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S. ALVAREZ-ANDRADE

PERTURBED SELF-INTERSECTION LOCAL TIME

We consider a symmetric random walk related to independent Rademacher random
variables. Our aim is to study some modified versions of the so called self-intersection
local time of this random walk. The modified versions of the self-intersection local
time are obtained by introducing a time t and a sequence of independent with the
same distribution uniform on (0, 1) random variables Yi’s, independent of the random
walk. In this work, we study a distance between the standard self-intersection local
time of the random walk and some modified versions (perturbed) of it. We also state
a two-parameter strong approximation for the centered local time of the hybrids of

empirical and partial sums processes by a process defined by a Wiener sheet combined
with an independent Brownian motion.

1. Introduction

Let S = {S(n)}n≥1 be the simple symmetric random walk related to a sequence

{εi}i≥1 of independent Rademacher random variables i.e. εi = S(i) − S(i − 1) with

P (εi = 1) = P (εi = −1) = 1/2 and let us define the process U(., t) = {U(n, t)}n≥1 for

0 ≤ t ≤ 1, where U(n, t) is given by

U(n, t) =

n∑
j=1

εj1{Yj≤t},(1)

where 1A denotes the set indicator function and {Yi}i≥1 is a sequence of independent

and identically distributed (i.i.d.) uniform on (0, 1) random variables, independent of
the random variables εi’s (i ≥ 1).
Let us define also the process A = {An(t), 0 ≤ t ≤ 1, 1 ≤ n <∞} given by

An(t) =
U(n, t)√

n
,(2)

this last process is known in the literature as the hybrids of empirical and partial sums
processes, see for instance [14] and [1].
Let f(x), x ∈ Z be a real valued function. It is well known that we have the following
relation

n∑
i=1

f(S(i)) =

∞∑
x=−∞

f(x)Lx
n(S), n = 1, 2, . . .

where Lx
n(S) denotes the local time of S given by

Lx
n(S) =

n∑
i=1

1{S(i)=x}.(3)
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The self-intersection local time of the random walk S is given by

In(1) =
∑
x∈Z

(Lx
n(S))

2.(4)

Let us mention that one of the best recent references on intersections local times for
random walks on lattices of Rd and for Brownian motions is the book of Chen [4], see
also [19] and [20].

We will restrict ourselves to the one-dimensional case i.e. the random walk on Z and
we will denote by log t = log(t∨ e), log2 t the two-iterated logarithm i.e. log2 t = log log t
and [x] denote the integer part of some real x.

The first aim of this paper is to evaluate the difference between the standard self-
intersection local time of S (see (4)) and some modified version of it. The second aim is
considering the local time of the process A given by ξxt (An) (see (8)), to state a strong
approximation result for the centered local time process given by ξxt (An) − ξ0t (An), in
terms of a two-parameter Gaussian process. This kind of approach is inspired from [7],
see also [12].

In the first aim three kinds of modified version are in studying. The first one, denoted
by In(t), consider the intersection local time related to S and the process U(., t) and is
defined by

In(t) =
∑∑

1≤i,j≤n
1{U(i,t)=S(j)}, t ∈ (0, 1).(5)

The second one, denoted by Jn(t), consider the intersection local time of Sn(t) =
∑[nt]

i=1 εi
and U(n, t) for 0 < t < 1 and is defined by

Jn(t) =
∑
x∈Z

Lx
n(S(.t)L

x
n (U(., t)) =

∑
x∈Z

∑∑
1≤i,j≤n

1{Si(t)=U(j,t)=x}(6)

where

Lx
n(S(.t)) = # {i : 1 ≤ i ≤ n, Si(t) = x} , x = 0,±1,±2, . . . , n = 1, 2, . . . ,

and

Lx
n(U(., t)) = # {i : 1 ≤ i ≤ n, U(i, t) = x} , x = 0,±1,±2, . . . , n = 1, 2, . . . .

Roughly speaking, Jn(t) gives the number of points in common to Sn(t) and U(n, t).
Finally, in the third one, we consider the modification denoted by Kn(t(n)), where

Kn (t(n)) =
∑
x∈Z

(Lx
n(U(., t(n))))2(7)

for a sequence {t(n)}n≥1, given by t(n) = 1 − n−1+ε, remark that t(n) → 1 as n → ∞.
In the following section, we explain the choice of this sequence.

The second aim is, by taking in account the two-parameters to give a strong approx-
imation result for the centered local time of the hybrids of empirical and partials sums
processes by a process defined by a Wiener sheet combined with an independent Brown-
ian motion. This is based on the approach of Csáki et al. [7] for the random walk local
time approximated by a Wiener sheet combined with an independent Brownian motion
(see also reference therein) and on Bass and Khoshnevisan [2] approach for the local time
of the empirical process.

Let us now recall some facts related to the processes that are in studying. The process
U(., t) given in (1) can be obtained from the process

Ũ(., t) =

⎧⎨⎩Ũ(n, t) =
∑

1≤i≤n

εi1{Xi≤t},

⎫⎬⎭
n≥1

, −∞ < t <∞



SELF-INTERSECTION LOCAL TIME 47

where the sequence {Xi}i≥1 are i.i.d. random variables with common distribution func-
tion F , independent of the sequence {εi}i≥1. By [14], p.5, we have without loss of
generality, there is a sequence of i.i.d. random variables {Yi}i≥1 uniform on (0, 1) such
that Xi = Q(Yi), with Q(y) = inf {x : F (x) ≥ y} i.e. the quantile function of F , then

we can consider U(., t)(0 ≤ t ≤ 1) in the place of Ũ(., t)(−∞ < t <∞).
Let us define the local time of An(t) by

ξxt (An) =
1√
n

∑
s≤t

1{An(s)=x}, t ∈ [0, 1], x ∈ R.(8)

In the light of the strong approximation given by Diebolt in [13], we define the following
local time

ξ̃xt (Wn(Fn)) =

∫ 1

0

δst (Fn)dsL
x
s (Wn),

where Wn(t) =W (nt)/
√
n with W is a standard Wiener process and δst (Fn) denote the

local time at a level s up to t of the empirical distribution function Fn(t) defined by

δxt (Fn) =
1√
n

∑
s≤t

1{Fn(s)=x}.(9)

Putting Vn(t) =
∑[nt]

i=1 εi/
√
n, let us define the associated local time νxt (Vn) by

νxt (Vn) =

[nt]∑
j=1

1{∑j
i=1 εi=[

√
nx]}, x ∈ R.(10)

It is not difficult to see that νx1 (Vn), can be written as

νx1 (Vn) = L
[
√
nx]

n (S)(11)

where L
[
√
nx]

n (S) is the local time of Sn = ε1+· · ·+εn for n ≥ 1, i.e. the simple symmetric
random walk defined by the random variables ε′is (see (3)).

Let us recall that An(t)
d
= Vn (Fn(t)). By this last equality (in distribution) and from

the definition of the local time ξxt (An), we have Vn(Fn(t)) = x if Fn(t) is the return time
to x of Vn, for x = 0,±1/

√
n,±2/

√
n, . . . . Consequently, ξxt (An) can be written as

ξxt (An) =

∫ 1

0

δst (Fn)dsν
x
s (Vn),(12)

for 0 ≤ t ≤ 1 and x ∈ R, see [1].
Bass and Khoshnevisan in [2] (section 4) stated that: on an appropriate probability

space, for any ε > 0, almost surely

sup
0≤t≤1

sup
x∈R

|Lx
t (Ξn)− δxt (αn)| = o

(
n−1/10+ε

)
,(13)

where Lx
t (Ξn) is the local time of the Kiefer process Ξ and δxt (αn) is the local time of

the empirical uniform process associated to the sequence {Yi}i≥1 of the i.i.d. uniform

on (0, 1) random variables. By a Kiefer process Ξ = {Ξ(s, t); s ≥ 0, t ∈ [0, 1]}, we mean
a two-parameter centered Gaussian process with covariance given by

E [Ξ(s, u)Ξ(t, v)] = (s ∧ t)(u ∧ v − uv),

see [10] for further information and let Ξn(.) = Ξ(n, .).
Our paper is organized as follows. In the following paragraphs of this section, we

recall some results related to self-intersection local time. Section 2, is devoted to state
our results, namely giving some properties of the local time of the process U(., t), and
giving upper bound in the asymptotic behavior of In(1) and In(t), we will also state upper
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bound results for the difference between In(1) and In(t) for each t ∈ (0, 1) and for the
difference between In(1) and Jn(t). Moreover, we study ηn(t(n)) = |In(1)−Kn(t(n))|
where t(n) = 1− n−1+ε. For this choice of t(n), we obtain an upper bound for ηn(t(n)).
The last result of this section, is the strong approximation for the centered local time of
the hybrids of empirical and partials sums processes. Finally, Section 3 is devoted to the
proof of our results.

Let us recall that the asymptotic behavior of self-intersection local times contributes
in a fundamental way to the limit theorems for the random walk in random sceneries
(see [5]). Namely, consider the random sequence

Rn =

n∑
k=1

ξ(S(k)), n = 1, 2, . . .

where ξ(x) is often assumed to be an independent family of i.i.d. random variables with
mean zero and strong enough integrability, independent of the random walk S. It is well
known that

Rn =
∑
x∈Z

ξ(x)Lx
n(S), n = 1, 2, . . . .

Remark that conditionally on Lx
n(S), Rn has a variance given by the quadratic form∑

x∈Z (L
x
n(S))

2
, which is essentially twice of self-intersection local time of {S(n)}n≥0.

In 2009, Chen and Khoshnevisan studied the random quantity called a random Hamil-
tonian of the so-called charged polymer-model defined by

Hn =
∑∑

1≤i<j≤n
qiqj1{S(i)=S(j)}(14)

where {qi}∞i=1 is a collection of i.i.d. mean-zero random variables (random charges) with
finite variance σ2 > 0 and E[q61 ] < ∞ and where S = {S(i)}∞i=1 denote a random walk

on Zd with S0 = 0. Each realization of S corresponds to a possible polymer path.
The random variables q1, q2, . . . are random charges that are placed on a polymer path
modeled by the trajectories of S. In the last decades the model of charged polymer
received an enormous amount of attention, see for instance [5], [6] and [15] (see also
references therein).
Some estimates stated on Chen and Khoshnevisan (2009) are for instance (cf. Theorem
2.4. of [6]) :

1

n

∑
x∈Zd

(Lx
n(S))

2 → 1 + 2
∞∑
k=1

P (S(k) = 0) in probability (n→ ∞).(15)

Remark that we can also write In(1) given in (4) as

In(1) =
∑∑

1≤i,j≤n
1{S(i)=S(j)}(16)

and (15) implies that a random walk S on Zd is recurrent if and only if In(1)/n → ∞
(n → ∞) in probability. Some other motivations for the study of intersection local
times are given by Chen on [5] (see also references, therein), namely by giving results of
type large deviations (section 4, d=1) and the law of the iterated logarithm (LIL) for
intersection local times and related models. As mentioned below the book of Chen [4]
provides un account of recent results on this topic.

2. Results

We will assume without loss of generality that all random variables and processes are
defined on the same probability space.



SELF-INTERSECTION LOCAL TIME 49

Recall that U(., t) = {U(n, t)}n≥1 for 0 ≤ t ≤ 1, where U(n, t) is given by

U(n, t) =

n∑
j=1

εj1{Yj≤t},

where

• (C1) the random variables εi = S(i) − S(i − 1), (i ≥ 1) are i.i.d., with P (εi =
1) = P (εi = −1) = 1/2,

• (C2) the random variables Yi, (i ≥ 1) are i.i.d. of law uniform on (0, 1),
• (C3) the random variables Yi’s and εi’s are independent.

In the following Lemma, we establish some results related to the local time of U(., t)
denoted by Lx

n(U(., t)) and defined by

Lx
n(U(., t)) =

n∑
i=1

1{U(i,t)=x}.(17)

This Lemma is in the same vein as Lemma 2.2 of [6].

Lemma 2.1. Assume the conditions (C1), (C2) and (C3) for the sequences {εi}i≥1 and

{Yi}i≥1. Then ∑
x∈Z

E[Lx
n(U(., t))] = n

and ∑
x∈Z

E[|Lx
n(U(., t))|2] = n+ 2

n−1∑
k=1

(n− k)P (U(k, t) = 0).

In the following results, all the rates of convergence are given as n→ ∞.
In the next Lemma, we study in an almost surely sense the behavior of In(1), namely
by giving an upper bound. Remark that this case corresponds almost surely to the
self-intersection local time of the random walk S related to the sequence of the i.i.d.
Rademacher random variables {εi}i≥1. This result is obtained by standard arguments
then we will give only the main ideas of the proof.

Lemma 2.2. Under the assumptions of Lemma 2.1, we have with probability one

In(1) = n3/2+o(1).

In the following Lemma we state the behavior (giving an upper bound) of the inter-
section local time in the case 0 < t < 1, i.e. In(t) given by (5).

Lemma 2.3. Assume the conditions of Lemma 2.1 and let In(t) be as in (5). Then, we
have

In(t) = n3/2+o(1) a.s.

In the case t = 0, In(0) can be seen as a number of visits to zero of the symmetric
random walk defined by S. We state the behavior of the difference between In(1) and
In(0) in the following Lemma.

Lemma 2.4. Under the same assumptions of Lemma 1, we have

In(1)− In(0) = n3/2+o(1), a.s.

Our main result is given in the following theorem, where we state a result giving a
rate for In(1)− In(t) for 0 < t < 1. Recall that In(t) is giving by

In(t) =
n∑

i=1

n∑
j=1

1{S(i)=U(j,t)},
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and as explained in Section 1, we can consider

In(t) =
∑
x∈Z

Lx
n(S)L

x
n (U(., t)) =

∑
x∈Z

∑∑
1≤i,j≤n

1{S(i)=U(j,t)=x}(18)

where

Lx
n(S) = # {i : 1 ≤ i ≤ n, S(i) = x} , x = 0,±1,±2, . . . , n = 1, 2, . . . ,

and Lx
n (U(., t)) is given by (17), see also (24).

We will write in the following Sn in the place of S(n) and Sn(t) =
∑[nt]

i=1 εi, where [x]
denote the integer part of the real x i.e. [x] ≤ x < [x] + 1. Remark that Sn = Sn(1).

Theorem 2.1. Under the assumptions of Lemma 2.1. Let In(1) be the self-intersection
local time of the random walk S, In(t) be the intersection local time given in (18) and let
dn = |In(1)− In(t)|, for 0 < t < 1. Then, we have

dn = n3/2+o(1) a.s.

Now, we consider the intersection local time of Sn(t) and U(n, t) for 0 < t < 1. Recall
that, we have in this case (see (6))

Jn(t) =
∑
x∈Z

Lx
n(S(.t)L

x
n (U(., t)) =

∑
x∈Z

∑∑
1≤i,j≤n

1{Si(t)=U(j,t)=x}

where

Lx
n(S(.t)) = # {i : 1 ≤ i ≤ n, Si(t) = x} , x = 0,±1,±2, . . . , n = 1, 2, . . . .

Theorem 2.2. Assume the conditions of Lemma 2.1. Let In(1) be the self-intersection
local time of the random walk S, Jn(t) be the intersection local time given in (6) and let
δn(t) = |In(1)− Jn(t)|, for 0 < t < 1. Then, we have with probability one

δn = n3/2+o(1).

In the following theorem, our aim is to study the behavior of

ηn(t(n)) = |In(1)−Kn(t(n))|
(see (7)) with the sequence {t(n)}n≥1 such that t(n) = 1 − n−1+ε. The choice of this
sequence is explained, because we need to use a result on increments for local times for
the random walk S.

Theorem 2.3. Assume the conditions of Lemma 2.1. Let In(1) be the self-intersection
local time of the random walk S and let Kn(t(n)) be the self-intersection local time of
the process U(., t(.)) (see (7)). Moreover, let t(n) = 1 − n−1+ε, 0 < ε < 1 and let
ηn(t(n)) = |In(1)−Kn(t(n))|. Then, we have with probability one

ηn(t(n)) = O
(
nε/2+1 ((1− ε) logn))1/2

)
.

Finally, in the next theorem we state our strong approximation result. This result is
in the same vein as these given by [7] (see also [12]) on the asymptotic Gaussian behavior
of the centered two-time parameter local time process associated to the random walk,
given by {

Lk
n(S)− L0

n(S), k = 0, 1, . . . , n = 1, 2, . . .
}

via appropriate strong approximations in terms of a Wiener sheet and an independent
standard Brownian motion. By a Wiener sheet, we mean a two-parameter Gaussian pro-
cess {W (x, y), x ≥ 0, y ≥ 0} with mean 0 and covariance function EW (x1, y1)W (x2, y2) =
(x1 ∧ x2)(y1 ∧ y2).
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Theorem 2.4. For the process A (cf. (2)) related to sequences {Yi}i≥1 and {εi}i≥1

satisfying conditions (C1), (C2) and (C3) and on a suitable probability space on which
one can define all random variables and process we need, for x ∈ (

n−1/2, n−1/3+ε
)
, with

ε > 0, we have a.s.∣∣∣∣ξxt (An)− ξ0t (An)−
∫ 1

0

Ls
t (Kn) dsG(x, ν0

s (Un))

∣∣∣∣ = O
(
x5/4n5/4+6ε/8 (log2 n)

1/2
)
,

where G(x, y) = W (x, y) +W (x − 1, y) −W ∗(y), x ≥ 1, y ≥ 0 and W ∗ is a Brownian
motion independent of the Wiener sheet {W (x, y), x ≥ 0, y ≥ 0}.

3. Proofs.

Throughout this section we will write Si in the place of S(i).

• Proof of Lemma 2.1. From the definition of the local time of U(., t), we have

E [Lx
n(U(., t))] = E

[
n∑

i=1

1{U(i,t)=x}

]
=

n∑
i=1

P (U(i, t) = x) .

We can sum this expression over all x ∈ Z to find∑
x∈Z

E [Lx
n(U(., t))] =

n∑
i=1

∑
x∈Z

P (U(i, t) = x) = n.

Moreover, ∑
x∈Z

E
[
|Lx

n(U(., t))|2
]

=
∑

1≤i≤n

∑
x∈Z

P (U(i, t) = x)

+2
∑
x∈Z

∑
1≤i<j≤n

P (U(i, t) = x)P (U((j − i), t) = 0)

= n+ 2

n−1∑
k=0

(n− k)P (U(k, t) = 0) .

This proves the Lemma and the proof is complete.
• Proof of Lemma 2.2. Remark that, in this case we have to deal almost surely
with the self-intersection local time of S. Then, we have

In(1) =

n∑
i=1

n∑
j=1

1{Si=U(j,1)} =

n∑
i=1

n∑
j=1

1{Si=Sj)}

=

n∑
i=1

1{Si=Si} + 2
∑∑

1≤i<j≤n
1{Si=Sj}

= n+ 2
∑∑

1≤i<j≤n
1{Si=Sj}(19)

by Lemma 2.3 of Hu and Khoshnevisan (2009)(case d = 1), we have that the
second term in the right-hand side in the last equality satisfies with probability
one∑∑

1≤i<j≤n
1{Si=Sj} =

1

2

∫ +∞

−∞
(Lx

n(W ))
2
dx+ n5/4+o(1).(20)

where Lx
n(W ) denote the local time at a level x of the one-dimensional standard

Brownian motion given by W = {W (t), t ≥ 0}, starting from t = 0, W is a real
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valued mean zero Gaussian process with covariance E [W (t)W (s)] = t ∧ s.
Then, we have finally that In(1) satisfies almost surely

In(1) = n+

∫ ∞

−∞
(Lx

n(W ))
2
dx + n5/4+o(1)

= n3/2+o(1),

where we have used also Lemma 2.2 case(d=1) of Hu and Khoshnevisan (2009),
see also [3] and [4], Theorem 4.4.1., p.121 for the lim sup (resp. lim inf) result
(resp. exercise 4.5.1, p.132) for the L2 norm of the local time.
This completes the proof of the Lemma.

• Proof of Lemma 2.3. We begin by recalling that U(n, t)
d
= SNn(t) where

d
=

denote the equality in law or distribution whereNn(t) =
∑n

i=0 1{Yi≤t}. Moreover,
from the definition of the local time Lx

n(U(., t)) (cf. (17)), we have SNn(t) = x if
Nn(t) (≤ n) is the return time to x of Sn, for x = 0,±1,±2, . . . .
By a direct argument we have in an almost surely sense∑

x∈Z

Lx
n(S)L

x
n (U(., t)) ≤ sup

x∈Z
Lx
n(S(N.(t)))

∑
x∈Z

Lx
n(S),(21)

now, using that
∑

x∈ZL
x
n(S) = n, we must evaluate supx∈ZL

x
n(S(N.(t))) in order

to obtain an upper bound (a.s.) in (21).
By the Kesten’s law of the iterated logarithm (see [18] and [4] p.295), we have

lim sup
n→∞

supx∈Z L
x
n(S)√

2n log2 n
) = 1, a.s.(22)

In the light of (22) jointly with the law of large numbers given Nn(t)/n→ t, a.s.,
we have

sup
x∈Z

Lx
n(S(N.(t))) =

supx∈Z Lx
n(S(N.(t)))√

2Nn(t) log2 Nn(t)
×

√
2Nn(t) log2 Nn(t)√

2n log2 n
×

√
2n log2 n

= O
(
(nt log2 n)

1/2
)
a.s.,

then the right hand side of (21) is upper bounded by n3/2 (2t log2 n)
1/2 a.s.

Now, let us remark that∑
x∈Z

(
Lx
[nt](S)

)2

L[nt]
n (N.(t)) ≤

∑
x∈Z

Lx
n(S)L

x
n (U(., t)) .(23)

This last inequality is also obtained from the fact that Lx
n

(
SNn(t))

)
corresponds

to the local time of the process SNn(t), given by

Lx
n (U(., t)) =

∑
y∈Z

Ly
n(N.(t))L

x
y(S),(24)

Then, it is direct to obtain the lower bound given in (23). By the same argument
as in the first part of the proof, we obtain that∑

x∈Z

(
Lx
[nt](S)

)2

L[nt]
n (N.(t)) = n3/2+o(1).(25)

By using (23) and (25), we have the announced result.

Remark 3.1. By using the law of the iterated logarithm (LIL) for S, we have

that Lx
n(S) = 0, a.s. for x >

√
2n log2 n and in the same way, we have that

Lx
n (U(., t)) = 0, a.s. for x >

√
2n log2 n.
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• Proof of Lemma 2.4. The proof of this Lemma is obtained from Lemma 2, by
using the fact that

In(0) = L0
n(S),

and by using the Kesten’s LIL i.e. L0
n(S) = O

(
(n log2 n)

1/2
)
, a.s.

• Proof of Theorem 2.1. Recall that dn(t) is given by

dn(t) =
∣∣∣∑∑

1≤i,j≤n
1{Si=U(j,1)} −

∑∑
1≤i,j≤n

1{Si=U(j,t)}
∣∣∣

=
∣∣∣∑∑

1≤i,j≤n
1{S(i)=S(j)} −

∑∑
1≤i,j≤n

1{Si=U(j,t)}
∣∣∣

= d(1,n) − d(2,n)

where d(1,n) =
∑∑

1≤i,j≤n1{S(i)=S(j)} and d(2,n) =
∑∑

1≤i,j≤n1{Si=U(j,t)}.
Now, the first term denoted by d(1,n) corresponds to the self-intersection local

time of the random walk S. By Lemma 2.2, we have that

d(1,n) = n3/2+o(1), a.s.

The second term denoted by d(2,n), satisfies

d(2,n) =
∑∑

1≤i,j≤n
1{Si=U(j,t)} = t1/2n3/2+o(1), a.s.,

the last equality is obtained as in the proof of Lemma 2.3.
Then

dn = n3/2+o(1), a.s.

Then we have obtained the announced result.
• Proof of Theorem 2.2. Recall that the behavior of In(1) is given in Lemma
2. Now, let us recall that Jn(t), consider the intersection local time of Sn(t) =∑[nt]

i=1 εi and U(n, t) for 0 < t < 1 and is defined by

Jn(t) =
∑
x∈Z

Lx
n(S(.t))L

x
n (U(., t)) =

∑
x∈Z

∑∑
1≤i,j≤n

1{Si(t)=U(j,t)=x}

where

Lx
n(S(.t)) = # {i : 1 ≤ i ≤ n, Si(t) = x} , x = 0,±1,±2, . . . , n = 1, 2, . . . .

In the same way as in the proof of Lemma 2.3, we obtain the behavior of Jn(t).
This concludes the proof of the Theorem.

• Proof of Theorem 2.3. Our aim here is to give an upper bound for the distance
ηn(t(n)) defined by

ηn(t(n)) =

∣∣∣∣∣∑
x∈Z

(
(Lx

n(S))
2 − (Lx

n(U(., t(n))))
2
)∣∣∣∣∣ ,

where
∑

x∈Z (L
x
n(S))

2 is the self-intersection local time of the random walk S (see

(4)), and
∑

x∈Z (L
x
n(U(., t(n))))

2
the self intersection local time of the process

U(., t) (see (7)). Remark that ηn(t(n)) satisfies that

ηn(t(n)) ≤ η1,n × η2,n,

where
η1,n = sup

x∈Z
|Lx

n(S)− Lx
n(U(., t(n)))|

and
η2,n =

∑
x∈Z

(Lx
n(S) + Lx

n(U(., t(n)))) .

In the following, we will study separately the behavior of η1,n and η2,n.
We begin by the evaluation of the first term denoted by η1,n. As in the proof of
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Lemma 2.3, by using that U(n, t)
d
= SNn(t), Remember that as in the proof of

Lemma 2.3, we have SNn(t) = x if Nn(t(n)) (≤ n) is a return time to x of S, for
x = 0,±1,±2, . . . . Then, η1,n can be seen as

sup
x∈Z

∣∣∣Lx
Nn(t(n))+hn

(S)− Lx
Nn(t(n))

(S)
∣∣∣

where, we have replaced Lx
n(S) by L

x
Nn(t(n))+hn

(S) with hn = n−Nn(t(n)) and

Lx
n(SNn(t)) by L

x
Nn(t(n))

(S).

From Theorem 1 of Csáki and Földes (1983) (see also Theorem 11.13 of [20]), we
have with probability one

sup
x∈Z

∣∣∣Lx
Nn(t(n)+hn

(S)− Lx
Nn(t(n))

(S)
∣∣∣ = O

(√
hn

(
log

n

hn
+ 2 log2 n

))
(26)

where we take hn = [n(1 − t(n))] a.s. The choice of the above hn is motivated
by the fact that h(n) as in Theorem 1 of Csáki and Földes (1983) is an integer
value non-decreasing function of n, under condition that hn/n is non-increasing
and such that limn→∞ hn/ logn = ∞. Moreover roughly speaking, we obtain
hn = n − Nn(t(n)) in (26), but by the Khintchine’s LIL, we know that with
probability one

|Nn(t(n))− nt(n)| ≤
√
2n log2 n,

where nt(n) → n. This explains our choice of hn = [n(1 − t(n))] a.s.
Now, in the light of (26) and replacing t(n), we have hn = nε(1 + o(1)), a.s.,
then we have

η1,n = O
(
nε/2 ((1− ε) logn) + 2 log2 n)

1/2
)
, a.s.(27)

Now, we study the behavior of the second term denoted by η2,n, namely giving
an upper bound for this. Recall that in this case, we must evaluate

η2,n =
∑
x∈Z

(
Lx
n(S) + Lx

n(SNn(t))
)
.

As in the proof of Theorem 2.1, we have that Lx
n(S(Nn(t(n))) ≤ Lx

n(S) then

η2,n ≤ 2
∑
x∈Z

Lx
n(S),

we have finally

η2,n = O (n) , a.s.(28)

In the light of (27) and (28), we obtain finally that with probability one

ηn(t(n)) = O
(
nε/2+1 ((1− ε) logn))

1/2
)
.

This last relation gives us the announced result.

Remark 3.2. . By the approximations for the hybrid process given by Horváth
(2000) and by Theorem 1.2.1 of Csörgő-Révész (1981), for kn = n(1− t(n)) = nε,
we have with probability one

sup
0≤t≤n−kn

sup
0≤s≤n−kn

|W (t+ s)−W (t)| = O

(√
2kn

(
log

n

kn
+ log2 n

))
.
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Proof of Theorem 2.4.
The proof of the theorem is a direct consequence of the three following Lemma’s.
Remark that the centered two-time parameter local time process ξxt (An) − ξ0t (An) can
be written as

ξxt (An)− ξ0t (An) =

∫ 1

0

δst (Fn)ds
(
νxs (Un)− ν0s (Un)

)
.(29)

Now, we will establish an almost sure representation of the local time δ1t (Fn).

Lemma 3.1. Under condition (C2), let δ1t (Fn) given by (9) and let Ξ be a Kiefer process
and Lx

t (Ξn) be the related local time (see (13)), all defined on an appropriate probabilty
space. Then

δ1t (Fn) = L
√
nμ

t (Ξn) + o

(
1

n1/10−ε

)
, a.s.

for all μ ∈ (0, 1).

Proof of lemma 3.1. To establish this result, we make use the following arguments.
Our definition of the local time in (8) follows from the definition of the local time of the
compensated compound Poisson process {Z(t)} given in (1.1) of [17], see also [1]. More
precisely, by (3.1) of [16], we have that

{αn(t); t ≥ 0} ≡ {Zn(t); t ≥ 0 |Zn(1) = 0},(30)

where αn(t) is the uniform empirical process and Zn(t) = Z(nt)/
√
n with {Zn(t)}n≥1 is

a sequence of compensated Poisson process with expected arrival rate of 1/n. Remark
that {Zn(1) = 0} ≡ {N(n) = n} for N(n) a Poisson random variable with mean n.
To study (9), in the light of crossing comparison (see p. 339 of [16]), we can use

1{αn(t)≡Zn(t)|Zn(1)=0} ⇔ 1{Fn(t)≡ 1
Nn(n)

Nn(t)|Nn(n)=n}.(31)

Then by using the precedent arguments and (13), we obtains finally that δ1t (Fn) can
be written almost surely as

L
√
nμ

t (Ξn) + o

(
1

n1/10−ε

)
, μ ∈ (0, 1).

The parameter μ ∈ (0, 1) is obtained when we replace δ1t (Fn) by the local time of the
uniform empirical process. Let us indicate, that there are some asymptotic results of the
local time of the uniform empirical process in [11].

Let us recall that

lim sup
n→∞

L0
1(Ξn)√
2 log2 n

= lim sup
n→∞

L∗
1(Ξn)√
2 log2 n

= 1, a.s.

and

lim inf
n→∞

√
log2 nL

∗
1(Ξn) =

√
2π, a.s.,

where L∗
1(Ξn) = supx L

x
1(Ξn). In the two last relations n need not be integer-valued (cf.

[2]).

Lemma 3.2. Under the same conditions as in Theorem 2.4, we have with probability
one

gn(t) =

∣∣∣∣∫ 1

0

{
δ
s
√
n

t (αn)− L
s
√
n

t (Ξn)
}
ds

(
νxs (Vn)− ν0s (Vn)

)∣∣∣∣
= O

((
2x

√
n− 1

)1/2
n2/5+ε log2 n

)
.
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Proof of Lemma 3.2. Let us recall that νxs (Vn)−ν0s (Vn) = L
[
√
nx]

sn (S)−L0
sn(S), s ∈

[0, 1], a.s. Then, we have with probability one, as n→ ∞

gn(t) = O

(
(2 [

√
nx]− 1)

1/2
(ν01 (Vn) log2 n)

1/2

n1/10−ε

)
,

is a direct consequence of (13) and Theorem C2 of [7] (see also (4.1a) of [8]) and by the
law of the iterated logarithm for ν0n(Sn), we get finally the announced result.

Lemma 3.3. Under the same conditions as in Theorem 2.4. We have a.s.∣∣∣∣∫ 1

0

L
s
√
n

t (Ξn)ds
(
νxs (Vn)− ν0s (Vn)

)− ∫ 1

0

L
s
√
n

t (Ξn)dsG
([√

nx
]
, ν0s (Un)

)∣∣∣∣
= O

(
x5/4n5/4+6ε/8

)
Proof of Lemma 3.3. Remark that

dn(t) =

∣∣∣∣∫ 1

0

L
s
√
n

t (Ξn)ds
(
νxs (Vn)− ν0s (Vn)

)− ∫ 1

0

L
s
√
n

t (Ξn)dsG
([√

nx
]
, ν0s (Vn)

)∣∣∣∣
=

∣∣∣∣∫ 1

0

L
s
√
n

t (Ξn)ds

(
L
[
√
nx]

sn (S)− L0
sn(S)−G

([√
nx

]
, L0

sn(S)
))∣∣∣∣

and by given an upper estimation obtained from Stieljes integral, we have

dn(t) ≤ d1,n(t) + d2,n(t)

where

d1,n(t) =

∣∣∣∣L√
n

t (Ξn)

(
L
[
√
nx]

n (S)− L0
n(S)−G

([√
nx

]
, L0

n(S)
))∣∣∣∣

and

d2,n(t) = sup
0≤s≤1

∣∣∣∣L[√nx]
sn (S)− L0

sn(S)−G
([√

nx
]
, L0

sn(S)
)∣∣∣∣ ∫ 1

0

dsL
s
√
n

t (Ξn).

Now, by Theorem 1.1 of [7], we have for n−1/2 ≤ x ≤ n−1/3+ε and in an almost surely
sense that ∣∣∣∣L[√nx]

n (S)− L0
n(S)−G

([√
nx

]
, L0

n(S)
)∣∣∣∣ = O

(
x5/4n3/4+5ε/8

)
,

moreover, from (13), we have a.s. as n→ ∞
sup

0≤t≤1

∣∣∣Ls
√
n

t (Ξn)
∣∣∣ = sup

0≤t≤1

∣∣∣Ls
√
n

t (αn)
∣∣∣+O(n−1/10+ε)

= O
(√

log2 n
)
,

the last equality is obtained from Theorem 1.1 of [2]. Then

d1,n(t) = O
(
x5/4n3/4+5ε/8 (log2 n)

1/2
)
, a.s.

For the term denoted by d2,n(t) and tacking in mind again Theorem 1.1 of [7] (uniform
case), then

d2,n(t) = O
(
x5/4n3/4+5ε/8

)
, a.s.

where we have used also
∫ 1

0 dsL
s
√
n

t (Ξn) = O(1).
This concludes the proof of the Lemma.
The proof of Theorem 2.4 is obtained by Lemma’s 3.1, 3.2 and 3.3.
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10. M. Csörgő and P. Révész, Strong Approximations in Probability and Statistics, Probability
and Mathematical Statistics Monographs, London, Academic Press, 1981.
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