SEIJI HIRABA

INDEPENDENT INFINITE MARKOV PARTICLE SYSTEMS WITH JUMPS

Abstract

We investigate independent infinite Markov particle systems (IIMPSs) as measurevalued Markov processes with jumps. We shall give sample path properties and martingale characterizations. In particular, we investigate the Hölder right continuity exponent in the case where each particle participates in the absorbing α-stable motion on $(0, \infty)$ with $0<\alpha<2$, that is, the time-changed absorbing Brownian motion on $(0, \infty)$ by the increasing $\alpha / 2$-stable Lévy processes.

1. Introduction

In the study of infinite Markov particle systems, there are several difficulties, even in independent cases. For instance, "What space of measures is appropriate as a state space of the infinite particle system?", "Is it possible to consider the particle system as a measure-valued diffusion or the measure-valued càdlàg process?", or "Is it possible to characterize the generator as that in the case of finite particle systems?", and so on.

In [3], we considered independent infinite Markov particle systems with immigration on a half-space associated with absorbing Brownian motions. We gave a martingale characterization and investigated sample path properties as a measure-valued diffusion.

In the present paper, we consider more general motion processes with jumps, in particular, absorbing α-stable motions on $(0, \infty)$ with $0<\alpha<2$. We would like to investigate independent infinite Markov particle systems, which have infinitely many particles near the boundary including points at infinity. In order to control particles near the boundary, we introduce a function $g_{0}(x)$. Fix a strictly positive C^{∞}-function $g_{0}(x)=g_{p, 0}(x)$ on $(0, \infty)$, which has the same order as $x \wedge x^{-p}$ for small or large x with $1<p<1+\alpha$ (for other conditions, see Example 3.1 in $\S 3$). In this case, the space of counting measures on $(0, \infty), \mathcal{M}_{g_{0}}$, is defined by

$$
\begin{equation*}
\mu \in \mathcal{M}_{g_{0}} \stackrel{\text { def }}{\Longleftrightarrow} \mu=\sum_{n} \delta_{x_{n}} \quad \text { such that } \quad\left\langle\mu, g_{0}\right\rangle=\int g_{0}(x) \mu(d x)<\infty . \tag{1.1}
\end{equation*}
$$

$\mathcal{M}_{g_{0}}$ is furnished with the topology

$$
\begin{equation*}
\mu_{n} \rightarrow \mu \quad \text { in } \mathcal{M}_{g_{0}} \stackrel{\text { def }}{\Longleftrightarrow} \sup \left\langle\mu_{n}, g_{0}\right\rangle<\infty,\left\langle\mu_{n}, f\right\rangle \rightarrow\langle\mu, f\rangle \quad \text { for all } f \in C_{c} \tag{1.2}
\end{equation*}
$$

where C_{c} denotes the space of continuous functions with compact supports on $(0, \infty)$. Then it holds that $\left\langle\mu, g_{0}\right\rangle \leq \liminf \left\langle\mu_{n}, g_{0}\right\rangle<\infty$, and thus, $\mu \in \mathcal{M}_{g_{0}}$. Note that, for each $1 \leq K<\infty$, we define

$$
\left\{\begin{array}{l}
\mu \in \mathcal{M}_{g_{0}, K} \stackrel{\text { def }}{\Longleftrightarrow} \mu \in \mathcal{M}_{g_{0}},\left\langle\mu, g_{0}\right\rangle \leq K, \tag{1.3}\\
\mu_{n} \rightarrow \mu \text { in } \mathcal{M}_{g_{0}, K} \stackrel{\text { det }}{\Longrightarrow}\left\langle\mu_{n}, f\right\rangle \rightarrow\langle\mu, f\rangle \quad \text { for all } f \in C_{c} .
\end{array}\right.
$$

Then $\mathcal{M}_{g_{0}, K}$ is a Polish space, and $\mu_{n} \rightarrow \mu$ in $\mathcal{M}_{g_{0}}$ is equivalent to $\mu_{n} \rightarrow \mu$ in $\mathcal{M}_{g, K}$ for some $K \geq 1$. Hence, $\mathcal{M}_{g_{0}}$ is a metrizable separable space (see $\S 2$).

[^0]Let $\left(X_{t}, \mathbf{P}_{\mu}\right)$ be the (indistinguishable) independent infinite Markov particle system (IIMPS) starting from μ, in which each particle participates in the absorbing α stable motion $\left(w(t), P_{x}\right)$ on $S=(0, \infty)$, i.e., for infinitely many independent motions, $\left(w_{n}(t), P_{x_{n}}\right) \stackrel{(\mathrm{d})}{=}\left(w(t), P_{x_{n}}\right)$, and we set

$$
\begin{equation*}
X_{t}=\sum_{n} \delta_{w_{n}(t)} \quad \text { if } \mu=\sum_{n} \delta_{x_{n}} \text { on } S, \quad \text { and } \quad \mathbf{P}_{\mu}=\prod_{n} P_{x_{n}} \tag{1.4}
\end{equation*}
$$

We shall show that if μ is in $\mathcal{M}_{g_{0}}$, then $\left(X_{t}, \mathbf{P}_{\mu}\right)$ is an $\mathcal{M}_{g_{0}}$-valued Markov process with càdlàg sample paths in $\mathbf{D}\left([0, \infty) \rightarrow \mathcal{M}_{g_{0}}\right)$ and that $\left\langle X_{t}, g_{0}\right\rangle$ is also càdlàg. We shall further investigate the exponent $\lambda>0$ of the Hölder right continuity of $\left\langle X_{t}, g_{0}\right\rangle$ at time zero. Moreover, we shall characterize the generator \mathcal{L}_{0} of $\left(X_{t}, \mathbf{P}_{\mu}\right)$ by using the martingale method and also give the semimartingale representation of X_{t}.

In $\S 2$, we consider the IIMPSs in a more general setting. However, in order to investigate IIMPSs as measure-valued processes, we need several assumptions for the transition semigroups of motion processes. We shall give sample path properties, i.e., the exponents of the Hölder (right) continuity, and give the semimartingale representations.

In $\S 3$, we give several examples of IIMPSs associated with the well-known motion processes including absorbing stable motions on $(0, \infty)$ and show that they satisfy the conditions given in $\S 2$. Other examples are Brownian motions, Brownian motions on \mathbf{R}^{d}, rotation invariant stable Lévy processes (we call stable motions) on \mathbf{R}^{d}, or absorbing Brownian motions on $(0, \infty)$.

In $\S 4$, we give the proofs of semimartingale representations given in $\S 2$.
In $\S 5$, we characterize the generators of IIMPSs in the setting given as in $\S 2$.
We use the following notation: Let $S \subset \mathbf{R}^{d}$ be a domain.

- If $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbf{R}^{d}$, then $\partial_{i}^{k}=\partial^{k} /\left(\partial x_{i}^{k}\right)$ and $\partial_{i}=\partial_{i}^{1}$ for each $k=0,1, \ldots$, $i=1, \ldots, d$. Moreover, $\partial_{t}=\partial / \partial t$ for time $t \geq 0$.
- $f \in C_{c} \equiv C_{c}(S) \stackrel{\text { def }}{\Longleftrightarrow} f$ is a continuous function on S with compact support in S, and $C_{c}^{\infty} \equiv C_{c}^{\infty}(S):=C_{c}(S) \cap C^{\infty}(S)$.
- For each integer $k \geq 0, C_{b}^{k}:=\left.C_{b}^{k}\left(\mathbf{R}^{d}\right)\right|_{S}$, that is, $f \in C_{b}^{k} \stackrel{\text { def }}{\Longleftrightarrow} f$ is the restriction to S of a k-time continuously differentiable function on \mathbf{R}^{d} with bounded derivatives of order between 0 and k. Moreover, $f \in C_{0} \stackrel{\text { def }}{\Longleftrightarrow} f$ is continuous on S, and $f(x) \rightarrow 0$ whenever $x \rightarrow \partial S$ or $|x| \rightarrow \infty$. Furthermore, $C_{b}:=C_{b}^{0}$, $C_{b}^{\infty}:=\bigcap_{k} C_{b}^{k}, C_{0}^{k}:=C_{0} \cap C_{b}^{k}$ and $C_{0}^{\infty}:=\bigcap_{k} C_{0}^{k}$.
- For a space D of functions on S, we say that $f \in D^{+} \stackrel{\text { def }}{\Longleftrightarrow} f \in D ; f \geq 0$.

2. General Settings and Main Results

Let S be a domain of \mathbf{R}^{d}. Let $\left(w(t), P_{x}\right)_{t \geq 0, x \in S}$ be an S-valued Markov process having lifetime $\zeta(w) \in(0, \infty]$ such that $w:[0, \zeta(w)) \rightarrow S$ is càdlàg (i.e., right continuous and has left-hand limits). For convenience, we fix an extra point $\Delta \notin S$ and set $w(t)=\Delta$ if $t \geq \zeta(w)$. Moreover, we shall extend functions f on S to $S \cup\{\Delta\}$ by $f(\Delta)=0$. We denote this path space as $w \in \mathbf{D}([0, \zeta) \rightarrow S)$.

Assumption 2.1. Let $\left(T_{t}\right)_{t \geq 0}$ be the transition semigroup of $\left(w(t), P_{x}\right)$, i.e., $T_{t} f(x)=$ $E_{x}[f(w(t)): t<\zeta]$.
(i) $\left(T_{t}\right)$ is a strongly continuous nonnegative contraction semigroup on $\left(C_{0},\|\cdot\|_{\infty}\right)$ with generator $(A, \mathcal{D}(A))$, where $\|f\|_{\infty}=\sup _{x \in S}|f(x)|$.
(ii) $C_{c}^{\infty} \subset \mathcal{D}(A)$, and there is a strictly positive function $g_{0} \in C_{0}^{\infty}$ such that $g_{0} \in \mathcal{D}(A)$, and $g_{0}^{-1} A f \in C_{b}$ with $g_{0}^{-1}=1 / g_{0}$ for every $f \in C_{c}^{\infty} \cup\left\{g_{0}\right\}$.
(iii) $\sup _{t \leq T}\left\|g_{0}^{-1} T_{t} g_{0}\right\|_{\infty}<\infty$ for every $T>0$.

Under this assumption, we introduce a function space $D_{g_{0}} \subset \mathcal{D}(A)$ as follows:

$$
f \in D_{g_{0}} \stackrel{\text { def }}{\Longleftrightarrow} f \in \mathcal{D}(A) \quad \text { such that }\left\|g_{0}^{-1} f\right\|_{\infty}<\infty \text { and }\left\|g_{0}^{-1} A f\right\|_{\infty}<\infty
$$

Clearly, $g_{0} \in D_{g_{0}}, C_{c}^{\infty} \subset D_{g_{0}}$ and $T_{t} C_{c}^{\infty} \subset D_{g_{0}}$ for every $t \geq 0$. (Because for $f \in C_{c}^{\infty}$, $\left|A\left(T_{t} f\right)\right| \leq T_{t}|A f| \leq C T_{t} g_{0} \leq C^{\prime} g_{0}$ with some $C, C^{\prime}>0$). Moreover, since C_{c}^{∞} is dense in C_{0} and $T_{t} C_{c}^{\infty} \subset D_{g_{0}}, D_{g_{0}}$ is a core for A (by Prop. 3.3 in Chap. 1 of [2]). However, $D_{g_{0}}$ may be too large, so we further need the following assumption:

Assumption 2.2. There exist a bounded function $g_{1} \in C^{\infty} ; g_{1} \geq g_{0}(>0)$ and a core $D \subset D_{g_{0}}$ (we denote $D=D_{g}$ with $g=\left(g_{0}, g_{1}\right)$) satisfying the following:
(i) If $f \in D_{g}$, then $\lim _{t \downarrow 0} \frac{1}{t}\left(T_{t}\left(f^{2}\right)(x)-f(x)^{2}\right)$ exists for each $x \in S$ (we also denote the limit as $A f^{2}(x)=A\left(f^{2}\right)(x)$, then $\partial_{t} T_{t}\left(f^{2}\right)(x)=A T_{t}\left(f^{2}\right)(x)=T_{t} A\left(f^{2}\right)(x) \rightarrow$ $A f^{2}(x)$ as $t \downarrow 0$ for each $\left.x \in S\right), A f^{2} \in C_{b}$ and $\left\|g_{1}^{-1} A f^{2}\right\|_{\infty}<\infty$.
(ii) For each $T>0, \sup _{t \in[0, T]}\left\|g_{1}^{-1} T_{t} g_{1}\right\|_{\infty}<\infty$.
(iii) For each $0<s<T$, $\sup _{t \in[s, T]}\left\|g_{0}^{-1} T_{t} g_{1}\right\|_{\infty}<\infty$.
(iv) There exist constants $0 \leq \gamma<1, \delta>0$ such that $\sup _{0 \leq t \leq \delta} t^{\gamma}\left\|g_{0}^{-1} T_{t} g_{1}\right\|_{\infty}<\infty$.
(v) $g_{0} \in D_{g}$.

In $\S 3$, we give some examples of semigroups $\left(T_{t}\right)$ satisfying Assumptions 2.1 and 2.2, with an explicit choice of g_{0} and g_{1}.

All through the present paper, we suppose that Assumptions 2.1 and 2.2 are fulfilled and sometime use the notation $\|\cdot\|_{g_{0}}=\left\|\cdot / g_{0}\right\|_{\infty}$. Then it holds that, for $f \in D_{g_{0}}$, $\|f\|_{g_{0}},\|A f\|_{g_{0}}<\infty$ and $\left|A f^{2}\right| \leq C g_{1}$ with some $C>0$.

Let $\mathcal{M}_{g_{0}}=\bigcup_{K \geq 1} \mathcal{M}_{g_{0}, K}$ be a space of counting measures on S defined as (1.1)-(1.3). Then $\mathcal{M}_{g_{0}}$ is metrizable and separable. In fact, it is possible to take a countable family of nonnegative functions $\left\{f_{n}\right\}_{n \geq 1} \subset C_{c}^{\infty}$ such that $\left\{\alpha f_{n}: \alpha \in \mathbf{R}\right\}_{n \geq 1}$ is dense in $\left(C_{c},\|\cdot\|_{\infty}\right)$, and we may assume that $\left\|f_{n}\right\|_{g_{0}}=1$. We introduce a metric d on $\mathcal{M}_{g_{0}}$ such that

$$
d(\mu, \nu)=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(1 \wedge\left|\left\langle\mu, f_{n}\right\rangle-\left\langle\nu, f_{n}\right\rangle\right|\right)
$$

This induces the same topology as in (1.2). It is easy to see that $\left(\mathcal{M}_{g_{0}}, d\right)$ is not complete. However, for each $K \geq 1,\left(\mathcal{M}_{g_{0}, K}, d\right)$ is complete and separable. We also consider another metric ρ such that

$$
\rho(\mu, \nu)=\left(1 \wedge\left|\left\langle\mu, g_{0}\right\rangle-\left\langle\nu, g_{0}\right\rangle\right|\right)+d(\mu, \nu) .
$$

Then $\rho\left(\mu_{n}, \mu\right) \rightarrow 0$ is slightly stronger than $\mu_{n} \rightarrow \mu$ in $\mathcal{M}_{g_{0}}$, and $\left(\mathcal{M}_{g_{0}}, \rho\right)$ is not complete too. However, we can show the Hölder continuities of $\left\{X_{t}\right\}$ under ρ (see Theorem 2.2).

We consider the case where the generator has the form

$$
\begin{equation*}
A=A^{c}+A^{d} \tag{2.1}
\end{equation*}
$$

with

$$
\begin{aligned}
A^{c} f(x)= & \frac{1}{2} \sum_{i, j=1}^{d} a^{i j}(x) \partial_{i j}^{2} f(x)+\sum_{i=1}^{d} b^{i}(x) \partial_{i} f(x), \\
A^{d} f(x)= & \int_{S \backslash\{x\}}[f(y)-f(x)-\nabla f(x) \cdot(y-x) I(|y-x|<1)] \nu(x, d y) \\
& -k(x) f(x)+\sum_{i=1}^{d} c^{i}(x) \partial_{i} f(x)
\end{aligned}
$$

for $f \in D_{g}$, where $a^{i j}, b^{i} \in C_{b}(S),\left(a^{i j}\right)$ is positive definite, $k(x) \geq 0$ denotes the killing rate by jumps, $\left(c^{i}(x)\right)$ depends on jumps, and $\nu(x, d y)$ is a Lévy kernel on $S \times(S \backslash\{x\})$ satisfying

$$
\sup _{x \in S} \int_{S \backslash\{x\}}\left(1 \wedge|y-x|^{2}\right) \nu(x, d y)<\infty
$$

Let $\left(X_{t}, \mathbf{P}_{\mu}\right)$ be an independent infinite Markov particle system associated with $\left(w(t), P_{x}\right)$ defined as in (1.4). The generator \mathcal{L}_{0} of this particle system is given by the following: for $f \in C_{c}^{\infty}$ and $\mu \in \mathcal{M}_{g_{0}}$,

$$
\left(\mathcal{L}_{0} e^{-\langle\cdot, f\rangle}\right)(\mu)=-\left\langle\mu, e^{f} A\left(1-e^{-f}\right)\right\rangle e^{-\langle\mu, f\rangle}=-\langle\mu, A f-\Gamma f\rangle e^{-\langle\mu, f\rangle}
$$

where $\Gamma f:=A f-e^{f} A\left(1-e^{-f}\right)$ (a more general formula of $\mathcal{L}_{0} F(\mu)$ for functionals $F(\mu)$ is given in $\S 5)$. In fact, let $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ be the filtration generated by $\left\{X_{t}\right\}_{t \geq 0}$ and let

$$
V_{t} f(x)=-\log P_{x}[\exp -f(w(t))]=-\log \left\{1-T_{t}\left(1-e^{-f}\right)(x)\right\} .
$$

We have that if $0 \leq s<t$, then

$$
\mathbf{E}_{\mu}\left[e^{-\left\langle X_{t}, f\right\rangle} \mid \mathcal{F}_{s}\right]=\exp \left[-\left\langle X_{s}, V_{t-s} f\right\rangle\right]
$$

It is easy to see that $\left(V_{t}\right)_{t \geq 0}$ is a nonnegative contraction semigroup on C_{0}. By (ii) of Assumption 2.1, if $f \in C_{c}^{\infty}$, then $1-e^{-f} \in C_{c}^{\infty} \subset D_{g}$. Hence, we have

$$
\begin{aligned}
\partial_{t} V_{t} f & =\frac{T_{t} A\left(1-e^{-f}\right)}{1-T_{t}\left(1-e^{-f}\right)}=\frac{A T_{t}\left(1-e^{-f}\right)}{1-T_{t}\left(1-e^{-f}\right)}=e^{V_{t} f} A\left(1-e^{-V_{t} f}\right) \\
& \rightarrow e^{f} A\left(1-e^{-f}\right)=A f-\Gamma f \quad(t \downarrow 0)
\end{aligned}
$$

Note that since $V_{t} f \leq T_{t} f$ (by Jensen's inequality), Γ is nonnegative;

$$
\Gamma f=A f-\left.\partial_{t} V_{t} f\right|_{t=0+}=\lim _{t \downarrow 0} \frac{1}{t}\left[\left(T_{t} f-f\right)-\left(V_{t} f-f\right)\right] \geq 0
$$

For each $f \in C_{c}^{\infty}, v_{t}=V_{t} f$ is the unique solution to the following equation:

$$
\partial_{t} v_{t}=e^{v_{t}} A\left(1-e^{-v_{t}}\right), \quad v_{0}=f
$$

(because $u_{t}:=1-e^{-v_{t}}$ satisfies $\partial_{t} u_{t}=A u_{t}, u_{0}=1-e^{-f}$ and $u_{t}=T_{t}\left(1-e^{-f}\right)$ is the unique solution). Moreover, if $A v_{t}(x)$ is well-defined for $t>0, x \in S$, then

$$
\partial_{t} v_{t}=A v_{t}-\Gamma v_{t}, \quad v_{0}=f
$$

or, equivalently,

$$
v_{t}=T_{t} f-\int_{0}^{t} T_{t-s} \Gamma v_{s} d s
$$

If A is given as in (2.1), then $\Gamma=\Gamma^{c}+\Gamma^{d}$ with

$$
\begin{aligned}
\Gamma^{c} f(x)= & \frac{1}{2} \sum_{i, j} a^{i j}(x) \partial_{i} f(x) \partial_{j} f(x) \\
\Gamma^{d} f(x)= & \int_{S \backslash\{x\}}\left(e^{-[f(y)-f(x)]}-1+[f(y)-f(x)]\right) \nu(x, d y) \\
& +k(x)\left(e^{f(x)}-1-f(x)\right)
\end{aligned}
$$

First, we mention that, by simple computations,

$$
\left\{\begin{array}{l}
\mathbf{E}_{\mu}\left[\left\langle X_{t}, f\right\rangle\right]=\left\langle\mu, T_{t} f\right\rangle, \tag{2.2}\\
\mathbf{E}_{\mu}\left[\left\langle X_{t}, f\right\rangle\left\langle X_{t}, g\right\rangle\right]=\left\langle\mu, T_{t} f\right\rangle\left\langle\mu, T_{t} g\right\rangle+\left\langle\mu, T_{t}(f g)-\left(T_{t} f\right)\left(T_{t} g\right)\right\rangle
\end{array}\right.
$$

hold for $f \in C_{b}^{+}$. Moreover, by using the Markov property and by induction, we have

Proposition 2.1 (Prop. 1 in [3]). For every $0 \leq t_{1} \leq \cdots \leq t_{n}$ and $f_{i} \in D_{g}^{+}, i=$ $1,2, \ldots, n$,

$$
\begin{aligned}
& \mathbf{E}_{\mu}\left[\left\langle X_{t_{1}}, f_{1}\right\rangle \cdots\left\langle X_{t_{n}}, f_{n}\right\rangle\right] \leq \prod_{i=1}^{n}\left\langle\mu, T_{t_{i}} f_{i}\right\rangle+C_{1}^{(n)} \sum_{i=1}^{n} \prod_{j \neq i}\left\langle\mu, T_{t_{j}} f_{j}\right\rangle \\
& \quad+C_{2}^{(n)} \sum_{i_{1}=1}^{n} \sum_{i_{2} \neq i_{1}} \prod_{j \neq i_{1}, i_{2}}\left\langle\mu, T_{t_{j}} f_{j}\right\rangle+\cdots+C_{n-1}^{(n)} \sum_{j=1}^{n}\left\langle\mu, T_{t_{j}} f_{j}\right\rangle+C_{n}^{(n)}
\end{aligned}
$$

where $C_{k}^{(n)}, k=1, \cdots, n$ are positive constants depending on $\left(n,\left\{\left\|f_{i}\right\|_{\infty}\right\}_{i \leq n}\right)$.
Hence, for $\mu \in \mathcal{M}_{g_{0}}$, if $t>0$, then $\left\langle X_{t}, g_{1}\right\rangle$ is in $L^{k}\left(\mathbf{P}_{\mu}\right)$ for every $k \geq 1$ by (iii) of Assumption 2.2. Furthermore, using Jensen's inequality and Fubini's theorem, one can show that, for every $t \geq 0, j, k \geq 1$,

$$
\begin{equation*}
\left\langle X_{t}, g_{0}\right\rangle, \int_{0}^{t}\left\langle X_{s}, g_{0}\right\rangle^{j}\left\langle X_{s}, g_{1}\right\rangle d s \quad \text { are in } L^{k}\left(\mathbf{P}_{\mu}\right) \tag{2.3}
\end{equation*}
$$

by (iii), (iv) of Assumption 2.2 (note that $g_{0} \leq g_{1}$).
We next introduce a nonnegative operator Q as $Q f=A f^{2}-2 f A f$ for $f \in D_{g}$, which is well-defined by (i) of Assumption 2.2 and plays an important role to investigate the Hölder (right) continuity exponents. The nonnegativity follows from $\left(T_{t} f^{2}-f^{2}\right)-2 f\left(T_{t} f-f\right) \geq$ $\left(T_{t} f\right)^{2}-2 f T_{t} f+f^{2}=\left(T_{t} f-f\right)^{2} \geq 0$. Moreover, the assumption yields $Q f \leq C g_{1}$ for $f \in D_{g}$ with some $C>0$.
Remark 2.1. (i) If we further assume that, for each $x \in S, P_{x}(\zeta \geq t)=o(t)$ as $t \downarrow 0$, i.e., $\lim _{t \downarrow 0} \frac{1}{t}\left(T_{t} 1-1\right)(x)=0$, then we have, for $f \in C_{c}^{\infty}$,

$$
\begin{equation*}
e^{-2\|f\|_{\infty}} Q f \leq 2 \Gamma f \leq e^{2\|f\|_{\infty}} Q f \tag{2.4}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
Q f(x) & =\lim _{t \downarrow 0} \frac{1}{t}\left(T_{t} f^{2}-2 f T_{t} f+f^{2}\right)(x) \\
& =\lim _{t \downarrow 0} \frac{1}{t}\left[T_{t}(f-f(x))^{2}(x)+f(x)^{2}\left(1-T_{t} 1\right)(x)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\Gamma f(x) & =A f(x)-e^{f(x)} A\left(1-e^{-f}\right)(x) \\
& =\lim _{t \downarrow 0} \frac{1}{t}\left[\left(T_{t} f-f\right)(x)-e^{f(x)}\left\{T_{t}\left(1-e^{-f}\right)-\left(1-e^{-f(x)}\right)\right\}(x)\right] \\
& =\lim _{t \downarrow 0} \frac{1}{t}\left[T_{t}\left(e^{-[f-f(x)]}-1+[f-f(x)]\right)(x)+\left(e^{f}-1-f\right)(x)\left(1-T_{t} 1\right)(x)\right]
\end{aligned}
$$

Hence, by using $e^{x}-1-x=x^{2} e^{\theta x} / 2$ with some $\theta \in(0,1)$, we have (2.4).
(ii) If A is given as in (2.1), then $Q=Q^{c}+Q^{d}$ with $Q^{c}=2 \Gamma^{c}$, i.e., $Q^{c} f(x)=$ $\sum_{i, j=1}^{d} a^{i j}(x) \partial_{i} f(x) \partial_{j} f(x)$ and

$$
Q^{d} f(x)=\int_{S \backslash\{x\}}[f(y)-f(x)]^{2} \nu(x, d y)+k(x) f(x)^{2}
$$

(iii) In case of $g_{0} \neq g_{1}, \mathcal{L}_{0}\left(\exp -\left\langle\cdot, g_{0}\right\rangle\right)(\mu)$ may not be well-defined for all $\mu \in \mathcal{M}_{g_{0}}$, because $\left\langle\mu, \Gamma g_{0}\right\rangle$ may be infinite for some $\mu \in \mathcal{M}_{g_{0}}$.

By (2.2), we have, for $f \in C_{c}^{\infty}$,

$$
\mathcal{L}_{0}\langle\cdot, f\rangle(\mu)=\langle\mu, A f\rangle, \quad \mathcal{L}_{0}\langle\cdot, f\rangle^{2}(\mu)=2\langle\mu, f\rangle\langle\mu, A f\rangle+\langle\mu, Q f\rangle .
$$

Moreover, we can see the following:

Proposition 2.2. Let $\mu \in \mathcal{M}_{g_{0}}$. For $f \in D_{g}$,

$$
\begin{aligned}
& M_{t}(f)=\left\langle X_{t}, f\right\rangle-\left\langle X_{0}, f\right\rangle-\int_{0}^{t} \mathcal{L}_{0}\langle\cdot, f\rangle\left(X_{s}\right) d s \\
& N_{t}(f)=\left\langle X_{t}, f\right\rangle^{2}-\left\langle X_{0}, f\right\rangle^{2}-\int_{0}^{t} \mathcal{L}_{0}\langle\cdot, f\rangle^{2}\left(X_{s}\right) d s
\end{aligned}
$$

are \mathbf{P}_{μ}-martingales and $M_{t}(f)^{2}-\int_{0}^{t}\left\langle X_{s}, Q f\right\rangle d s$ is also $a \mathbf{P}_{\mu}$-martingale. In particular,

$$
\mathbf{E}_{\mu}\left[M_{t}(f)^{2}\right]=\mathbf{E}_{\mu}\left[\int_{0}^{t}\left\langle X_{s}, Q f\right\rangle d s\right]=\int_{0}^{t}\left\langle\mu, T_{s} Q f\right\rangle d s
$$

Proof. Let $f \in D_{g}$. If the particle system is finite, it is easy to check that $M_{t}(f)$, $N_{t}(f)$ are martingales. Moreover, by a simple computation, we have

$$
\begin{aligned}
& M_{t}(f)^{2}-\int_{0}^{t}\left\langle X_{s}, Q f\right\rangle d s \\
& =\quad N_{t}(f)-2\left\langle X_{0}, f\right\rangle M_{t}(f)+\left(\int_{0}^{t}\left\langle X_{s}, A f\right\rangle d s\right)^{2} \\
& \quad-2\left\langle X_{t}, f\right\rangle \int_{0}^{t}\left\langle X_{s}, A f\right\rangle d s+2 \int_{0}^{t}\left\langle X_{s}, f\right\rangle\left\langle X_{s}, A f\right\rangle d s \\
& = \\
& \quad N_{t}(f)-2\left\langle X_{0}, f\right\rangle M_{t}(f)-2 \int_{0}^{t}\left[M_{t}(f)-M_{s}(f)\right]\left\langle X_{s}, A f\right\rangle d s
\end{aligned}
$$

This is a martingale. Hence, the above results are valid for finite particle systems. Let $X_{t}^{(n)}=\sum_{k \leq n} \delta_{w_{k}(t)}$ with $X_{0}^{(n)}=\mu^{(n)}$. For $f \in D_{g}$, recall $|f|,|A f| \leq C g_{0},|Q f| \leq C g_{1}$ with some $C>0$. By (2.3) for each fixed $t \geq 0$, under $\mathbf{P}_{\mu},\left\langle X_{t}^{(n)}, g_{0}\right\rangle \uparrow\left\langle X_{t}, g_{0}\right\rangle$ and $\int_{0}^{t}\left\langle X_{s}^{(n)}, g_{0}\right\rangle^{i}\left\langle X_{s}^{(n)}, g_{1}\right\rangle^{j} d s \uparrow \int_{0}^{t}\left\langle X_{s}, g_{1}\right\rangle^{i}\left\langle X_{s}, g_{1}\right\rangle^{j} d s$ a.s. and in L^{k} for every $k \geq 1$ as $n \rightarrow \infty(i=0,1,2, j=0,1)$. Therefore, the results are valid for the infinite case.

Theorem 2.1. Let $\mu \in \mathcal{M}_{g_{0}}$.
(i) If the motion process is a continuous Markov process in $\mathbf{C}([0, \zeta) \rightarrow S)$, then $\left\{X_{t}\right\}$ is in $\mathbf{C}\left([0, \infty) \rightarrow \mathcal{M}_{g_{0}}\right)$ and $\left\{\left\langle X_{t}, g_{0}\right\rangle\right\}$ is in $\mathbf{C}([0, \infty) \rightarrow \mathbf{R}), \mathbf{P}_{\mu}$-a.s.
(ii) If the motion process is a discontinuous Markov process in $\mathbf{D}([0, \zeta) \rightarrow S)$, then $\left\{X_{t}\right\}$ is in $\mathbf{D}\left([0, \infty) \rightarrow \mathcal{M}_{g_{0}}\right)$ and $\left\{\left\langle X_{t}, g_{0}\right\rangle\right\}$ is in $\mathbf{D}([0, \infty) \rightarrow \mathbf{R}), \mathbf{P}_{\mu}$-a.s.

Proof. Fix $T>0$. Let $X^{(n)}=\left\{X_{t}^{(n)}\right\}_{t \leq T}$ be the n-particle system such that $X_{0}^{(n)}=$ $\mu^{(n)}$ given as in the previous proof. We denote the corresponding martingale part by $\left\{M_{t}^{(n)}(f)\right\}$. Recall $Q g_{0} \leq C g_{1},\left|A g_{0}\right| \leq C g_{0}$ with some $C>0$. By Assumption 2.2 (iv),

$$
\begin{aligned}
\int_{0}^{T}\left\langle\mu, T_{t} Q g_{0}\right\rangle d t & \leq C \int_{0}^{T}\left\langle\mu, T_{t} g_{1}\right\rangle d t \\
& \leq C \sup _{t \leq T} t^{\gamma}\left\|g_{0}^{-1} T_{t} g_{1}\right\|_{\infty} \int_{0}^{T} t^{-\gamma} d t\left\langle\mu, g_{0}\right\rangle \\
& \leq C_{T}\left\langle\mu, g_{0}\right\rangle
\end{aligned}
$$

where C_{T} are positive constants. We note that $\mu^{(m)} \leq \mu^{(n)}$ if $m<n$. By Proposition 2.2 and Doob's maximal inequality, we have, for $m<n$,

$$
\begin{aligned}
\mathbf{E}_{\mu}\left[\sup _{t \leq T}\left|M_{t}^{(n)}\left(g_{0}\right)-M_{t}^{(m)}\left(g_{0}\right)\right|^{2}\right] & \leq 4 \int_{0}^{T}\left\langle\mu^{(n)}-\mu^{(m)}, T_{t} Q g_{0}\right\rangle d t \\
& \leq 4 C_{T}\left\langle\mu^{(n)}-\mu^{(m)}, g_{0}\right\rangle \\
& \rightarrow 0
\end{aligned}
$$

as $n>m \rightarrow \infty$. Moreover, $\left\|g_{0}^{-1} T_{t} g_{0}\right\|_{\infty}<\infty$ by Assumption 2.1. If $m<n$, then

$$
\begin{aligned}
\mathbf{E}_{\mu}\left[\int_{0}^{T}\left\langle X_{t}^{(n)}-X_{t}^{(m)},\right| A g_{0}| \rangle d t\right] & \leq C^{\prime} \int_{0}^{T}\left\langle\mu^{(n)}-\mu^{(m)}, T_{t} g_{0}\right\rangle d t \\
& \leq C_{T}^{\prime} \sup _{t \leq T}\left\|g_{0}^{-1} T_{t} g_{0}\right\|_{\infty}\left\langle\mu^{(n)}-\mu^{(m)}, g_{0}\right\rangle \\
& \rightarrow 0 \quad(n>m \rightarrow \infty)
\end{aligned}
$$

where $C^{\prime}, C_{T}^{\prime}$ are positive constants. By Proposition 2.2, this yields

$$
\mathbf{E}_{\mu}\left[\sup _{t \leq T}\left|\left\langle X_{t}^{(n)}-X_{t}^{(m)}, g_{0}\right\rangle\right|\right] \rightarrow 0 \quad(n>m \rightarrow \infty)
$$

Thus, there is a subsequence $\left\{X^{\left(n_{k}\right)}\right\}_{k \geq 1}$ such that

$$
\begin{equation*}
\sup _{t \leq T}\left|\left\langle X_{t}^{\left(n_{k}\right)}-X_{t}^{\left(n_{j}\right)}, g_{0}\right\rangle\right| \rightarrow 0 \quad \text { as } j, k \rightarrow \infty, \mathbf{P}_{\mu} \text {-a.s. } \tag{2.5}
\end{equation*}
$$

Moreover, (2.5) is also valid for $f \in C_{c}^{+}$instead of g_{0}. Hence, for \mathbf{P}_{μ}-a.a. ω, there is a positive number $K=K(\omega) \geq 1$ such that $\left\{X^{\left(n_{k}\right)}(\omega)\right\}$ is a Cauchy sequence in $\mathbf{C}([0, T] \rightarrow$ $\left(\mathcal{M}_{g_{0}, K}, d\right)$) (or in $\mathbf{D}=\mathbf{D}\left([0, T] \rightarrow\left(\mathcal{M}_{g_{0}, K}, d\right)\right)$). Since $\left(\mathcal{M}_{g_{0}, K}, d\right)$ is complete, the limit $\widetilde{X}=\left\{\widetilde{X}_{t}\right\}_{t \leq T}$ exists in $\mathbf{C}=\mathbf{C}\left([0, T] \rightarrow \mathcal{M}_{g_{0}}\right)\left(\right.$ or $\mathbf{D}=\mathbf{D}\left([0, T] \rightarrow \mathcal{M}_{g_{0}}\right)$, which is a version of $\left\{X_{t}\right\}_{t \leq T}$. Hence, $\mathbf{P}_{\mu}\left(\widetilde{X}_{r}=X_{r}\right.$ for all $\left.r \in \mathbf{Q}^{+}\right)=1$, and, by Fatou's lemma, we have, for $f \in C_{c}^{+} \cup\left\{g_{0}\right\}$,

$$
\left\langle\widetilde{X}_{t}, f\right\rangle=\lim _{r\left(\in \mathbf{Q}^{+}\right) \downarrow t}\left\langle X_{r}, f\right\rangle \geq\left\langle X_{t}, f\right\rangle \quad \text { for every } t \geq 0, \mathbf{P}_{\mu^{-}} \text {-a.s. }
$$

Therefore,

$$
\sup _{t \leq T}\left|\left\langle\widetilde{X}_{t}-X_{t}, f\right\rangle\right| \leq \sup _{t \leq T}\left|\left\langle\widetilde{X}_{t}-X_{t}^{\left(n_{k}\right)}, f\right\rangle\right| \rightarrow 0 \quad(k \rightarrow \infty), \quad \mathbf{P}_{\mu} \text {-a.s. }
$$

that is, $\widetilde{X}_{t}=X_{t}$ for all $t \geq 0, \mathbf{P}_{\mu}$-a.s.
We now investigate the exponents of the Hölder (right) continuity of $\left\langle X_{t}, g_{0}\right\rangle$. First, we consider the continuous case.

Theorem 2.2 (Hölder continuity). Let $\left(w(t), P_{x}\right)$ be a continuous Markov process in $\mathbf{C}([0, \zeta) \rightarrow S)$ with a transition semigroup $\left(T_{t}\right)$ satisfying Assumptions 2.1 and 2.2. Let $\mu \in \mathcal{M}_{g_{0}}$. The following holds with \mathbf{P}_{μ}-probability one:
(i) $\left\{\left\langle X_{t}, g_{0}\right\rangle\right\}$ is locally $(1 / 2-\varepsilon)$-Hölder continuous at $t>0$ and $((1-\gamma) / 2-\varepsilon)$-Hölder right continuous at $t=0$ for sufficiently small $\varepsilon>0$, where the constant $0 \leq \gamma<1$ is as in Assumption 2.2 (iv).
(ii) Let $\left\langle\mu, g_{1}\right\rangle<\infty$, in particular, for $g_{1} \geq g_{0}$. If it is possible to take $g_{1}(x)=g_{0}(x)$, then $\left\{\left\langle X_{t}, g_{0}\right\rangle\right\}$ is locally $(1 / 2-\varepsilon)$-Hölder continuous at $t \geq 0$ for sufficiently small $\varepsilon>0$.
Moreover, the same results hold for $\left\{X_{t}\right\}$ under the metric ρ.

Proof. The proof is similar to that of Theorem 2 in [3]. First, we show the local $((1-\gamma) / 2-\varepsilon)$-Hölder continuity of $\left\{\left\langle X_{t}, g_{0}\right\rangle\right\}$. By Kolmogorov's continuity theorem, it is enough to show that, for each $T>0$ and for large $k \in \mathbf{N} ; k(1-\gamma)>1$, there are constants $C_{T, k}>0$ such that

$$
\mathbf{E}_{\mu}\left[\left|\left\langle X_{t}, g_{0}\right\rangle-\left\langle X_{s}, g_{0}\right\rangle\right|^{2 k}\right] \leq C_{T, k}(t-s)^{k(1-\gamma)}
$$

for all $0 \leq s<t \leq T$. First, we note that

$$
\int_{s}^{t}\left\langle\mu, T_{u} g_{0}\right\rangle d u \leq \sup _{u \in[0, T]}\left\|g_{0}^{-1} T_{u} g_{0}\right\|_{\infty}\left\langle\mu, g_{0}\right\rangle(t-s) .
$$

Hence, by Jensen's inequality and using Proposition 2.1 and Assumption 2.1 (iii), we have that, for each $T>0$ and for each $k \in \mathbf{N}$, there are constants $C_{T, k}^{(0)}, C_{T, k}^{(1)}>0$ such that

$$
\mathbf{E}_{\mu}\left[\left(\int_{s}^{t}\left\langle X_{u}, g_{0}\right\rangle d u\right)^{k}\right] \leq C_{T, k}^{(0)}\left(\int_{s}^{t}\left\langle\mu, T_{u} g_{0}\right\rangle d u\right)^{k} \leq C_{T, k}^{(1)}(t-s)^{k}
$$

for all $0 \leq s<t \leq T$. As $\left|A g_{0}\right| \leq C g_{0}$ by Assumption 2.1 (ii), we further obtain

$$
\mathbf{E}_{\mu}\left[\left(\int_{s}^{t}\left\langle X_{u},\right| A g_{0}| \rangle d u\right)^{2 k}\right] \leq C_{T, k}^{(2)}(t-s)^{2 k}
$$

Moreover, by (iii) and (iv) of Assumption 2.2, it holds that, for any $0 \leq s<t \leq T$,

$$
\int_{s}^{t}\left\langle\mu, T_{u} g_{1}\right\rangle d u \leq \sup _{u \leq T} u^{\gamma}\left\|g_{0}^{-1} T_{u} g_{1}\right\|_{\infty}\left\langle\mu, g_{0}\right\rangle \int_{s}^{t} u^{-\gamma} d u \leq C_{T}(t-s)^{1-\gamma}
$$

with some constant C_{T}. Recall Proposition 2.2. Since, for each fixed $s \geq 0,\left\{N_{t}^{s}\left(g_{0}\right)\right\}_{t \geq s}$; $N_{t}^{s}\left(g_{0}\right):=M_{t}\left(g_{0}\right)-M_{s}\left(g_{0}\right)$ is a continuous martingale with quadratic variation

$$
\left[N_{t}^{s}\left(g_{0}\right)\right]=\left[M\left(g_{0}\right)\right]_{t}-\left[M\left(g_{0}\right)\right]_{s}=\int_{s}^{t}\left\langle X_{u}, Q g_{0}\right\rangle d u
$$

we have, by using the Burkholder-Davis-Gundy inequality and by $Q g_{0} \leq C g_{1}$,

$$
\mathbf{E}_{\mu}\left[\left(M_{t}\left(g_{0}\right)-M_{s}\left(g_{0}\right)\right)^{2 k}\right] \leq C_{T, k}^{(3)} \mathbf{E}_{\mu}\left[\left(\int_{s}^{t}\left\langle X_{u}, Q g_{0}\right\rangle d u\right)^{k}\right] \leq C_{T, k}^{(4)}(t-s)^{k(1-\gamma)},
$$

where the constants $C_{T, k}^{(i)}, i=2,3,4$, depend only on (T, k). Thus, the $((1-\gamma) / 2-\varepsilon)$ Hölder continuity of $\left\{\left\langle X_{t}, g_{0}\right\rangle\right\}$ in $0 \leq t \leq T$ follows. Furthermore, if $\left\langle\mu, g_{1}\right\rangle<\infty$, then, by $\left\langle\mu, T_{u} g_{1}\right\rangle \leq\left\langle\mu, g_{1}\right\rangle\left\|g_{1}^{-1} T_{u} g_{1}\right\|_{\infty}$ and (ii) of Assumption 2.2, we have,

$$
\int_{s}^{t}\left\langle\mu, T_{u} g_{1}\right\rangle d u \leq \sup _{u \in[0, T]}\left\|g_{1}^{-1} T_{u} g_{1}\right\|_{\infty}\left\langle\mu, g_{1}\right\rangle(t-s) .
$$

Thus, $\left\{\left\langle X_{t}, g_{0}\right\rangle\right\}$ is locally $(1 / 2-\varepsilon)$-Hölder continuous at $t \geq 0, \mathbf{P}_{\mu}$-a.s. For general $\mu \in \mathcal{M}_{g_{0}}$, if $t>0$, then, by (iii) of Assumption 2.2,

$$
\mathbf{E}_{\mu}\left[\left\langle X_{t}, g_{1}\right\rangle\right]=\left\langle\mu, T_{t} g_{1}\right\rangle \leq\left\langle\mu, g_{0}\right\rangle\left\|g_{0}^{-1} T_{t} g_{1}\right\|_{\infty}<\infty .
$$

Thus, $\left\langle X_{t}, g_{1}\right\rangle<\infty, \mathbf{P}_{\mu}$-a.s. Therefore, the locally $(1 / 2-\varepsilon)$-Hölder continuity of $\left\{\left\langle X_{t}, g_{0}\right\rangle\right\}$ at $t>0$ and the $((1-\gamma) / 2-\varepsilon)$-Hölder right continuity at $t=0$ follow. Finally, in the definition of the metric ρ for $n \geq 1$, we can take $\left\{f_{n}\right\} \subset\left(C_{c}^{\infty}\right)^{+}$such that

$$
\left\|f_{n}\right\|_{g_{0}}+\left\|A f_{n}\right\|_{g_{0}}+\left\|Q f_{n}\right\|_{g_{0}} \leq 1
$$

Hence we can get the same inequalities for $\rho\left(X_{t}, X_{s}\right)^{2 k}$ instead of $\left|\left\langle X_{t}, g_{0}\right\rangle-\left\langle X_{s}, g_{0}\right\rangle\right|^{2 k}$.

For more specific cases (e.g., the Brownian motion or absorbing Brownian motion), it is possible to discuss the non-Hölder continuities as in [3]. The Hölder continuity exponent is determined by the order of t in $\mathbf{E}_{\mu}\left[\left\langle X_{t}, g_{1}\right\rangle\right]=\left\langle\mu, T_{t} g_{1}\right\rangle$.

Next, we consider the discontinuous case. In this case, we can only discuss the Hölder right continuity exponents at a fixed time.

Theorem 2.3 (Hölder right continuity at $t=0)$. Let $\left(w(t), P_{x}\right)$ be a discontinuous Markov process in $\mathbf{D}([0, \zeta(w)) \rightarrow S)$ with a transition semigroup $\left(T_{t}\right)$ satisfying Assumptions 2.1 and 2.2. Let $\mu \in \mathcal{M}_{g_{0}}$. The following holds with \mathbf{P}_{μ}-probability one.
(i) $\left\{\left\langle X_{t}, g_{0}\right\rangle\right\}$ is $((1-\gamma) / 2-\varepsilon)$-Hölder right continuous at $t=0$ for sufficiently small $\varepsilon>0$, where the constant $0 \leq \gamma<1$ is in (iv) of Assumption 2.2.
(ii) If $\left\langle\mu, g_{1}\right\rangle<\infty$, in particular, if $g_{1}(x)=g_{0}(x)$, then $\left\{\left\langle X_{t}, g_{0}\right\rangle\right\}$ is $(1 / 2-\varepsilon)$-Hölder right continuous at $t=0$ for sufficiently small $\varepsilon>0$.

If $t>0$, then $\left\langle X_{t}, g_{1}\right\rangle<\infty, \mathbf{P}_{\mu}$-a.s. Hence, the following is immediately obtained.
Corollary 2.1. Let $\mu \in \mathcal{M}_{g_{0}}$. For each fixed $t_{0}>0$, with \mathbf{P}_{μ}-probability one, it holds that $\left\{\left\langle X_{t}, g_{0}\right\rangle\right\}$ is $(1 / 2-\varepsilon)$-Hölder right continuous at $t=t_{0}$ for sufficiently small $\varepsilon>0$.

By using the following proposition, the above theorem can be shown similarly to the continuous case. However, we only use the square moment, i.e., $p=2$.

Proposition 2.3. Let $p>1$. On a probability space (Ω, \mathcal{F}, P), let $\left\{M_{t}\right\}$ be a rightcontinuous $L^{p}(P)$-martingale starting from $M_{0}=0$. For small $T>0$, if there exist constants $\beta>0$ and $C_{p, T}>0$ such that

$$
E\left[\left|M_{t}\right|^{p}\right] \leq C_{p, T} t^{p \beta} \quad \text { for all } 0 \leq t \leq T
$$

then

$$
\limsup _{t \downarrow 0} \frac{\left|M_{t}\right|}{t^{\beta} \log 1 / t}=0, \quad P \text {-a.s. }
$$

Proof. For each integer n, set $t_{n}=1 / 2^{n}$ and let

$$
Z_{n}=\sup _{t_{n+1} \leq t<t_{n}} \frac{\left|M_{t}\right|}{t^{\beta} \log 1 / t}
$$

By Doob's maximal inequality, we have

$$
\begin{aligned}
E\left[\left|Z_{n}\right|^{p}\right] & \leq \frac{E\left[\sup _{t_{n+1} \leq t<t_{n}}\left|M_{t}\right|^{p}\right]}{t_{n+1}^{p \beta}\left(\log 1 / t_{n}\right)^{p}} \\
& \leq\left(\frac{p}{p-1}\right)^{p} \frac{E\left|M_{t_{n}}\right|^{p}}{\left(t_{n} / 2\right)^{p \beta}\left(\log 2^{n}\right)^{p}} \\
& \leq\left(\frac{p 2^{\beta}}{(p-1) \log 2}\right)^{p} \frac{C_{p, T}}{n^{p}}
\end{aligned}
$$

Hence, $E\left[\sum_{n}\left|Z_{n}\right|^{p}\right]=\sum_{n} E\left[\left|Z_{n}\right|^{p}\right]<\infty$. This yields

$$
P\left(\limsup _{t \downarrow 0} \frac{\left|M_{t}\right|}{t^{\beta} \log 1 / t}=0\right)=P\left(\lim _{n \rightarrow \infty} Z_{n}=0\right)=1 .
$$

We give a semimartingale representation of $\left(X_{t}, \mathbf{P}_{\mu}\right)$. The following result can be shown like Theorem 6.1.3 in [1]. The proof is given in $\S 4$.

Theorem 2.4 (Semimartingale Representation of $\left(X_{t}, \mathbf{P}_{\mu}\right)$). Under Assumptions 2.1 and 2.2, we suppose that the generator A of the motion process is given as in (2.1). If $\mu \in \mathcal{M}_{g_{0}}$, then $\left(X_{t}, \mathbf{P}_{\mu}\right)$ has the following semimartingale representation: For $f \in D_{g}$,

$$
\left\langle X_{t}, f\right\rangle=\left\langle X_{0}, f\right\rangle+\int_{0}^{t}\left\langle X_{s}, A f\right\rangle d s+M_{t}^{c}(f)+M_{t}^{d}(f)
$$

where

$$
M_{t}^{c}(f) \quad \text { is a continuous } L^{2} \text {-martingale }
$$

with quadratic variation $\left[M^{c}(f)\right]_{t}=\int_{0}^{t}\left\langle X_{s}, Q^{c} f\right\rangle d s=2 \int_{0}^{t}\left\langle X_{s}, \Gamma^{c} f\right\rangle d s$ and

$$
M_{t}^{d}(f)=\int_{0}^{t} \int_{\mathcal{M}_{g_{0}}^{ \pm}}\langle\mu, f\rangle \widetilde{N}(d s, d \mu) \quad \text { is a purely discontinuous } L^{2} \text {-martingale }
$$

with $\widetilde{N}=N-\widehat{N}$ is the martingale measure such that, for $\Delta X_{u}=X_{u}-X_{u-}$,

$$
\begin{aligned}
& N(d s, d \mu)=\sum_{u ; \Delta X_{u} \neq 0} \delta_{\left(u, \Delta X_{u}\right)}(d s, d \mu): \quad \text { the jump measure of }\left\{X_{t}\right\} \\
& \widehat{N}(d s, d \mu)=d s \int X_{s}(d x)\left(\int \nu(x, d y) \delta_{\left(\delta_{y}-\delta_{x}\right)}+k(x) \delta_{-\delta_{x}}\right)(d \mu):
\end{aligned}
$$

the compensator of N,
where $\mathcal{M}_{g_{0}}^{ \pm}$is the family of signed-measures of $\mu^{+}-\mu^{-} ; \mu^{+}, \mu^{-} \in \mathcal{M}_{g_{0}}$.

3. Examples of Motion Processes and the Hölder (Right) Continuity Exponents

In this section, we shall investigate the exponents of the Hölder right continuity of sample paths of independent Markov particle systems associated with motion processes given in the following examples:
Example 3.1. (i) Brownian motion and stable motion on \mathbf{R}^{d} : Let $p>d$ and $g_{p}(x):=$ $\left(1+|x|^{2}\right)^{-p / 2}$. We define function spaces C_{p}, C_{p}^{2} by $f \in C_{p} \equiv C_{p}\left(\mathbf{R}^{d}\right) \stackrel{\text { def }}{\Longleftrightarrow} f \in C\left(\mathbf{R}^{d}\right)$ and $\left\|f / g_{p}\right\|<\infty, f \in C_{p}^{2} \stackrel{\text { def }}{\Longleftrightarrow} f \in C_{b}^{2}\left(\mathbf{R}^{d}\right) ;|f|,\left|\partial_{i} f\right|,\left|\partial_{i j}^{2} f\right| \leq C g_{p}$ for all $i, j=1, \cdots, d$ with some constant $C=C(f)$. In this case, we can take $g_{p}(x)$ as $g_{0}(x)$ and $D_{g}=C_{p}^{2} \equiv$ $C_{p}^{2}\left(\mathbf{R}^{d}\right)$ (see the following proof of Theorem 3.1).
(a) If $\left(w(t), P_{x}\right)$ is the Brownian motion on \mathbf{R}^{d}, then $p>d$ and

$$
A f=\frac{1}{2} \triangle f=\frac{1}{2} \sum_{i=1}^{d} \partial_{i}^{2} f, \quad Q f=|\nabla f|^{2}=\sum_{i=1}^{d}\left(\partial_{i} f\right)^{2}
$$

(b) If $\left(w(t), P_{x}\right)=\left(w^{\alpha}(t), P_{x}^{\alpha}\right)$ is the α-stable motion on $\mathbf{R}^{d}(0<\alpha<2)$, that is, a rotation-invariant α-stable Lévy process on \mathbf{R}^{d}, then $d<p<d+\alpha$ and

$$
\begin{aligned}
& A f(x)= A^{\alpha} f(x)=-(-\triangle)^{\alpha / 2} f(x) \\
&= c \int_{\mathbf{R}^{d} \backslash\{0\}}[f(x+y)-f(x)-\nabla f(x) \cdot y I(|y|<1)] \frac{d y}{|y|^{d+\alpha}} \\
&= c \int_{\mathbf{R}^{d} \backslash\{x\}}[f(y)-f(x)-\nabla f(x) \cdot(y-x) I(|y-x|<1)] \frac{d y}{|y-x|^{d+\alpha}}, \\
& Q f(x)=Q^{\alpha} f(x)=c \int_{\mathbf{R}^{d} \backslash\{0\}}|f(x+y)-f(x)|^{2} \frac{d y}{|y|^{d+\alpha}} \\
& \quad=c \int_{\mathbf{R}^{d} \backslash\{x\}}|f(y)-f(x)|^{2} \frac{d y}{|y-x|^{d+\alpha}},
\end{aligned}
$$

where $c>0$ is a suitable constant.
(ii) Absorbing Brownian motion and absorbing stable motion on $(0, \infty)$: Let $h_{0}(v)$ be a C^{∞}-function on $(0, \infty)$ such that $0<h_{0} \leq 1$ on $(0, \infty), h_{0}(v)=v$ for $v \in(0,1 / 2]$ and $h_{0}(v)=1$ for $v \geq 1$. Let $p>1$ and set

$$
g_{p, 0}(x):=g_{p}(x) h_{0}(x) \quad \text { for } x \in(0, \infty) \text { with } g_{p}(x)=\left(1+x^{2}\right)^{-p / 2}
$$

We further define $\left.f \in C_{p, 0} \stackrel{\text { def }}{\Longleftrightarrow} f \in C(\mathbf{R})\right|_{(0, \infty)}$ and $\left\|f / g_{p, 0}\right\|<\infty$. Moreover, for $k \geq 2$, we set $\left.f \in C_{p, 0}^{k} \stackrel{\text { def }}{\Longleftrightarrow} f \in C_{b}^{k}(\mathbf{R})\right|_{(0, \infty)} ;|f|,\left|f^{\prime \prime}\right| \leq C g_{p, 0}$ and $\left|f^{\prime}\right| \leq C g_{p}$ with some constant $C=C(f)$. In this case, $g_{0}(x)$ is given as $g_{p, 0}(x)$.
(a) If $\left(w(t), P_{x}\right)=\left(w^{0}(t), P_{x}^{0}\right)$ is the absorbing Brownian motion on $(0, \infty)$, then $p>1$. Moreover, we can take $D_{g}=C_{p, 0}^{2}$, and A, Q are the same as in the case of the Brownian motion on \mathbf{R}.
(b) If $\left(w(t), P_{x}\right)=\left(w^{-, \alpha}(t), P_{x}^{-,, \alpha}\right)$ is the absorbing α-stable motion on $(0, \infty)(0<$ $\alpha<2$), i.e., the time-changed absorbing Brownian motion on $(0, \infty)$ by the increasing $\alpha / 2$-stable Lévy process $y^{\alpha / 2}(t)$ on $[0, \infty)$ starting from $0 ; w^{-, \alpha}(t)=w^{0}\left(y^{\alpha / 2}(t)\right)$, where $\left\{w^{0}(t)\right\},\left\{y^{\alpha / 2}(t)\right\}$ are independent, then $1<p<1+\alpha$, and we can take $D_{g}=C_{p, 0}^{3}$ (see the following proof of Theorem 3.1). Moreover, for a function f on $(0, \infty)$, let \bar{f} be an extension of f on \mathbf{R} defined as

$$
\bar{f}(z)= \begin{cases}f(z) & (z>0) \\ f(0+) & (z=0) \\ -f(-z) & (z<0)\end{cases}
$$

The generator $A=A^{-, \alpha}$ is given as

$$
A^{-, \alpha} f(x)=A^{\alpha} \bar{f}(x)
$$

We can also write that if $0<\alpha<1$, then

$$
\begin{aligned}
A^{-, \alpha} f(x) & =c \int_{\mathbf{R} \backslash\{x\}}[\bar{f}(y)-\bar{f}(x)] \frac{d y}{|y-x|^{1+\alpha}} \\
& =c \int_{0}^{\infty}[f(y)-f(x)] K(x, y) d y-2 c f(x) \int_{0}^{\infty} \frac{d y}{(y+x)^{1+\alpha}} \\
& =c \int_{0}^{\infty}[f(y)-f(x)] K(x, y) d y-\frac{2 c}{\alpha} x^{-\alpha} f(x)
\end{aligned}
$$

and that if $1 \leq \alpha<2$, then (in $\S 4$ of [4], we have some misprints)

$$
\begin{aligned}
A^{-, \alpha} f(x)= & c \int_{\mathbf{R} \backslash\{x\}}\left[f(y)-\bar{f}(x)-(\bar{f})^{\prime}(x)(y-x) I(|y-x|<1)\right] \frac{d y}{|y-x|^{1+\alpha}} \\
= & c \int_{0}^{\infty}\left[f(y)-f(x)-f^{\prime}(x)(y-x) I(|y-x|<1)\right] K(x, y) d y \\
& +c \int_{0}^{\infty}\left[-2 f(x)+f^{\prime}(x)(y+x) I(y+x<1)\right. \\
& \left.\left.\quad-f^{\prime}(x)(y-x) I(|y-x|<1)\right)\right] \frac{d y}{(y+x)^{1+\alpha}} \\
= & c \int_{0}^{\infty}\left[f(y)-f(x)-f^{\prime}(x)(y-x) I(|y-x|<1)\right] K(x, y) d y \\
& \quad-\frac{2 c}{\alpha} x^{-\alpha} f(x)+f^{\prime}(x) c(x),
\end{aligned}
$$

where

$$
K(x, y)=\frac{I(y \neq x)}{|y-x|^{1+\alpha}}-\frac{1}{(y+x)^{1+\alpha}}
$$

and

$$
\left.c(x)=c \int_{0}^{\infty}[(y+x) I(y+x<1)-(y-x) I(|y-x|<1))\right] \frac{d y}{(y+x)^{1+\alpha}}
$$

(Note that if $0<x<1$, then
$c(x)= \begin{cases}\frac{2}{\alpha}\left(x^{1-\alpha}-x(2 x+1)^{-\alpha}\right)-\frac{1}{\alpha-1}\left(1-(2 x+1)^{1-\alpha}\right) \sim \frac{2}{\alpha} x^{1-\alpha} & (1<\alpha<2), \\ 2\left(1-\frac{x}{2 x+1}\right)-\log (2 x+1) \sim 2 & (\alpha=1) .\end{cases}$
as $x \downarrow 0$. We can also show that $c(x)$ is positive.) Moreover, we have, for $0<\alpha<2$,

$$
Q f(x)=Q^{-, \alpha} f(x)=c \int_{0}^{\infty}|f(y)-f(x)|^{2} K(x, y) d y+\frac{2 c}{\alpha} x^{-\alpha} f(x)^{2}
$$

With the above motion processes, we have the following results:
Theorem 3.1. Let g_{0} be given in the following each case. Let $\mu \in \mathcal{M}_{g_{0}}$, and let $\varepsilon>0$ denote any small number.
(i) Continuous case; Brownian motion on \mathbf{R}^{d} or absorbing Brownian motion on $(0, \infty)$.

Under \mathbf{P}_{μ}, the following holds with probability one.
(a) Let the motion process be the Brownian motion on \mathbf{R}^{d} and $g_{0}=g_{p}$ with $p>d$. Then $\left\{\left\langle X_{t}, g_{p}\right\rangle\right\}$ is locally $(1 / 2-\varepsilon)$-Hölder continuous in $t \geq 0$.
(b) Let $d=1$. If the motion process is the absorbing Brownian motion on $(0, \infty)$ and $g_{0}=g_{p, 0}$ with $p>1$, then $\left\{\left\langle X_{t}, g_{p, 0}\right\rangle\right\}$ is locally $(1 / 2-\varepsilon)$-Hölder continuous at $t>0$ and $(1 / 4-\varepsilon)$-Hölder right continuous at $t=0$. Moreover, if $\left\langle\mu, g_{p}\right\rangle<$ ∞, then $\left\{\left\langle X_{t}, g_{p}\right\rangle\right\}$ is locally $(1 / 2-\varepsilon)$-Hölder continuous at $t \geq 0$.
(ii) Discontinuous case; the stable motion on \mathbf{R}^{d} or absorbing stable motion on $(0, \infty)$. Under \mathbf{P}_{μ}, the following holds with probability one.
(a) Let the motion process be the α-stable motion on \mathbf{R}^{d} with $0<\alpha<2$ and $g_{0}=g_{p}$ with $d<p<d+\alpha$. Then $\left\{\left\langle X_{t}, g_{p}\right\rangle\right\}$ is $(1 / 2-\varepsilon)$-Hölder right continuous at $t=0$.
(b) Let $d=1$, let the motion process be the absorbing α-stable motion on $(0, \infty)$ with $0<\alpha<2$, and let $g_{0}=g_{p, 0}$ with $1<p<1+\alpha$. $\left\{\left\langle X_{t}, g_{p, 0}\right\rangle\right\}$ is $(1 /(2(\alpha \vee$ $1)-\varepsilon)$-Hölder right continuous at $t=0$. Moreover, in the case of $1<\alpha<2$, if $\left\langle\mu, g_{1}\right\rangle<\infty$ with $g_{1}(x)=g_{p}(x) h_{0}(x)^{2-\alpha}$, then $\left\{\left\langle X_{t}, g_{p, 0}\right\rangle\right\}$ is $(1 / 2-\varepsilon)$-Hölder right continuous at $t=0$.

Corollary 3.1. In the above discontinuous case, if $t_{0}>0$, then, under $\mathbf{P}_{\mu},\left\{\left\langle X_{t}, g_{0}\right\rangle\right\}$ is $(1 / 2-\varepsilon)$-Hölder right continuous at $t=t_{0}$ for sufficiently small $\varepsilon>0$, where $\mu \in \mathcal{M}_{g_{0}}$.

Proof of Theorem 3.1.
It suffices to check that the conditions in Assumptions 2.1 and 2.2 are fulfilled with suitable $g_{1} \in C^{\infty}$ and $0 \leq \gamma<1$;
(i) (a) $g_{1}(x)=g_{p}(x), \gamma=0 . \quad$ (b) $g_{1}(x)=g_{p}(x), \gamma=1 / 2$.
(ii) (a) $g_{1}(x)=g_{p}(x), \gamma=0$. (b) Let h_{0} be given as in (ii) of Example 3.1. Let $h_{1} \in C^{\infty} ; 0<h_{1} \leq 1, h_{1}(v)=v \log (1 / v)$ for $v \in(0,1 / e]$ and $h_{1}(v)=1$ for $v \geq 1$. If $0<\alpha<1$, then $g_{1}(x)=g_{p, 0}(x), \gamma=0$. If $\alpha=1$, then $g_{1}(x)=g_{p}(x) h_{1}(x), \gamma=\delta$ for any small $0<\delta<1$. If $1<\alpha<2$, then $g_{1}(x)=g_{p}(x) h_{0}(x)^{2-\alpha}$, $\gamma=1-1 / \alpha$.
It is well known that the following in Prop. 2.3 of [5] holds: Let $\left(T_{t}\right)$ (resp., $\left(T_{t}^{\alpha}\right)$) be a transition semigroup of the Brownian motion on \mathbf{R}^{d} (resp., of the α-stable motion on $\left.\mathbf{R}^{d}\right)$. For $f \in C_{0}\left(\mathbf{R}^{d}\right)$, if there exists a constant $L \in \mathbf{R}$ such that $\lim _{|x| \rightarrow \infty}|x|^{p} f(x)=L$,
then

$$
\begin{array}{ll}
\lim _{|x| \rightarrow \infty} \sup _{t \geq 0}|x|^{p} T_{t} f(x)=L & \text { if } p>d \\
\lim _{|x| \rightarrow \infty} \sup _{t \geq 0}|x|^{p} T_{t}^{\alpha} f(x)=L & \text { if } d<p<d+\alpha
\end{array}
$$

(i) Continuous case.
(a) By $C_{p}^{2} \subset \mathcal{D}(A)$ and $A C_{p}^{2} \subset C_{p}$, and by the above result, Assumption 1 follows with $D_{g_{0}}=C_{p}^{2}$. Furthermore, the fact that C_{p}^{2} is stable under multiplication (i.e., if $f \in C_{p}^{2}$, then $f^{2} \in C_{p}^{2}$) yields Assumption 2 with $g_{1}=g_{0}=g_{p}, D_{g}=C_{p}^{2}$ and $\gamma=0$.
(b) It is essentially proved in [3].
(ii) Discontinuous case. Let $0<\alpha<2$ and $d<p<d+\alpha$.
(a) It is easy to see that if $f \in C_{c}^{\infty}$, then $\partial_{i} T_{t} f=T_{t}\left(\partial_{i} f\right)$. Therefore, we have $T_{t}^{\alpha} C_{c}^{\infty} \subset C_{p}^{2}$ for every $t \geq 0$. Moreover, it is well known that $C_{p}^{2} \subset C_{0}^{2} \subset \mathcal{D}\left(A^{\alpha}\right)$. Thus, $D_{g}=C_{p}^{2}$ is a core. It suffices only to show that $A^{\alpha} C_{p}^{2} \subset C_{p} . A^{\alpha} f \in C\left(\mathbf{R}^{d}\right)$ is clear by Lebesgue's convergence theorem. We prove that, for $f \in C_{p}^{2},\left\|g_{p}^{-1} A^{\alpha} f\right\|_{\infty}<\infty$, i.e., $\left|A^{\alpha} f(x)\right| \leq C|x|^{-p}$ for sufficiently large $|x|$. For simplicity of the notation, we omit the superscript " α " as $A^{\alpha}=A$. In the following, we fix $x ;|x| \geq 2$ and use the same symbol C as any finite x-independent constant. Let $f^{(2)}=\left(\partial_{i j}^{2} f\right)$ and $\left|f^{(2)}(x)\right|=\max _{i, j}\left|\partial_{i j}^{2} f(x)\right|$. Note that $\left|f^{(2)}(x)\right| \leq C|x|^{-p}$. Therefore, if $|y| \leq 1$, then

$$
|f(x+y)-f(x)-\nabla f(x) \cdot y|=\left|f^{(2)}(x+\theta y)\right||y|^{2} / 2 \leq C|x+\theta y|^{-p}|y|^{2} \leq C|x|^{-p}
$$

where $\theta=\theta(x, y) \in(0,1)$ (note that $|x+\theta y| \geq|x|-|y| \geq|x|-1 \geq|x| / 2)$. Thus,

$$
\begin{aligned}
|A f(x)|= & c \int_{\mathbf{R}^{d} \backslash\{0\}}[|f(x+y)-f(x)-\nabla f(x) \cdot y I(|y|<1)|] \frac{d y}{|y|^{d+\alpha}} \\
\leq & c \int_{|y|<1}|f(x+y)-f(x)-\nabla f(x) \cdot y| \frac{d y}{|y|^{d+\alpha}} \\
& +c \int_{|z-x| \geq 1}|f(z)| \frac{d z}{|z-x|^{d+\alpha}}+c|f(x)| \int_{|y| \geq 1} \frac{d y}{|y|^{d+\alpha}} \\
\leq & C|x|^{-p} \int_{|y|<1}|y|^{-d-\alpha+2} d y+c \int_{|z-x| \geq 1}|f(z)| \frac{d z}{|z-x|^{d+\alpha}}+C|x|^{-p} \\
\leq & C|x|^{-p}+c \int_{|z-x| \geq 1}|f(z)| \frac{d z}{|z-x|^{d+\alpha}}
\end{aligned}
$$

For the second term, we divide the integral area into $\{|z-x| \geq 1\}=\{|z-x|>\delta|x|\} \cup\{1 \leq$ $|z-x| \leq \delta|x|\}$ with $0<\delta<1 / 2$ and denote each integral by $I_{1}(x), I_{2}(x)$, respectively. We have

$$
I_{1}(x) \leq|x|^{-d-\alpha} \delta^{-d-\alpha} \int_{\mathbf{R}^{d}}|f(z)| d z=C|x|^{-d-\alpha} \leq C|x|^{-p}
$$

and
$I_{2}(x)=|x|^{-p} \int_{1 \leq|z-x| \leq \delta|x|}\left|\frac{x}{z}\right|^{p}\left(|z|^{p}|f(z)|\right) \frac{d z}{|z-x|^{d+\alpha}} \leq C|x|^{-p} \int_{|y| \geq 1} \frac{d y}{|y|^{d+\alpha}}=C|x|^{-p}$,
because $|z| \geq(1-\delta)|x|$ if $|z-x| \leq \delta|x|$. Therefore, if $f \in C_{p}^{2}$, then $\left|A^{\alpha} f(x)\right| \leq C|x|^{-p}$ for $|x| \geq 2$ with some constant $C=C(f)$.
(b) Let $\left(T_{t}^{-, \alpha}\right)$ be a transition semigroup of the absorbing α-stable motion $\left(w^{-, \alpha}(t), P_{x}^{-,, \alpha}\right)$ on $(0, \infty)$. Note that, in this case, $D_{g}=C_{p, 0}^{3}$ is not stable under multiplication. For simplicity of the notation, we omit the superscript " α " as $T_{t}^{-, \alpha}=T_{t}^{-}$, $A^{-, \alpha}=A^{-}, T_{t}^{\alpha}=T_{t}, A^{\alpha}=A$, and so on. We will show the following:
(B1) $C_{p, 0}^{3} \subset \mathcal{D}\left(A^{-}\right), T_{t}^{-} C_{c}^{\infty} \subset C_{p, 0}^{3}$ for every $t \geq 0, A^{-} C_{p, 0}^{3} \subset C_{p, 0}$ and $\sup _{t \geq 0,0<x \leq 1}\left|x^{-1} T_{t}^{-} g_{p, 0}(x)\right|<\infty$ (this yields Assumption 2.1, and $C_{p, 0}^{3}$ is a core).
(B2) For every $f \in C_{p, 0}^{3}, \partial_{t} T_{t}^{-} f^{2}(x)=A^{-} T_{t}^{-} f^{2}(x)=T_{t}^{-} A^{-} f^{2}(x)(x>0), A^{-} f^{2} \in C_{b}$ and $\left\|g_{1}^{-1} Q^{-} f\right\|_{\infty}<\infty$ (this yields (i) of Assumption 2.2).
(B3) For each $0<\beta \leq 1$, $\sup _{t \geq 0} T_{t}^{-}\left(y^{\beta}\right)(x) \leq 2(1+\beta) x^{\beta}$ for all $x>0$ (this yields (ii) of Assumption 2.2).
(B4) For each $0<\beta \leq 1, \sup _{0<x \leq 1} x^{-1} T_{t}^{-, \alpha}\left(y^{\beta}\right)(x) \leq C_{\beta} t^{-(1-\beta) / \alpha}$ with a constant $C_{\beta}>0$ depending only on β (this yields (iii) and (iv) of Assumption 2.2).
Note that we take $\gamma=(1-\beta) / \alpha$ in Assumption 2.2. More exactly, if $0<\alpha<1$, then we take $\beta=1$, i.e., $\gamma=0$. If $\alpha=1$, then $\beta=1-\delta$ for any small $0<\delta<1$, i.e., $\gamma=\delta$. If $1<\alpha<2$, then $\beta=2-\alpha$, i.e., $\gamma=1-1 / \alpha$.

Let $p^{\alpha}(x)$ be the density of the α-stable motion on \mathbf{R} starting from 0 . It is well known that $p_{t}^{\alpha}(x)$ satisfies the relations $p_{t}^{\alpha}(x)=t^{-1 / \alpha} p_{1}^{\alpha}\left(t^{-1 / \alpha} x\right)$ (the scaling property) and $p_{1}^{\alpha}(x) \leq C\left(1 \wedge|x|^{-1-\alpha}\right)$. The transition density $p_{t}^{-}(x, y) \equiv p_{t}^{-, \alpha}(x, y)$ of the absorbing α-stable motion on $(0, \infty)$ is given as

$$
p_{t}^{-}(x, y)=p_{t}^{\alpha}(y-x)-p_{t}^{\alpha}(y+x)=-\int_{-x}^{x} \partial_{v} p_{t}^{\alpha}(y+v) d v
$$

Hence, by using the integration by parts, we have, for $0<\beta \leq 1$,

$$
\begin{aligned}
T_{t}^{-}\left(y^{\beta}\right)(x) & =\int_{0}^{\infty} y^{\beta} p_{t}^{-}(x, y) d y=\left(\int_{0}^{x}+\int_{x}^{\infty}\right) y^{\beta} p_{t}^{-}(x, y) d y \\
& \leq x^{\beta} \int_{0}^{x} p_{t}^{-}(x, y) d y-\int_{x}^{\infty} d y \int_{-x}^{x} y^{\beta} \partial_{v} p_{t}^{\alpha}(y+v) d v \\
& \leq x^{\beta}+\int_{-x}^{x} d v\left(x^{\beta} p_{t}^{\alpha}(x+v)+\beta \int_{x}^{\infty} y^{\beta-1} p_{t}^{\alpha}(y+v) d y\right) \\
& \leq 2 x^{\beta}+\beta x^{\beta-1} \int_{-x}^{x} d v \int_{x}^{\infty} p_{t}^{\alpha}(y+v) d y \\
& \leq 2(1+\beta) x^{\beta} .
\end{aligned}
$$

Thus, we have (B3) and, hence, the last claim of (B1). Moreover,

$$
\begin{aligned}
T_{t}^{-}\left(y^{\beta}\right)(x) & =-\int_{-x}^{x} d v \int_{0}^{\infty} y^{\beta} \partial_{v} p_{t}^{\alpha}(y+v) d y \\
& =\beta \int_{-x}^{x} d v \int_{0}^{\infty} y^{\beta-1} p_{t}^{\alpha}(y+v) d y \\
& =\beta \int_{-x}^{x} d v \int_{0}^{\infty} y^{\beta-1} t^{-1 / \alpha} p_{1}^{\alpha}\left(t^{-1 / \alpha}(y+v)\right) d y \\
& =\beta t^{(\beta-1) / \alpha} \int_{-x}^{x} d v \int_{0}^{\infty} z^{\beta-1} p_{1}^{\alpha}\left(z+t^{-1 / \alpha} v\right) d z \\
& \leq C t^{-(1-\beta) / \alpha} x
\end{aligned}
$$

It is easy to see that

$$
\int_{0}^{\infty} z^{\beta-1} p_{1}^{\alpha}(z+u) d z \quad \text { is bounded in } u \in \mathbf{R}
$$

Therefore, we have (B4).
If $f \in C_{p, 0}^{3}$, then $T_{t}^{-} f=T_{t} \bar{f}$ and $\bar{f} \in C_{p}^{2}\left(\mathbf{R}^{d}\right) \subset \mathcal{D}(A)$. Hence, we have $A^{-} f=A \bar{f}$ and $C_{p, 0}^{3} \subset \mathcal{D}\left(A^{-}\right)$. Moreover, $\left(T_{t}^{-} f\right)^{(k)}=T_{t}\left(\bar{f}^{(k)}\right)$ for $f \in C_{c}^{\infty}(k \geq 0)$ yields $T_{t}^{-} C_{c}^{\infty} \subset C_{p, 0}^{3}$
by the last claim of (B1). In order to show that $A^{-} C_{p, 0}^{3} \subset C_{p, 0}$, it suffices to prove that

$$
\begin{equation*}
A^{-} f(x)=O(x) \quad \text { as } x \downarrow 0 \text { for } f \in C_{p, 0}^{3} \tag{3.1}
\end{equation*}
$$

Let $0<x \leq 1$.

$$
\begin{align*}
A^{-} f(x)= & c \int_{\mathbf{R} \backslash\{0\}}[\bar{f}(y+x)-\bar{f}(x)-\nabla \bar{f}(x) y I(|y|<1)] \frac{d y}{|y|^{1+\alpha}} \tag{3.2}\\
= & c \int_{-x}^{x}\left[f(y+x)-f(x)-f^{\prime}(x) y\right] \frac{d y}{|y|^{1+\alpha}} \\
& +c \int_{x}^{\infty}[f(y+x)-f(y-x)-2 f(x)] \frac{d y}{y^{1+\alpha}}
\end{align*}
$$

We denote the first term on the right-hand side as $J_{1}(x)$. For the second term, we divide the integral into $\int_{1}^{\infty}+\int_{x}^{1} d y$ and denote the corresponding terms as $J_{2}(x)$ and $J_{3}(x)$, respectively. In the following, we use the same symbol C as any finite constant, independent of $0<x \leq 1$. It is easy to see that, by $\left|f^{\prime \prime}(x)\right| \leq C x$,

$$
\begin{aligned}
\left|J_{1}(x)\right| & \leq c \int_{0}^{1} d t(1-t) \int_{-x}^{x}\left|f^{\prime \prime}(x+t y)\right| y^{2} \frac{d y}{|y|^{1+\alpha}} \\
& \leq C \int_{-x}^{x}(x+|y|) y^{2} \frac{d y}{|y|^{1+\alpha}} \\
& =C x^{3-\alpha} \quad(=o(x) \quad \text { as } x \downarrow 0)
\end{aligned}
$$

and, by $f(y+x)-f(y-x)=2 f^{\prime}(y-x+\theta(y+x)) x$ for some $\theta \in(0,1)$,

$$
\begin{aligned}
\left|J_{2}(x)\right| & \leq c \int_{1}^{\infty}[|f(y+x)-f(y-x)|+2|f(x)|] \frac{d y}{|y|^{1+\alpha}} \\
& \leq C x\left\|f^{\prime}\right\|_{\infty} \\
& \leq C x
\end{aligned}
$$

By using Taylor's formula for f at $0+$ and $f(0+)=0$, we see that

$$
\begin{aligned}
& f(y+x)-f(y-x)-2 f(x) \\
& =\int_{0}^{1} d t(1-t)\left[f^{\prime \prime}(t(y+x))(y+x)^{2}-f^{\prime \prime}(t(y-x))(y-x)^{2}-2 f^{\prime \prime}(t x) x^{2}\right] \\
& =\int_{0}^{1} d t(1-t)\left[\left\{f^{\prime \prime}(t(y+x))-f^{\prime \prime}(t(y-x))\right\}\left(y^{2}+x^{2}\right)\right. \\
& \left.+2\left\{f^{\prime \prime}(t(y+x))+f^{\prime \prime}(t(y-x))\right\} x y-2 f^{\prime \prime}(t x) x^{2}\right] . \\
& =\int_{0}^{1} d t(1-t)\left[\left\{f^{\prime \prime}(t(y+x))-f^{\prime \prime}(t(y-x))\right\}\left(y^{2}+x^{2}\right)\right. \\
& \left.\quad+2\left\{f^{\prime \prime}(t(y+x))+f^{\prime \prime}(t(y-x))\right\} x y-2 f^{\prime \prime}(t x) x^{2}\right] . \\
& =\int_{0}^{1} d t(1-t)\left[2 f^{(3)}(t(y-x+2 \theta x)) x\left(y^{2}+x^{2}\right)\right. \\
& \left.\quad+2\left\{f^{\prime \prime}(t(y+x))+f^{\prime \prime}(t(y-x))\right\} x y-2 f^{\prime \prime}(t x) x^{2}\right]
\end{aligned}
$$

with some $\theta \in(0,1)$. Thus, by $\left|f^{\prime \prime}(x)\right| \leq C x$,

$$
\begin{aligned}
\left|J_{3}(x)\right| & \leq c \int_{x}^{1}\left[2\left\|f^{(3)}\right\|_{\infty} x\left(y^{2}+x^{2}\right)+C(y+x) x y+2 C x^{3}\right] \frac{d y}{y^{1+\alpha}} \\
& \leq C x \int_{x}^{1}\left(y^{2}+x y+x^{2}\right) \frac{d y}{y^{1+\alpha}} \\
& \leq 3 C x \int_{0}^{1} y^{2} \frac{d y}{y^{1+\alpha}}=3 C x \int_{0}^{1} y^{1-\alpha} d y=\frac{3 C}{2-\alpha} x
\end{aligned}
$$

Therefore, we have (3.1). Next, we prove (B2). Fix $f \in C_{p, 0}^{3}$ and denote $h \equiv h_{f}=f^{2}$. Note that if $f^{\prime}(0+) \neq 0$, then $h^{\prime \prime}(0+) \neq 0$, i.e., $h \notin C_{p, 0}^{2}\left(\bar{h} \notin C^{2}(\mathbf{R})\right)$. However, there exists a sequence $\left\{h_{n}\right\}_{n \geq 1} \subset C_{p, 0}^{3}$ such that $h_{n}, h_{n}^{\prime} \rightarrow h, h^{\prime}$ uniform, respectively, and $h_{n}^{\prime \prime} \rightarrow h^{\prime \prime}$ locally uniform and uniformly bounded as $n \rightarrow \infty$. Note that it holds that $\bar{h}_{n}, \bar{h}_{n}^{\prime} \rightarrow \bar{h}, \bar{h}^{\prime}$ as $n \rightarrow \infty$ uniformly on \mathbf{R}. By the formula of $A^{-} h_{n}$ (see (3.2)), it is possible to extend A^{-}for h, that is, there is a function $g \in C$ such that $A^{-} h_{n} \rightarrow g$ locally uniform and uniformly bounded, thus $g=A^{-} h$. Moreover, $T_{t}^{-} h_{n}=T_{t} \bar{h}_{n} \rightarrow T_{t} \bar{h}=T_{t}^{-} h$, $\left(T_{t}^{-} h_{n}\right)^{\prime}=T_{t}\left(\bar{h}_{n}\right)^{\prime} \rightarrow T_{t}(\bar{h})^{\prime}=\left(T_{t}^{-} h\right)^{\prime}$ uniformly as $n \rightarrow \infty$, respectively. Hence, it holds that $A^{-} T_{t}^{-} h_{n} \rightarrow A^{-} T_{t}^{-} h$ and $T_{t}^{-} A^{-} h_{n} \rightarrow T_{t}^{-} A^{-} h$. Thus, we have the first claim. To show $Q^{-} f(x) \leq C g_{1}(x)$ for all $x>0$, it is enough to consider it for $0<x \leq 1$ (because even if $f^{2} \notin C_{p, 0}^{2}$, but $f \in C_{p, 0}^{2}$, then it holds that $\left|A^{-} f^{2}(x)\right| \leq C\left(1 \wedge x^{-p}\right)$ for all $x>0$ as in the case of A^{α}. Let $0<x \leq 1$. $Q^{-}=Q^{-, \alpha}$ is also expressed as

$$
\begin{aligned}
& Q^{-} f(x)=c \int_{-x}^{x}[f(y+x)-f(x)]^{2} \frac{d y}{|y|^{1+\alpha}} \\
& \quad+c \int_{x}^{\infty}\left[\{f(y+x)-f(y-x)\}\{f(y+x)+f(y-x)-2 f(x)\}+2 f(x)^{2}\right] \frac{d y}{y^{1+\alpha}}
\end{aligned}
$$

The first term on the right-hand side is bounded by

$$
c\left\|f^{\prime}\right\|_{\infty} \int_{-x}^{x}|y|^{1-\alpha} d y \leq C x^{2-\alpha}
$$

For the second term, we divide the integral into $\int_{1}^{\infty}+\int_{x}^{1} d y$. Since $|f(y+x)-f(y-x)| \leq$ $2 x\left\|f^{\prime}\right\|_{\infty}$ and $f(x)^{2} \leq C_{1} x^{2}$, the first integral is bounded by $C x$. Furthermore, by using $|f(y+x)+f(y-x)-2 f(x)| \leq C_{2}(y+x)$, we have that the second integral is bounded by

$$
\int_{x}^{1}\left[2 x\left\|f^{\prime}\right\|_{\infty} C_{2}(y+x)+2 C_{1} x^{2}\right] \frac{d y}{y^{1+\alpha}} \leq \begin{cases}C\left(x \vee x^{2-\alpha}\right) & (\alpha \neq 1) \\ C x \log 1 / x & (\alpha=1)\end{cases}
$$

Thus, we get $Q^{-} f(x) \leq C g_{1}(x)$ for $0<x \leq 1$; so, for all $x>0$. Therefore, (B2) is proved.

4. Proofs of Theorem 2.4

We always assume that Assumptions 2.1 and 2.2 are satisfied, and A is given as in (2.1).

Proof of Theorem 2.4.
In this independent case, the semimartingale representation will be almost evident. However, we shall show the representation only by using the properties of Theorem 4.1 described as below. The following proposition is needed to prove the uniqueness of the solution to the martingale problem in $\S 5$.
Lemma 4.1. For each $f \in C_{c}^{\infty}$ and $T>0, \sup _{t \in[0, T]}\left\|g_{0}^{-1} \partial_{t} V_{t} f\right\|_{\infty}<\infty$.

Proof. Since $\left\|V_{t} f\right\|_{\infty} \leq\|f\|_{\infty}$ and $\left|A\left(1-e^{-f}\right)\right| \leq C g_{0}$ by (ii) of Assumption 2.1, we have

$$
\left|\partial_{t} V_{t} f\right|=\left|e^{V_{t} f} T_{t} A\left(1-e^{-f}\right)\right| \leq C e^{\|f\|_{\infty}} T_{t} g_{0}
$$

Hence, the claim follows.
Theorem 4.1. For $f \in C_{c}^{\infty}$,

$$
e^{-\left\langle X_{t}, f\right\rangle}-e^{-\left\langle X_{0}, f\right\rangle}-\int_{0}^{t} \mathcal{L}_{0} e^{-\langle\cdot, f\rangle}\left(X_{s}\right) d s
$$

is a \mathbf{P}_{μ}-martingale. Moreover,

$$
H_{t}(f)=\exp \left[-\left\langle X_{t}, f\right\rangle+\int_{0}^{t}\left\langle X_{s}, A f-\Gamma f\right\rangle d s\right]
$$

is also a \mathbf{P}_{μ}-martingale.
Proof. By the above lemma, we see that if $s<t$, then

$$
\begin{aligned}
\partial_{t} \mathbf{E}_{\mu}\left[e^{-\left\langle X_{t}, f\right\rangle} \mid \mathcal{F}_{s}\right] & =\partial_{t} e^{-\left\langle X_{s}, V_{t-s} f\right\rangle} \\
& =\partial_{u=0+} e^{-\left\langle X_{s}, V_{t-s+u} f\right\rangle} \\
& =\partial_{u=0+} \mathbf{E}_{\mu}\left[e^{-\left\langle X_{t}, V_{u} f\right\rangle} \mid \mathcal{F}_{s}\right] \\
& =\mathbf{E}_{\mu}\left[\partial_{u=0+} e^{-\left\langle X_{t}, V_{u} f\right\rangle} \mid \mathcal{F}_{s}\right] \\
& =\mathbf{E}_{\mu}\left[\mathcal{L}_{0} e^{-\langle\cdot, f\rangle}\left(X_{t}\right) \mid \mathcal{F}_{s}\right]
\end{aligned}
$$

where $\partial_{u=0+}$ denotes the right differential operator at $u=0$. Hence, the first claim follows. The second claim follows from Cor. 3.3 of Chap. 2 in [2].

We proceed to the proof of Theorem 2.4. Let, for $f \in C_{c}^{\infty}$,

$$
G_{t}(f)=\exp \left[-\int_{0}^{t}\left\langle X_{s}, A f-\Gamma f\right\rangle d s\right]
$$

be a continuous process of bounded variation. Since $H_{t}(f)$ is a martingale,

$$
Z_{t}(f)=\exp \left[-\left\langle X_{t}, f\right\rangle\right]=H_{t}(f) G_{t}(f)
$$

is a semimartingale, more exactly, a special semimartingale, i.e., a bounded variation part is (locally) integrable. In fact, by Prop. 3.2 of Chap. 2 in [2], we have

$$
\begin{align*}
d Z_{t}(f) & =H_{t}(f) d G_{t}(f)+G_{t}(f) d H_{t}(f) \tag{4.1}\\
& =-\left\langle X_{t}, A f-\Gamma f\right\rangle Z_{t}(f) d t+d(\text { martingale })
\end{align*}
$$

On the other hand, $\left\langle X_{t}, f\right\rangle$ is also a special semimartingale. Hence, by (1.10) of Chap. 4 in [6], $\left\langle X_{t}, f\right\rangle$ has the following expression:

$$
\left\langle X_{t}, f\right\rangle=\left\langle X_{0}, f\right\rangle+C_{t}(f)+M_{t}^{c}(f)+\widetilde{N}_{t}(f)+N_{t}(f)
$$

where $C_{t}(f)$ is a continuous process of locally bounded variation, $M_{t}^{c}(f)$ is a continuous L^{2}-martingale with quadratic variation $\left[M^{c}(f)\right]_{t}$, and

$$
\begin{aligned}
& \tilde{N}_{t}(f)=\int_{0}^{t} \int_{\mathcal{M}^{ \pm}}\langle\mu, f\rangle I(\|\mu\|<1) \tilde{N}(d s, d \mu), \\
& N_{t}(f)=\int_{0}^{t} \int_{\mathcal{M}^{ \pm}}\langle\mu, f\rangle I(\|\mu\| \geq 1) N(d s, d \mu)
\end{aligned}
$$

with the jump measure N of $\left\{X_{t}\right\}$, its compensator \widehat{N}, and $\widetilde{N}=N-\widehat{N}$. By using Itô's formula, we have

$$
\begin{align*}
d Z_{t}(f) & =Z_{t-}(f)\left\{-d C_{t}(f)+\frac{1}{2} d\left[M^{c}(f)\right]_{t}\right. \tag{4.2}\\
& +\int_{\mathcal{M}^{ \pm}}\left[e^{-\langle\mu, f\rangle}-1+\langle\mu, f\rangle\right] I(\|\mu\|<1) \widehat{N}(d t, d \mu) \\
& \left.+\int_{\mathcal{M}^{ \pm}}\left[e^{-\langle\mu, f\rangle}-1\right] I(\|\mu\| \geq 1) N(d t, d \mu)\right\}+d(\text { martingale }) \\
& =Z_{t-}(f)\left\{-\left(d C_{t}(f)+\int_{\{\|\mu\| \geq 1\}}\langle\mu, f\rangle \widehat{N}(d t, d \mu)\right)+\frac{1}{2} d\left[M^{c}(f)\right]_{t}\right. \\
& \left.+\int_{\mathcal{M}^{ \pm}}\left[e^{-\langle\mu, f\rangle}-1+\langle\mu, f\rangle\right] \widehat{N}(d t, d \mu)\right\}+d(\text { martingale }) .
\end{align*}
$$

If we set

$$
B_{t}(f)=C_{t}(f)+\int_{0}^{t} \int_{\{\|\mu\| \geq 1\}}\langle\mu, f\rangle \widehat{N}(d s, d \mu)
$$

then by expressions (4.1), (4.2) and by the uniqueness of the special semimartingale with predictable locally bounded part (see Theorem 2.1.1 in [6]), we have

$$
\begin{aligned}
& -d B_{t}(f)+\frac{1}{2} d\left[M^{c}(f)\right]_{t}+\int\left[e^{-\langle\mu, f\rangle}-1+\langle\mu, f\rangle\right] \widehat{N}(d t, d \mu) \\
& \quad=-\left\langle X_{t}, A f-\Gamma f\right\rangle d t \\
& \quad=\left[-\left\langle X_{t}, A f\right\rangle+\left\langle X_{t}, \Gamma^{c} f\right\rangle+\left\langle X_{t}, \Gamma^{d} f\right\rangle\right] d t
\end{aligned}
$$

Hence, it is easy to see that

$$
\begin{aligned}
B_{t}(f) & =\int_{0}^{t}\left\langle X_{s}, A f\right\rangle d s \\
{\left[M^{c}(f)\right]_{t} } & =2 \int_{0}^{t}\left\langle X_{s}, \Gamma^{c} f\right\rangle d s=\int_{0}^{t}\left\langle X_{s}, Q^{c} f\right\rangle d s
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{t} \int & {\left[e^{-\langle\mu, f\rangle}-1+\langle\mu, f\rangle\right] \widehat{N}(d s, d \mu) } \\
= & \int_{0}^{t}\left\langle X_{s}, \Gamma^{d} f\right\rangle d s \\
= & \int_{0}^{t} d s \int X_{s}(d x)\left\{\int\left(e^{-[f(y)-f(x)]}-1+[f(y)-f(x)]\right) \nu(x, d y)\right. \\
& \left.\quad+k(x)\left(e^{f(x)}-1-f(x)\right)\right\}
\end{aligned}
$$

Therefore, we have

$$
\widehat{N}(d s, d \mu)=d s \int X_{s}(d x)\left(\int \nu(x, d y) \delta_{\left(\delta_{y}-\delta_{x}\right)}+k(x) \delta_{-\delta_{x}}\right)(d \mu)
$$

Finally, it is possible to extend $f \in C_{c}^{\infty}$ to $f \in D_{g}$. The proof of Theorem 2.4 is completed.

5. Martingale Problem for \mathcal{L}_{0}

The following assumption is needed to prove the well-posedness of the martingale problem.
Assumption 5.1. For each $f \in\left(C_{c}^{\infty}\right)^{+}, t>0, A V_{t} f=-A \log \left(1-T_{t}\left(1-e^{-f}\right)\right)$ is well-defined, and $A V_{t} f$ is continuous in t under the norm $\left\|\cdot / g_{1}\right\|_{\infty}$, i.e.,

$$
\left\|\left(A V_{t} f-A V_{t_{0}} f\right) / g_{1}\right\|_{\infty} \rightarrow 0 \quad\left(t \rightarrow t_{0}\right)
$$

In the following, we suppose that the generator A of the motion process has the form of (2.1).

For $\eta \in \mathcal{M}_{g_{0}}$, let $F(\eta)=\Phi\left(\left\langle\eta, f_{1}\right\rangle, \ldots,\left\langle\eta, f_{n}\right\rangle\right) \in \mathcal{D}_{0} \stackrel{\text { def }}{\Longleftrightarrow} \Phi(x) \in C^{\infty}\left(\mathbf{R}^{n}\right)$ be a polynomial growth function with polynomial growth derivatives of all orders and $f_{i} \in D_{g}$, $i=1, \ldots, n$. For this $F(\eta)$, the generator \mathcal{L}_{0} of X_{t} will be extended to the following form:

$$
\begin{aligned}
\mathcal{L}_{0} F(\eta)= & \sum_{i=1}^{n} \partial_{i} \Phi\left(\left\langle\eta, f_{1}\right\rangle, \ldots,\left\langle\eta, f_{n}\right\rangle\right)\left\langle\eta, A f_{i}\right\rangle \\
+ & \frac{1}{2} \sum_{i, j=1}^{n} \partial_{i j}^{2} \Phi\left(\left\langle\eta, f_{1}\right\rangle, \ldots,\left\langle\eta, f_{n}\right\rangle\right)\left\langle\eta, Q^{c}\left(f_{i}, f_{j}\right)\right\rangle \\
+ & \int_{S}\left\{\int _ { S \backslash \{ x \} } \nu (x , d y) \left[\Phi\left(\left\langle\eta, f_{1}\right\rangle+f_{1}(y)-f_{1}(x), \ldots,\left\langle\eta, f_{n}\right\rangle+f_{n}(y)-f_{n}(x)\right)\right.\right. \\
& \left.\quad-\Phi\left(\left\langle\eta, f_{1}\right\rangle, \ldots,\left\langle\eta, f_{n}\right\rangle\right)-\sum_{i=1}^{n} \partial_{i} \Phi\left(\left\langle\eta, f_{1}\right\rangle, \ldots,\left\langle\eta, f_{n}\right\rangle\right)\left(f_{i}(y)-f_{i}(x)\right)\right] \\
& \quad+k(x)\left[\Phi\left(\left\langle\eta, f_{1}\right\rangle-f_{1}(x), \ldots,\left\langle\eta, f_{n}\right\rangle-f_{n}(x)\right)-\Phi\left(\left\langle\eta, f_{1}\right\rangle, \ldots,\left\langle\eta, f_{n}\right\rangle\right)\right. \\
& \left.\left.\quad+\sum_{i=1}^{n} \partial_{i} \Phi\left(\left\langle\eta, f_{1}\right\rangle, \ldots,\left\langle\eta, f_{n}\right\rangle\right) f_{i}(x)\right]\right\} \eta(d x)
\end{aligned}
$$

where

$$
Q^{c}(f, g)(x)=\sum_{i, j} a^{i j}(x) \partial_{i} f(x) \partial_{i} g(x)
$$

Theorem 5.1 (Martingale Problem for $\left(\mathcal{L}_{0}, \mathcal{D}_{0}, \mu\right)$). Under Assumptions 2.1, 2.2, and 5.1, we suppose that the generator A is given as in (2.1). Let $\mu \in \mathcal{M}_{g_{0}}$.
(i) $\mathbf{P}_{\mu}\left(X_{0}=\mu\right)=1$ and for $F(\eta)=\Phi\left(\left\langle\eta, f_{1}\right\rangle, \ldots,\left\langle\eta, f_{n}\right\rangle\right) \in \mathcal{D}_{0}$,

$$
M_{t}^{F}=F\left(X_{t}\right)-F\left(X_{0}\right)-\int_{0}^{t} \mathcal{L}_{0} F\left(X_{s}\right) d s \quad \text { is a } \mathbf{P}_{\mu} \text {-martingale }
$$

(ii) If there is a probability measure \mathbf{Q}_{μ} on $\mathbf{D}=\mathbf{D}\left([0, \infty) \rightarrow \mathcal{M}_{g_{0}}\right)$ such that the canonical process $\widetilde{X}_{t}(\omega)=\omega(t)(\omega \in \mathbf{D})$ satisfies the same conditions as $\left(X_{t}, \mathbf{P}_{\mu}\right)$ in (i) and

$$
\int_{0}^{t}\left\langle\widetilde{X}_{s}, g_{1}\right\rangle d s<\infty \quad \mathbf{Q}_{\mu} \text {-a.s. for all } t \geq 0
$$

then $\mathbf{Q}_{\mu}=\mathbf{P}_{\mu} \circ X^{-1}$ on \mathbf{D}, that is, the martingale problem for $\left(\mathcal{L}_{0}, \mathcal{D}_{0}, \mu\right)$ on \mathbf{D} is well-posed.

Proof. (i) is easily obtained, so we prove (ii). We always fix any $f \in\left(C_{c}^{\infty}\right)^{+}$and $T>0$. To prove the uniqueness of the martingale problem, it is enough to show that $\exp \left(-\left\langle\widetilde{X}_{t}, V_{T-t} f\right\rangle\right), 0 \leq t \leq T$, is a \mathbf{Q}_{μ}-martingale (because this implies the uniqueness
in the sense of finite dimensional distributions, and the separability of $\mathcal{M}_{g_{0}}$ yields the uniqueness in the sense of distributions on \mathbf{D}). By Lemma 4.1, we have

$$
\partial_{t} V_{t} f \quad \text { is continuous in } t \text { under the norm }\|\cdot\|_{g_{0}}=\left\|\cdot / g_{0}\right\|_{\infty}
$$

Moreover, by Assumption 5.1, we see that

$$
\Gamma V_{t} f \in C_{b} \quad \text { is continuous in } t \text { under the norm }\left\|\cdot / g_{1}\right\|_{\infty}
$$

and $v_{t}=v_{t}^{T}=V_{T-t} f(0 \leq t \leq T)$ is the unique solution to the equation;

$$
\left(\partial_{t}+A-\Gamma\right) v_{t}=0 \quad \text { and } \quad v_{T}=f
$$

Let $\Phi(v)=e^{-v}$. It is not difficult to check that $\left(\widetilde{X}_{t}, \mathbf{Q}_{\mu}\right)$ has the same semimartingale representation as $\left(X_{t}, \mathbf{P}_{\mu}\right)$ in Theorem 2.4. Hence, by using the above results and Itô's formula, we can show that the following quantity is a \mathbf{Q}_{μ}-martingale:

$$
\begin{aligned}
& \Phi\left(\left\langle\widetilde{X}_{t}, v_{t}\right\rangle\right)-\Phi\left(\left\langle\widetilde{X}_{0}, v_{0}\right\rangle\right)-\int_{0}^{t} \Phi^{\prime}\left(\left\langle\widetilde{X}_{s}, v_{s}\right\rangle\right)\left\langle\widetilde{X}_{s}, \partial_{s} v_{s}+A v_{s}\right\rangle d s \\
&-\int_{0}^{t} \Phi^{\prime \prime}\left(\left\langle\widetilde{X}_{s}, v_{s}\right\rangle\right)\left\langle\widetilde{X}_{s}, \Gamma^{c} v_{s}\right\rangle d s \\
& \quad-\int_{0}^{t} \int_{\mathcal{M}_{ \pm}}\left[\Phi\left(\left\langle\widetilde{X}_{s}+\eta, v_{s}\right\rangle\right)-\Phi\left(\left\langle\widetilde{X}_{s}, v_{s}\right\rangle\right)-\Phi^{\prime}\left(\left\langle\widetilde{X}_{s}, v_{s}\right\rangle\right)\left\langle\eta, v_{s}\right\rangle\right] \widehat{N}(d s d \eta) \\
&= \exp \left[-\left\langle\widetilde{X}_{t}, v_{t}\right\rangle\right]-\exp \left[-\left\langle\widetilde{X}_{0}, v_{0}\right\rangle\right]+\int_{0}^{t}\left\langle\widetilde{X}_{s}, \partial_{s} v_{s}+A v_{s}\right\rangle \exp \left[-\left\langle\widetilde{X}_{s}, v_{s}\right\rangle\right] d s \\
&-\int_{0}^{t}\left\langle\widetilde{X}_{s}, \Gamma^{c} v_{s}\right\rangle \exp \left[-\left\langle\widetilde{X}_{s}, v_{s}\right\rangle\right] d s-\int_{0}^{t}\left\langle\widetilde{X}_{s}, \Gamma^{d} v_{s}\right\rangle \exp \left[-\left\langle\widetilde{X}_{s}, v_{s}\right\rangle\right] d s \\
&= \exp \left[-\left\langle\widetilde{X}_{t}, v_{t}\right\rangle\right]-\exp \left[-\left\langle\widetilde{X}_{0}, v_{0}\right\rangle\right]+\int_{0}^{t}\left\langle\widetilde{X}_{s},\left(\partial_{s}+A-\Gamma\right) v_{s}\right\rangle \exp \left[-\left\langle\widetilde{X}_{s}, v_{s}\right\rangle\right] d s \\
&= \exp \left[-\left\langle\widetilde{X}_{t}, V_{T-t} f\right\rangle\right]-\exp \left[-\left\langle\widetilde{X}_{0}, V_{T} f\right\rangle\right]
\end{aligned}
$$

Therefore, we have the desired result.
Corollary 5.1 (Martingale Problem for Examples). Let $\mu \in \mathcal{M}_{g_{0}}$. The martingale problems for $\left(\mathcal{L}_{0}, \mathcal{D}_{0}, \mu\right)$ with the motion processes of Example 3.1 are well-posed.

Proof. It is enough to show that the conditions of Assumption 5.1 are fulfilled. Fix $f \in\left(C_{c}^{\infty}\right)^{+}$, and let $h=1-e^{-f}$ (then $h \in C_{c}^{\infty}$). It is shown in $\S 3$ that $T_{t} C_{c}^{\infty} \subset D_{g}$ and $\sup _{t}\left\|T_{t} g_{0}\right\|_{g_{0}}<\infty$. We shall show that $V_{t} f:=-\log \left(1-T_{t} h\right) \in D_{g}$, that is, $A V_{t} f$ is well-defined, and $A V_{t} f$ is continuous in t under the norm $\|\cdot\|_{g_{0}}=\left\|\cdot / g_{0}\right\|_{\infty}\left(\geq\left\|\cdot / g_{1}\right\|_{\infty}\right)$ in each example. In the following, we use notations (1) T_{t}, (2) T_{t}^{0}, (3) T_{t}^{α}, (4) $T_{t}^{-, \alpha}$ for T_{t}, and similarly for V_{t}, A.
(1) Brownian motion on $\mathbf{R}^{d}\left(g_{0}=g_{1}=g_{p}\right.$ with $p>d$, and $\left.D_{g}=C_{p}^{2}\right)$.

For simplicity, we consider the case of $d=1$. Since $\left(T_{t} h\right)^{\prime}=T_{t}\left(h^{\prime}\right)$, we have

$$
\begin{align*}
\left(V_{t} f\right)^{\prime} & =e^{V_{t} f}\left(T_{t} h\right)^{\prime}=e^{V_{t} f} T_{t}\left(h^{\prime}\right) \tag{5.1}\\
\left(V_{t} f\right)^{\prime \prime} & =e^{2 V_{t} f}\left(T_{t}\left(h^{\prime}\right)\right)^{2}+e^{V_{t} f} T_{t}\left(h^{\prime \prime}\right)
\end{align*}
$$

Hence, $V_{t} f \in C_{p}^{2}$, and it is easy to see that $A V_{t} f=\left(V_{t} f\right)^{\prime \prime} / 2$ is continuous under $\|\cdot\|_{g_{p}}$.
(2) Absorbing Brownian motion on $(0, \infty)\left(g_{0}=g_{p, 0}\right.$ with $p>1$, and $\left.D_{g}=C_{p, 0}^{2}\right)$.

In this case, $T_{t}^{0} h=T_{t} \bar{h}$, and the above yields the desired result.
(3) α-stable motion on $\mathbf{R}^{d}\left(g_{0}=g_{1}=g_{p}\right.$ with $d<p<d+\alpha$, and $\left.D_{g}=C_{p}^{2}\right)$.

As in (1), for simplicity, we consider the case $d=1$ (the case $d \geq 2$ is essentially the same). We have (5.1) and, thus, $V_{t}^{\alpha} f \in C_{p}^{2}$. By $h \in C_{c}^{\infty}$, it is easy to see that
$\left(A^{\alpha} h\right)^{\prime}=A^{\alpha}\left(h^{\prime}\right)$. For $\partial_{t} V_{t}^{\alpha} f=e^{V_{t}^{\alpha} f} T_{t}^{\alpha} A^{\alpha} h$, this result yields

$$
\begin{aligned}
\left(\partial_{t} V_{t}^{\alpha} f\right)^{\prime}= & e^{V_{t}^{\alpha} f}\left(\left(V_{t}^{\alpha} f\right)^{\prime} T_{t}^{\alpha} A^{\alpha} h+T_{t}^{\alpha} A^{\alpha}\left(h^{\prime}\right)\right) \\
\left(\partial_{t} V_{t}^{\alpha} f\right)^{\prime \prime}= & e^{V_{t}^{\alpha} f}\left\{\left(V_{t}^{\alpha} f\right)^{\prime}\left(\left(V_{t}^{\alpha} f\right)^{\prime} T_{t}^{\alpha} A^{\alpha} h+T_{t}^{\alpha} A^{\alpha}\left(h^{\prime}\right)\right)\right. \\
& \left.+\left(V_{t}^{\alpha} f\right)^{\prime \prime} T_{t}^{\alpha} A^{\alpha} h+\left(V_{t}^{\alpha} f\right)^{\prime} T_{t}^{\alpha} A^{\alpha}\left(h^{\prime}\right)+T_{t}^{\alpha} A^{\alpha}\left(h^{\prime \prime}\right)\right\}
\end{aligned}
$$

Hence, by $\left|A^{\alpha} h\right|,\left|A^{\alpha}\left(h^{\prime}\right)\right|,\left|A^{\alpha}\left(h^{\prime \prime}\right)\right| \leq C g_{p}$ with some constant $C>0$, we have $\partial_{t} V_{t}^{\alpha} f \in$ C_{p}^{2}. Furthermore, since $\sup _{t}\left\|T_{t} g_{p}\right\|_{g_{p}}<\infty$, we can show that $\sup _{t}\left\|A^{\alpha}\left(\partial_{t} V_{t}^{\alpha} f\right)\right\|_{g_{p}}<\infty$ by the same way as in the proof of $A^{\alpha} C_{p}^{2} \subset C_{p}$ in $\S 3$. Thus, in this case, it easily follows that

$$
\left\|A^{\alpha}\left(V_{t}^{\alpha} f-V_{t_{0}}^{\alpha} f\right)\right\|_{g_{p}}=\left\|\int_{t_{0}}^{t} A^{\alpha}\left(\partial_{s} V_{s}^{\alpha} f\right) d s\right\|_{g_{p}} \leq\left|t-t_{0}\right| \sup _{s}\left\|A^{\alpha}\left(\partial_{s} V_{s}^{\alpha} f\right)\right\|_{g_{p}}
$$

Therefore, we have the continuity of $A^{\alpha} V_{t}^{\alpha} f$.
(4) Absorbing α-stable motion on $(0, \infty)\left(g_{0}=g_{p, 0}\right.$ with $1<p<1+\alpha$, and $\left.D_{g}=C_{p, 0}^{3}\right)$.

Note that $T_{t}^{-, \alpha} h=T_{t}^{\alpha} \bar{h}, A^{-, \alpha} h=A^{\alpha} \bar{h}$ and $V_{t}^{-, \alpha} f=V_{t}^{\alpha} \bar{f}$. By computing $\left(V_{t}^{-, \alpha} f\right)^{\prime \prime \prime}$, we see that $V_{t}^{-, \alpha} f \in C_{p, 0}^{3}$. Moreover, the continuity of $A^{-, \alpha} V_{t}^{-, \alpha} f$ follows in the same way as above.

Acknowledgement. The author would like to thank the referee for valuable suggestions and comments.

References

1. D. A. Dawson, Measure-Valued Markov Processes, Lecture Notes Math. 1541, 1-260, (P. L. Hennequin, ed.), Ecole d'Eté de Probabilitës de Saint-Flour XXI - 1991, Springer, Berlin, 1993.
2. S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986.
3. S. Hiraba, Infinite Markov particle systems with singular immigration; Martingale problems and limit theorems, Osaka J. Math. 33 (1996), 145-187.
4. S. Hiraba, Asymptotic behavior of hitting rates for absorbing stable motions in a half space, Osaka J. Math. 34 (1997), 905-921.
5. I. Iscoe, A weighted occupation time for a class of measure-valued branching processes, Probab. Th. Rel. Fields 71 (1986), 85-116.
6. R. Sh. Liptser and A. N. Shiryayev, Theory of Martingales, Kluwer, Dordrecht, 1989.

Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda City, Chiba 278-8510, Japan

E-mail address: hiraba_seiji@ma.noda.tus.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 60G57; Secondary 60G75.
 Key words and phrases. particle systems, measure-valued processes, jump processes.

