the
boundary. Hence, R(λ − Δ) is dense in Ĉ(Rn). Using the fact that G

(n)
R

satisfies the
maximum principle on the set D(n)

R
which is, in turn, dense in Ĉ(Rn), due to Theorem

4.4.1 [7], we obtain the uniqueness of the solution. �

We note that the phase space of a process with heavy diffusing particles is the space
of locally finite integer-valued measures on R. In order to solve the martingale problem
for it, we will use the previous lemma and will find the generator of the process

(10) μnt =
n∑
k=1

δxk(t)

in the space Hn = {μ ∈ H : μ(R) = n} with a metric of weak convergence .
Since we deal with the process, whose values are measures, it is convenient to define

the generator on polynomials which depend on measures, i.e., on functions of the form

Fϕ,m = 〈ϕ, μ⊗m〉 =
∫
ϕ(x1, . . . , xm)μ(dx1) . . . μ(dxm)

(see, e.g., [6], [4], [3], [7]). The role of derivatives will be played by derivatives in the
sense of Dawson [3], which are calculated by the rule

δFϕ,m(μ)
δμ(x)

=
m∑
j=1

∫
· · ·

∫
Rm−1

ϕ(x1, . . . , xj−1, x, xj+1, . . . , xm)
∏
i�=j

μ(dxi),

δ2Fϕ,m(μ)
δμ(x)δμ(y)

=

=
m∑
j=1

m∑
k=1

∫
· · ·

∫
Rm−2

ϕ(x1, . . . , xj−1, x, xj+1, . . . , xk−1, y, xk+1, . . . , xm)
∏
i�=j,k

μ(dxi).

We now write the generator for the process {μt, t ≥ 0}. It is composed from two parts.
The first and second parts are responsible, respectively, for the diffusion and for the
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sticking and the summation of masses. Hence, we have

(11) GFϕ,m(μ) =
1
2

∫∫
R2

∂2

∂x∂y

δ2Fϕ,m(μ)
δμ(x)δμ(y)

δx(dy)μ(dx) +
1
2

∫
R

d2

dx2

δFϕ,m(μ)
δμ(x)

μ∗(dx),

where μ∗ =
∑

y∈suppμ δy.
We now define the domain DHn for the as-introduced operator. Consider the class of

functions
(12) Φn = {ϕ : ∃ ϕ̃ ∈ D(n)

R
∃K ∈ Sn ϕ̃

∣∣
Sn

K

= ϕ}.
Let

D(n) = sp {Fϕ,m : ϕ ∈ Φn, m ≤ n} .

Lemma 5. The process {μnt , t ≥ 0}, that is given by formula (10) is the unique solution
of the

(
G,D(n)

)
- martingale problem.

Proof. We now verify that the process μnt is a solution of the
(
G,D(n)

)
-martingale prob-

lem. To this end, we take the function Fϕ,m ∈ D(n) and apply the Itô formula to
Fϕ,m(μnt ). We obtain

Fϕ,m(μnt ) =
∑

k1,...,km

ϕ(xk1 (t), . . . , xkm(t)) =
∑

k1,...,km

ϕ(xk1 (0), . . . , xkm(0))+

+
1
2

∑
k1,...,km

m∑
i,j=1

∫ t

0

ϕ′′
i,j(xk1 (s), . . . , xkm(s))d〈xki (·), xkj (·)〉s+

+
∑

k1,...,km

m∑
i=1

∫ t

0

ϕ′
i(xk1 (s), . . . , xkm(s))dxki (s).

We calculated∑
k1,...,km

m∑
i,j=1

∫ t

0

ϕ′′
i,j(xk1(s), . . . , xkm(s))d〈xki (·), xkj (·)〉s =

∑
k1,...,km

m∑
i,j=1

∫ t

0

ϕ′′
i,j(xk1 (s), . . . , xkm(s))

mki(s)
I{τki,kj

<s}ds =

=
m∑
i=1

∫ t

0

∑
k1,...,km

ϕ′′
i,i(xk1(s), . . . , xkm(s))

mki(s)
ds+

+
∑
i�=j

∫ t

0

∑
{k1,...,km}\{kj}

∑
kj

ϕ′′
i,j(xk1 (s), . . . , xkm(s))

mki(s)
I{τki,kj

<s}ds =

=
∫

R

d2

dx2

δFϕ,m(μ)
δμ(x)

(μnt )∗(dx) +
∫ t

0

∑
i�=j

∑
{k1,...,km}\{kj}

ϕ′′
i,j(. . . , xki(s), . . . , xki(s), . . .)ds =

=
∫

R

d2

dx2

δFϕ,m(μ)
δμ(x)

(μnt )
∗(dx) +

∫∫
R2

∂2

∂x∂y

δ2Fϕ,m(μ)
δμ(x)δμ(y)

δx(dy)μnt (dx).

The uniqueness of the solution follows from the fact that there exist the constants
{Ck, k = 1, . . . ,m} for any f ∈ D(n)

R
and the functions {Fϕk,k, k = 1, . . . ,m} ⊂ D(n)

such that

f(x) =
m∑
k=1

CkFϕk,k(μ) and G
(n)
R
f(x) =

m∑
k=1

CkGFϕk,k(μ),

where μ =
∑n
k=1 δxk

. �

Let D(n)
0 = sp{Fϕ,m ∈ D(n) : ϕ − has a compact support}. Lemma 5 and Theo-

rem 4.6.2 [7] yield the following proposition.
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Lemma 6. The process {μnt , t ≥ 0}, given by formula (10) is the unique solution of the(
G,D(n)

0

)
-martingale problem.

5. Martingale problem for the process with heavy diffusing particles

In this section, we will show that the process with heavy diffusing particles is the
unique solution of the martingale problem with a generator of the form (11) and will find
its domain. As was mentioned above, we are not able to derive the continuous processes
in R which would define the trajectories of particles from a continuous H-valued process.
But this is of importance for the proof of the uniqueness of the solution of the martingale
problem. Therefore, we are forced to seek solutions among measure-valued processes of
the form

∑
k∈Z

δxk(t) ∈ H, where xk(·) are continuous processes. In this connection, the
definition of the martingale problem for a process with heavy diffusing particles will be
different from that commonly accepted in the literature (see, e.g., [3]–[11]).

We begin from the domain of the generator. We take

D = sp{F ∈ D(n)
0 : n ∈ N}.

Definition 2. A strictly Markov continuous process {(xn(t))n∈Z, t ≥ 0} in M is called
a solution of the (G,D)-martingale problem, if

1) the measure-valued process μt =
∑

k∈Z
δxk(t) in H satisfies the following condi-

tion:

F (μt) − F (μ0) −
∫ t

0

G(F (μs))ds

is a martingale for an arbitrary function F ∈ D;
2) for each k and any function f ∈ C2([0,+∞)) which is bounded together with its

derivatives and satisfies the condition f ′′(0) = 0, the difference

f(xk+1(t) − xk(t)) −
1
2

∫ t

0

f ′′(xk+1(s) − xk(s))

[
1√

νk+1(s)
+

1√
νk(s)

]
ds

is a martingale, where
(13) νk(t) = #{i : xi(t) = xk(t)}.

Remark 2. Condition 2) of definition 2 guarantees that the processes xk(·) and xl(·) after
the coincidence do not come apart, i.e.,

(xk(t) − xl(t))I{t>τk,l} = 0.

We now formulate the theorem which is our main result.

Theorem 2. A process with heavy diffusing particles is the unique solution of the (G,D)-
martingale problem.

Proof. We verify that the process with heavy diffusing particles is a solution of the (G,D)
- martingale problem. For this purpose, we show firstly that it is a strictly Markov process
in M. Let U be the mapping that is constructed in Section 1. We take the collection of
standard Wiener processes {wk, k ∈ Z} and consider

X(x, s, t) = (xk(x, s, t))k∈Z = U(xk + wk(t) − wk(s))k∈Z t ≥ s

for any x ∈ M and s ≥ 0. We note that, for fixed s ≥ 0 and x ∈ M, the process
X(x, s, t + s) is a process with heavy diffusing particles. In view of the fact that the
particles do not strongly deviate from their initial positions for a finite time interval, it
is easy to verify that, at fixed s and t, X(x, s, s+ t) is stochastically continuous in x in
the space M. Since the space M is complete and separable, the stochastic continuity of
the process X(x, s, t) in x yields its measurability (see [12]).
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We take x ∈ M and consider X(·) = X(x, 0, ·). We can verify the Markov property of
the process X(·) in the standard way, by using the following relation

X(X(x, s, r), r, t) = X(x, s, t), s ≤ r ≤ t.

Let now τ be a finite Markovian moment relative to the filtration
(Fw

t )t≥0 = (σ(wk(s), s ≤ t, k ∈ Z))t≥0,

and f(x) = f̃(x−n, . . . , xn), where f̃ ∈ Cb(R2n+1). If τ is a discrete Markovian moment,
then, according to Proposition 3.1.3 [7], we have
(14) E[f(X(τ + t))|Fw

τ ] = E[f(X(t))|X(τ)].
In another case, we will approximate τ by a nonincreasing sequence of discrete Markov-

ian moments {τn}n≥1 and, by using (14) for τn, the continuity of the filtration (Fw
t )t≥0

on the right, and the stochastic continuity of πn ◦X(x, 0, t) in x, we will prove (14) for
τ. This is sufficient for the strict Markov property of the process X(·) in M to be valid.

We now verify condition 1) of definition 2. We take μt =
∑
k∈Z

δxk(t). Analogously to
the proof of Lemma 5, the function Fϕk,k ∈ D satisfies the relation

Fϕ,m(μt) − Fϕ,m(μ0) −
1
2

∫ t

0

Fϕ,m(μs)ds = α(t),

where α(t) =
∑
k1,...,km

∑m
i=1

∫ t
0 ϕ

′
i(xk1(s), . . . , xkm(s))dxki (s). We now show that α(t) is

a martingale. For convenience, we assume that m = 1. Hence,

α(t) =
∑
k∈Z

∫ t

0

ϕ′(xk(s))dxk(s).

We denote

αn(t) =
n∑

k=−n

∫ t

0

ϕ′(xk(s))dxk(s).

{αn}n≥1 is a sequence in the space of continuous square-integrable martingale with
the metric

ρ(α, β) =
∞∑
n=1

1
2n

(√
E

∫ n

0

(α(t) − β(t))2dt ∧ 1

)
.

Consider

E

∫ T

0

(αn(t) − αn+p(t))2dt = E

∫ T

0

⎛⎝ n+p∑
|k|=n+1

∫ t

0

ϕ′(xk(s))dxk(s)

⎞⎠2

dt =

=
∫ T

0

n+p∑
|l|,|k|=n+1

(
E

∫ t

0

ϕ′(xk(s))ϕ′(xl(s))d〈xk(·), xl(·)〉s
)
dt =

= E

∫ T

0

∫ t

0

n+p∑
|l|,|k|=n+1

ϕ′(xk(s))ϕ′(xl(s))√
mk(s)ml(s)

I{s≥τk,l}dsdt =

= E

∫ T

0

∫ t

0

n+p∑
|k|=n+1

ϕ′(xk(s))2

mk(s)
mk(s)dsdt = E

∫ T

0

∫ t

0

n+p∑
|k|=n+1

ϕ′(xk(s))2dsdt.

Since the function ϕ′ has a compact support, and {μt, t ≥ 0} ∈ H, we have ρ(αn, α) →
0. This implies that α is a continuous square-integrable martingale. Condition 2) of the
definition can be verified analogously.

We prove the uniqueness in the following way. Let

μt =
∑
k∈Z

δxk(t)
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is a solution of the martingale problem for (G,D) . Consider the process νn given by
equality (13). We note that xk(t) converges monotonically to infinity for any t ∈ [0, T ].
Like the proof of the Dini theorem about a monotonically increasing sequence of continu-
ous functions on an interval, we can analogously verify that the process νn(t) is bounded
with probability 1 on [0, T ]. Remark 2 implies that it does not decrease for any n ∈ Z.

We now separate a finite collection G of atoms of a measure μ0 which are positioned
in succession at xn1(0), . . . , xn2(0). We take τ ′k, k > n2, to be the times of the “sticking”
of xn2(t) and xk(t), and let τ ′′k , k < n1, be the times of the “sticking” of xn1(t) and
xk(t). Since νn(t) is a nondecreasing bounded process, {τ ′k} and {τ ′′k } are nondecreasing
sequences which converge to infinity with probability 1. We define {σk, k ≥ 1} as the
union of {τ ′k} and {τ ′′k } sorted in the ascending order. For a fixed T > 0, we denote
σ′
k = σk ∧ T, k ≥ 1. Let

δ = [xn1(0) − xn1−1(0)] ∧ [xn2+1(0) − xn2(0)], δ̃ =
δ

3
and

θ1,1 = inf{t : μt([xn1−1(0) + δ̃, xn1(0) − δ̃]) > 0}∧
∧ inf{t : μt([xn2(0) + δ̃, xn2+1(0) − δ̃]) > 0} ∧ T.

Consider

μ1,1
t =

∑
k∈n1,...,n2

δxk(t).

We take Fϕ,m ∈ D(n)
0 , where n = #G, and verify that

Fϕ,m(μ1,1
t∧θ1,1

) −
∫ t∧θ1,1

0

G(Fϕ,m(μ1,1
s ))ds

is a martingale. Consider a function ψ ∈ D such that ψ(x1, . . . , xn) = ϕ(x1, . . . , xn) for

xi ∈
[
xn1(0) − δ̃, xn2(0) + δ̃

]
and ψ(x1, . . . , xn) = 0 for

xi /∈
[
xn1−1(0) + δ̃, xn2+1(0) − δ̃

]
,

where i = 1, . . . , n. We have that

Fϕ,m(μ1,1
t∧θ1,1

) −
∫ t∧θ1,1

0

G(Fϕ,m(μ1,1
s ))ds = Fψ,m(μt∧θ1,1) −

∫ t∧θ1,1

0

G(Fψ,m(μs))ds

is a martingale.
Let now {wk, k ∈ Z} be some system of independent standard Wiener processes

which is independent of {xk(·), k ∈ Z}. In the standard way, we transfer the processes
wk, k ∈ Z and xk(·), k ∈ Z into a single probability space and take

(yk(·))k=1,...,n = Fn((xk(θ1,1) + wk(·))k=1,...,n).
Then the random process

μ̂t = μ1,1
t I{t<θ1,1} +

n∑
k=1

δyk(t−θ1,1)I{t≥θ1,1}.

is a solution of the
(
G,D(n)

0

)
-problem of martingales. This result and Lemma 6 imply

that the family {xn1(·), . . . , xn2(·)} satisfies the conditions of Theorem 1, if we replace t by
t∧θ1,1 in 1◦)–5◦). At the time θ1,1, the particles, which have started from G, change their
position Fθ1,1 in a measurable manner. Now, these particles form the set G1,1. We now
use the strict Markov property of the input process {(xn(t))n∈Z, t ≥ 0}. The particles,
which have started from G1,1, also behave themselves in the corresponding manner until
the time θ1,2 which is constructed analogously to θ1,1, etc. Since xk(·) are continuous
processes, and, until the time σ′

1, the trajectories xn1−1(·), xn1(·) and xn2(·), xn2+1(·) do
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not intersect, we have θ1,k → σ′
1 as k → ∞. Therefore, the system {xn1(·), . . . , xn2(·)}

satisfies conditions 1◦)–5◦) of Theorem 1 until the time σ′
1. Then, by virtue of the strict

Markov property, we start our reasoning again after the time σ′
1. We obtain again that the

system {xn1(·), . . . , xn2(·)} satisfies conditions 1◦)–5◦) until the time σ′
2, etc. In this case,

only a finite number of times σ′
k are different from T with probability 1. The presented

consideration implies that the trajectories of particles, which have started from G, are
ordered local continuous martingales with required characteristics. Since G is arbitrary,
the trajectories of all particles, which started from atoms of the measure μ0, possess the
same properties. By virtue of Theorem 1, the distribution for such a system is unique.
Theorem 2 is proved. �
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