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V. A. KUZNETSOV

THE VARIANCE OF THE NUMBER OF WINDINGS OF THE

RANDOM FIELD ALONG THE PLANAR CURVE

This article is devoted to the study of the distribution of a winding number of a
random vector field along the fixed plane curve. For some case of Gaussian homoge-

neous isotropic vector field, an explicit expression for the variance of the number of

windings along the planar curve is given.

1. Introduction

A considerable attention, in particular, with regard for the study of turbulence, is paid
to the investigation of the topological characteristics of random vector fields. In this work,
we study the distribution of a winding number of a random vector field along the fixed
plane curve. For this, we use an expression of a winding number of a vector field on a
planar closed curve as a sum of indices of the critical points of the field and apply some
results of the book [1] concerning the expectation of the number of points of a random
vector field satisfying certain conditions. All necessary definitions and formulations of
the statements we refer to are given in Section 3. In Section 2, we formulate our main
result, which gives an expression for the expectation of the second moment of the index
of a vector field on a planar closed curve. In Section 5, we apply it to the special case of
a homogeneous isotropic vector field and obtain an explicit expression for the variance
of the index of a curve with respect to this field. The proof of the main result is given in
Section 4.

2. Main result

Here, we formulate the main result of the article. For this, we need the definition
of the index of a continuous vector field with respect to the critical point. For reader’s
convenience, the definition of the index and its properties are given in Section 3.

Theorem 2.1. Let f : R2 → R2 be a random field on R2, and let Γ be a fixed piece-
wise smooth simple (i.e., without self-intersections) closed curve in R2 that bounds some
domain T.

We assume that the field f satisfies the following conditions:
a) f and ∂fi

∂tj
are continuous on T with probability 1 and have bounded moments of the

order 4 on T ;
b) for all t ∈ T, the density of the distribution pf(t)(x) of the random vector f(t) is

continuous at x = 0;
b′) for all t̃ ∈ T̃ = {(t1, t2) ∈ T 2 : t1 6= t2}, the density of the distribution pf̃(t̃)(x1, x2)

of the random vector f̃(t̃) = (f(t1), f(t2)) is continuous at (x1, x2) = (0, 0);
c) for all t ∈ T, the conditional density of the distribution pt(x | ∇f(t)) of the random

vector f(t) conditioned on ∇f(t) exists, is bounded, and is continuous at x = 0;

c′) for all t̃ ∈ T̃ , the conditional density of the distribution pt̃(x̃ | ∇f̃(t̃)) of the random

vector f̃(t̃) conditioned on ∇f̃(t̃) exists, is bounded, and continuous at x̃ = (0, 0);
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d) for all t ∈ T, the conditional density of the distribution pt(z | f(t) = x) of ∇f(t)
conditioned on f(t) = x is continuous in z and x;

d′) for all t̃ ∈ T̃ , the conditional density of the distribution pt̃(z | f̃(t̃) = x̃) of ∇f̃(t̃)

conditioned on f̃(t̃) = x̃ is continuous in z and x̃;
e) the modulus of continuity on T of each of the components f, ∇f satisfies the relation

P(ω(η) > ε) = o(η4), when η ↓ 0 for each ε > 0.
Let indΓf be the index of a curve Γ with respect to the field f. Then the following

relations hold:

E(indΓf) =

∫
T

E{det∇f(t) | f(t) = 0}pt(0)dt,

E(indΓf)2 =

∫
T 2

E{det∇f(t1) det∇f(t2) | f(t1) = f(t2) = 0}p(t1,t2)(0)dt1dt2+

+

∫
T

E{|det∇f(t)| | f(t) = 0}pt(0)dt,

where pt(0) is the density of the distribution of f(t) at 0, and p(t1,t2)(0) is the density of

the distribution of the field f̃(t1, t2) = (f(t1), f(t2)) at 0.

Remark 2.1. The conditions of the theorem are easily checked for Gaussian fields. A
sufficient condition for the continuity of a centered Gaussian field is, for example, its
covariance function being Lipschitz. All the conditional distributions in the Gaussian
case can be obtained from the theorem of normal correlation. So, in this case, the main
point to check is that the corresponding covariance matrix is nondegenerate.

In Section 5, we will consider the following example of a homogeneous isotropic Gauss-
ian vector field f satisfying the conditions of the theorem:

f(u) =

(
f1(u)
f2(u)

)
=


∫
R2

φ(u+ v)W1(dv)∫
R2

φ(u+ v)W2(dv)

 ,

where φ ∈ C∞0 (R2), and W1 and W2 are two independent Brownian sheets on R2.

3. Preliminaries

Here, we give some necessary definitions.

Definition 3.1 ([2], §1). Let Φ : Γ→ R2 be a continuous vector field on some continuous
curve Γ = {(x(t), y(t)) | t ∈ [a, b]}. Assume that the vector-valued function Φ(t) =
Φ(x(t), y(t)) is continuous and non-zero on [a, b]. For each t ∈ [a, b], we define an angle
between Φ(t) and Φ(a), counted from Φ(a) counterclockwise. This angle is a multiple-
valued function of t.We denote, by θ(t), a continuous branch of this function that becomes
zero at t = a and call it the angle function of the field Φ on the curve Γ. The increment of
the angle function θ(t) on the whole segment [a, b], counted in the number of the whole
rotations, i.e., the quantity γ(Φ,Γ) = 1

2π (θ(b) − θ(a)) = 1
2π θ(b), is called the winding

number of the field Φ on Γ.

Definition 3.2 ([2], §2). Let Φ be a continuous vector field on a closed curve Γ with
values in R2 without zero vectors. Divide Γ with the points M1 and M3 into the parts:
M1M2M3 and M3M4M1, and each of these parts will be considered to be oriented ac-
cording to the positive direction of the girdle of the closed contour Γ. Define the number
of windings of the field Φ on Γ (or “the index of the curve Γ with respect to the field f”)
as the sum of the numbers of windings of Φ on the curves M1M2M3 and M3M4M1 (see
Fig. 1).
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Definition 3.3 ([2], §3). Assume that the vector field Φ is defined on the domain Ω and
is continuous on this domain, maybe, except for some finite number of points. Those
points where the field is discontinuous, as well as those where the field equals zero, are
called critical points of the field Φ. A critical point M0 is called isolated, if there are no
other critical points in some its neighborhood.

Definition 3.4 ([2], §3). Assume that the vector field Φ satisfies the assumptions of the
previous definition. Let M0 be an isolated critical point of the field Φ. It is easily seen
that the field Φ has no zero vectors on any circle of a sufficiently small radius with the
center at the point M0. The number of windings of any such circle is called the index of
the critical point M0.

It can be shown that this number does not depend on the choice of a circle, and so
the definition is correct.

Definition 3.5 ([2], §3). Let Γ be a fixed 2-dimensional piecewise smooth curve. Assume
that the vector field Φ on the closed domain Ω with the boundary Γ has a finite number of
critical points inside Γ. The sum of indices of these points is called the algebraic number
of critical points of the field Φ inside Ω.

The following result concerning the algebraic number of critical points holds true. It
reduces finding the number of windings of a vector field to computing the sum of the
indices of critical points of this field.

Proposition 3.1 ([2], §3). The algebraic number of critical points of a continuous vector
field Φ inside the closed domain with boundary Γ is equal to the number of windings of
the field Φ along Γ.

To compute the indices of critical points, we will use the following result that general-
izes the statement that, for any nondegenerate linear vector field Φ0(x, y) = (a1x +
b1y, a2x + b2y), the index γ of the critical point (0, 0) is γ = sign ∆, where ∆ =

det

(
a1 a2

b1 b2

)
.
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Proposition 3.2 ([2], §6). Let (x0, y0) be a fixed point in R2. Define the field Φ : R2 → R2

by Φ(x, y) = (φ(x, y), ψ(x, y)), where φ and ψ are functions differentiable at (x0, y0), and
φ(x0, y0) = ψ(x0, y0) = 0. If

∆ = det

(
φ′x(x0, y0) φ′y(x0, y0)
ψ′x(x0, y0) ψ′y(x0, y0)

)
6= 0,

then the critical point (x0, y0) of the field is isolated, and its index γ equals

γ = sign det

(
φ′x(x0, y0) φ′y(x0, y0)
ψ′x(x0, y0) ψ′y(x0, y0)

)
.

We will also use the following result that concerns the expectation of the number of
critical points of a random vector field that satisfy a certain condition.

Proposition 3.3 ([1], p. 284). Let T ⊂ RN be a compact set such that its boundary ∂T
has finite Hausdorff measure HN−1, and let B ⊂ RK be an open subset of RK such that
∂B has Hausdorff dimension K − 1. Let f = (f1, . . . , fN ) and g = (g1, . . . , gK) be some
N -parameter random fields on T with values in RN and RK , respectively. We assume
that the following conditions are satisfied:

a) all the components of the random fields f,∇f, g are continuous with probability 1
and have finite second moments;

b) for all t ∈ T, the marginal densities pt(x) of f(t) are continuous at x = u;
c) the conditional densities pt(x | ∇f(t), g(t)) of the field f(t) given g(t) and ∇f(t)

are bounded and continuous at x = u, uniformly in t ∈ T ;
d) the conditional densities pt(z | f(t) = x) of det∇f(t) given f(t) = x are continuous

in z and x in neighborhoods of 0 and u, respectively, uniformly in t ∈ T ;
e) the conditional densities pt(z | f(t) = x) of g(t) given f(t) = x are continuous for

all z and for x in a neighborhood of u, uniformly in t ∈ T ;
f) the following restriction on moments holds:

sup
t∈T

max
1≤i,j≤N

E

{∣∣∣∣∂fi∂tj
(t)

∣∣∣∣N
}
<∞;

g) the modulus of continuity (with respect to the Euclidian norm) of each of the compo-
nents of f, ∇f, and g satisfies the inequality

P(ω(η) > ε) = o(ηN ), η ↓ 0

for each ε > 0.
Then, if Nu means the number of points in T, for which f(t) = u ∈ Rn and g(t) ∈ B,

the following relation holds:

ENu =

∫
T

E{| det∇f(t)|1B(g(t)) | f(t) = u}pt(u)dt.

Remark 3.1. In our considerations (see Section 4), we will apply proposition 3.3 in the
case g(t) = ∇f(t).

But the proof of this result in [1] used the existence of the joint distribution of the
random variables f(t),det∇f(t), and g(t), which does not hold in our situation. However,
the proof can be easily made in the case g(t) = ∇f(t) as well. All the computations
in [1] stay nearly the same. Indeed, let, as in [1], δε : RN → R be a function defined by
δε = C−1

ε 1Bε , where Cε is a volume of Bε.
Denote, by pt(x,∇y), the joint distribution density of f(t) and ∇f(t) and, by pt(∇y),

the distribution density of ∇f(t). Let pt(x) be the distribution density of f(t), and
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pt(x|∇y) be the conditional distribution density of f(t) given ∇f(t). Then, for example,
the computations at page 272 of [1],

ENε(T ) =

∫
T

∫
RN×RN2×B

δε(x)|det∇y|pt(x,∇y, v)dxd∇ydv =

=

∫
T

dt

∫
RN2×B

|det∇y|pt(∇y, v)d∇ydv ×
∫
RN

δε(x)pt(x | ∇y, v)dx,

now appear as follows:

ENε(T ) =

∫
T

∫
RN×B

δε(x)|det∇y|pt(x,∇y)dxd∇y =

=

∫
T

dt

∫
B

|det∇y|pt(∇y)d∇y ×
∫
RN

δε(x)pt(x | ∇y)dx.

Later, we will search for the explicit expression for the expectation and the variance
of the index of a curve with respect to a random homogeneous isotropic vector field.

Definition 3.6 ([3]). Let U = {U(x) | x ∈ R2} be a vector-valued random field on
R2. For any transformation T : R2 → R2, we denote, by UT, the random field defined
by UT (x) = U(T (x)). The field U is called homogeneous if the field UT has the same
distribution as U for any shift transformation T : R2 → R2, i.e., for any transformation
of the form T (x) = Tz(x) = x+z, where z ∈ R2 is a constant vector. The field U is called
invariant with respect to rotations, if the random field GU(GTx), x ∈ R2 has the same

distribution as U, for all rotation matrices G =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. A homogeneous

random field, which is invariant under rotations, is called polarized. If a polarized vector
field is invariant under reflections as well, it is called isotropic.

We now describe some properties of such fields, following the article [Zirbel, Woy-
czyńsky]. It is easily derived from the conditions of a random field being homogeneous
and isotropic that the covariance matrix of the components of the field has a special form
described by the following result.

Proposition 3.4 ([3]). A matrix-valued function b is a covariance matrix of the compo-
nents of some homogeneous isotropic vector field f, if and only if it has the form

bij(z) = δijbN (‖z‖) +
zizj

‖z‖2
(bL(‖z‖)− bN (‖z‖)).

Moreover, b(0) = bN (0)I, bL(0) = bN (0), and the functions bN , bL are of the form

bL(r) =

∞∫
0

J ′1(rα)ΦP (dα) +

∞∫
0

J1(rα)

rα
ΦS(dα),

bN (r) =

∞∫
0

J1(rα)

rα
ΦP (dα) +

∞∫
0

J ′1(rα)ΦS(dα),

where ΦP ,ΦS are some positive finite masures on [0,∞).
If ΦP and ΦS have finite fourth moments, then the functions bL, bN are four times

continuously differentiable, and

bL(r) = b0 −
1

2
βLr

2 +O(r4), r → 0,
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bN (r) = b0 −
1

2
βNr

2 +O(r4), r → 0,

where

βL =
3

8

∞∫
0

α2ΦP (dα) +
1

8

∞∫
0

α2ΦS(dα)

and

βN =
1

8

∞∫
0

α2ΦP (dα) +
3

8

∞∫
0

α2ΦS(dα).

Remark 3.2. We denote, by Jn(x), the Bessel function of the n-th order,

x2J ′′n(x) + xJ ′n(x) + (x2 − n2)Jn(x) = 0.

Later, we will use the following properties of these functions that can be found in [4]:

J0(x) = J ′1(x) +
J1(x)

x
,

J ′0(x) = −J1(x),

J0(br) =
1

2π

2π∫
0

eibr sin θdθ.

4. Proof of the main result

Here, we prove Theorem 2.1.
Let N+ be the number of critical points of f inside T (i.e., points t ∈ T where f(t) = 0)

with the index 1, N− be the number of critical points inside T with the index −1:

N+ = #{t ∈ T : f(t) = 0, indtf = 1}, N− = #{t ∈ T : f(t) = 0, indtf = −1}.

It is known that the field f has no critical points with det∇f(t) = 0 with probability
1 (lemma 11.2.11 from [1]).

So, with probability 1, we have

N+ = #{t ∈ T | f(t) = 0,det∇f(t) > 0},

N− = #{t ∈ T | f(t) = 0,det∇f(t) < 0},

and

indΓf = N+ −N−.

Denote T̃ = {(t1, t2) ∈ T 2 : t1 6= t2}, T δ2 = {(t1, t2) ∈ T 2 : ‖t1 − t2‖ ≥ δ}. Define

the vector fields f̃ , g̃ on T̃ by f̃(t̃) = (f(t1), f(t2)), g̃(t̃) = (∇f(t1),∇f(t2)), where t̃ =

(t1, t2) ∈ T̃ . We also define a vector field g on T by g(t) = ∇f(t), t ∈ T. Let

B1 =

{(
a b
c d

)
∈ R2×2 ∼= R4 : ad− bc > 0

}
,

B−1 =

{(
a b
c d

)
∈ R2×2 ∼= R4 : ad− bc < 0

}
.

Our proof is analogous to that of Theorem 11.5.1 in [1]. We fix δ > 0 and a pair

(s1, s2), where si ∈ {1,−1}, and apply Proposition 3.3 to f̃ , g̃, T δ2 , B =
2∏
i=1

Bsi . The
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conditions of this proposition are trivially checked in our case. We get

E#{(t1, t2) ∈ T δ2 : f(ti) = 0, g(ti) ∈ Bsi , i = 1, 2} =

= E#{t̃ ∈ T δ2 : f̃(t̃) = 0, g̃(t̃) ∈
2∏
i=1

Bsi} =

=

∫
T δ2

E{|det∇f̃(t̃)|1 2∏
i=1

Bsi

(g̃(t̃)) | f̃(t̃) = 0}pt̃(0)dt̃ =

=

∫
T δ2

E{|det∇f̃(t̃)|
2∏
i=1

1sign det∇f(ti)=si | f̃(t̃) = 0}pt̃(0)dt̃ =

= s1s2

∫
T δ2

E{
2∏
i=1

det∇f(ti)1sign det∇f(ti)=si | f̃(t̃) = 0}pt̃(0)dt̃.

When δ → 0, we have, with probability 1,

#{(t1, t2) ∈ T δ2 : f(ti) = 0, g(ti) ∈ Bsi , i = 1, 2} →

→ #{(t1, t2) ∈ T̃ : f(ti) = 0, g(ti) ∈ Bsi , i = 1, 2},

and this convergence is monotone. So, by monotone convergence,

E#{(t1, t2) ∈ T δ2 : f(ti) = 0, g(ti) ∈ Bsi , i = 1, 2} →

→ E#{(t1, t2) ∈ T̃ : f(ti) = 0, g(ti) ∈ Bsi , i = 1, 2}.

On the other hand, we have (also by monotone convergence):

∫
T δ2

E{|det∇f̃(t̃)|
2∏
i=1

1sign det∇f(ti)=si,i=1,2 | f̃(t̃) = 0}pt̃(0)dt̃→

→
∫
T 2

E{|det∇f̃(t̃)|
2∏
i=1

1sign det∇f(ti)=si | f̃(t̃) = 0}pt̃(0)dt̃.

Therefore, setting δ → 0, we get

E#{(t1, t2) ∈ T̃ : f(ti) = 0, g(ti) ∈ Bsi , i = 1, 2} =

= s1s2

∫
T 2

E{
2∏
i=1

det∇f(ti)1sign det∇f(ti)=si | f̃(t̃) = 0}pt̃(0)dt̃,

or

s1s2E#{(t1, t2) ∈ T̃ : f(ti) = 0, g(ti) ∈ Bsi} =

=

∫
T̃

E{
2∏
i=1

det∇f(ti)1sign det∇f(ti)=si | f̃(t̃) = 0}pt̃(0)dt̃.
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Now, summing over all four sequences (s1, s2) with si = ±1, we get∑
s1,s2:si=±1

s1s2E#{(t1, t2) ∈ T̃ : f(ti) = 0, g(ti) ∈ Bsi} =

=
∑

s1,s2:si=±1

∫
T̃

E{
2∏
i=1

[det∇f(ti)1sign det∇f(ti)=si ] | f̃(t̃) = 0}pt̃(0)dt̃.

On the left-hand side, we have

E
∑

s1,s2:si=±1

s1 s2#{(t1, t2) ∈ T̃ : f(ti) = 0, sign det∇f(ti) = si} =

= E{(N+(N+ − 1) +N−(N− − 1)− 2N+N−} = E(N+ −N−)2 − E(N+ +N−).

On the right-hand side, we get

∑
s1,s2:si=±1

∫
T̃

E{
2∏
i=1

[det∇f(ti)1sign det∇f(ti)=si ] | f̃(t̃) = 0}pt̃(0)dt̃ =

=

∫
T̃

E{
2∏
i=1

[det∇f(ti)] | f̃(t̃) = 0}pt̃(0)dt̃.

So, we get E(N+ − N−)2 − E(N+ + N−) =
∫̃
T

E{
2∏
i=1

[det∇f(ti)] | f̃(t̃) = 0}pt̃(0)dt̃. The

similar application of Proposition 3.3 to the fields f, g on T gives

EN+ =

∫
T

E{|det∇f(t)|1det∇f(t)>0 | f(t) = 0}pt(0)dt,

EN− =

∫
T

E{|det∇f(t)|1det∇f(t)<0 | f(t) = 0}pt(0)dt,

E(N+ +N−) =

∫
T

E{|det∇f(t)| | f(t) = 0}pt(0)dt.

Finally, we get

E(indΓf) = E(N+ −N−) =

∫
T

E{det∇f(t) | f(t) = 0}pt(0)dt

and

E(indΓf)2 = E(N+ −N−)2 =

=

∫
T̃

E{
2∏
i=1

[det∇f(ti)] | f̃(t̃) = 0}pt̃(0)dt̃+

∫
T

E{|det∇f(t)| | f(t) = 0}pt(0)dt.

This proves our statement.

5. Examples

As an application of the obtained result, we consider the case of a homogeneous
isotropic two-dimensional Gaussian vector field. To simplify our calculations, we will
consider only the case bL(r) ≡ bN (r) or, in terms of Proposition 3.4, ΦP = ΦS . So, the
correlation function of the components of such a field has the form

bij(z) = δijbN (‖z‖), z ∈ R2.
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The above-mentioned field

f(u) =

(
f1(u)
f2(u)

)
=


∫
R2

φ(u+ v)W1(dv)∫
R2

φ(u+ v)W2(dv)

 ,

where φ(x) = h(‖x‖), x ∈ R2, and h ∈ C∞0 (R) is an even function, gives an example of
such a field.

Theorem 5.1. Let f be a centered Gaussian isotropic vector field on R2 with the com-
ponents correlation function bij(z) = δijbN (‖z‖), where bN : [0,+∞)→ R has the form

bN (r) =

∞∫
0

J ′1(rα)Φ(dα) +

∞∫
0

J1(rα)

rα
Φ(dα) =

∞∫
0

J0(rα)Φ(dα),

Φ is a positive finite measure on [0,∞) with the finite fourth moment, and Φ 6= cδ0, i.e.,
Φ is not concentrated on {0}. Then the variance of the number of windings of f along
the closed piecewise smooth curve Γ that bounds an open domain T equals

E(indΓf)2 =

=

∫
T 2

2b′N (‖t1 − t2‖)
‖t1 − t2‖

{
bN (‖t1 − t2‖)b′N (‖t1 − t2‖)2

bN (0)2 − bN (‖t1 − t2‖)2
+ b′′N (‖t1 − t2‖)

}
p(t1,t2)(0)dt1dt2−

− b′′N (0)p(0)S(T ),

where S(T ) is an area of T. Here p(t1,t2)(0) = 1
(2π)2(bN (0)2−bN (‖t1−t2‖)2) , and

pt(0) = p(0) ≡ 1
2πbN (0)2 for any t ∈ T.

Remark 5.1. It is easily seen that, for any homogeneous Gaussian vector field f and the
curve Γ satisfying the conditions of Theorem 2.1, E(indΓf) = 0. To see this, it is sufficient
to prove that E{det∇f(t) | f(t) = 0} = 0. Set bij(t, s) = bij(s − t) = E(fi(t)fj(s)). We
have

E{det∇f(t) | f(t) = 0} = E(
∂f1

∂t1
(t)
∂f2

∂t2
(t)− ∂f1

∂t2
(t)
∂f2

∂t1
(t)) =

= − ∂b12

∂t1∂t2
(0) +

∂b12

∂t2∂t1
(0) = 0.

Remark 5.2. It can be shown that the given above example of the field

f(u) =

(
f1(u)
f2(u)

)
=


∫
R2

φ(u+ v)W1(dv)∫
R2

φ(u+ v)W2(dv)

 ,

where φ(x) = h(‖x‖), x ∈ R2, satisfies the conditions of the theorem 5.1. Indeed, for the
Fourier transform

b̂(k) =
1

2π

∫
R2

b(z)e−ikzdz

of the function

b(z) = bN (‖z‖) =

∫
R2

φ(u)φ(u+ z)du

we get

b̂(k) =
1

2π
φ̂(k)2.

As φ(·) ∈ S(R2), we also get φ̂(·) ∈ S(R2), where we denote by S(R2) the Schwartz space.

It is clear (as φ(x) = h(‖x‖)) that φ̂(k) depends only on the ‖k‖. Thus, the same is true
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for b̂(k), that is, b̂(k) = a(‖k‖). So, we obtain (using integration in polar coordinates and
the third property of the Bessel functions, mentioned in remark 3.2):

bN (‖z‖) = b(z) =
1

2π

∫
R2

b̂(k)eikzdk =
1

2π

∫
R2

a(‖k‖)eikzdk =

∞∫
0

αa(α)J0(α‖z‖)dα.

Therefore, the function bN (r) has the desired form

bN (r) =

∞∫
0

J0(rα)Φ(dα),

and the measure Φ(dα) = αa(α)dα has all the moments, not only the fourth, as the
function a(α) is rapidly decreasing when α→∞.

Proof of Theorem 5.1: First, we check that our field satisfies the conditions of Theo-
rem 2.1. Let us check condition e) on the modulus of continuity of the field and its
derivatives. In our case, we can state even more: the modulus of continuity of each of
the components f, ∇f satisfies the relation P(ω(η) > ε) = o(ηN ) when η ↓ 0 for any
ε > 0 and for each N > 0. To prove this, we need the following statement.

Proposition 5.1. Let h be a centered Gaussian random vector field on a closed domain
T ⊂ R2, such that its covariance function K(t, s) = Ef(t)f(s) is twice continuously
differentiable on T × T. Then the field h has a continuous modification, and its modulus
of continuity ω(η) satisfies the condition

P(ω(η) > ε) = o(ηN ), η ↓ 0

for each ε > 0 and each N > 0.

This statement is, in fact, proved on page 268 of [1]. The proof is based on the
application of the Borell–Tsirelson inequality (Theorem 2.1.1 in [1]) to the field H on
T × T defined by H(s, t) = h(t)− h(s).

It is easily seen that, with our assumptions, the correlation functions of all the fields
∂fi
∂tj

are twice continuously differentiable on T × T (as the function bN is four times

continuously differentiable); so, we can apply our proposition 5.1 to them. Thus, we get
that the fields considered are indeed continuous with probability 1, and their moduli of
continuity satisfy the conditions of Theorem 2.1.

For jointly Gaussian random variables, the theorem of normal correlation implies that
all the conditional distributions are Gaussian. So, to check the other conditions of our
theorem, we have to prove the nondegeneracy of the correlation matrix of the variables in
question. This is the statement of the following proposition, for which we have a rather
long proof included in Propositions 5.3-5.10.

Proposition 5.2. In the assumptions of Theorem 5.1, for any two points t1 6= t2, the
joint distribution of Gaussian variables fi(t

j), ∂fk
∂tlm

(tl), i, j, k, l,m = 1, 2, is nondegenerate.

In our case, for any two points t1 6= t2, the random vectors

(f1(tj),
∂f1

∂tlm
(tl), j, l,m = 1, 2) and (f2(tj),

∂f2

∂tlm
(tl), j, l,m = 1, 2)

are independent and identically distributed. So, it suffices to check that the correlation
matrix of the random variables

f1(tj), ∂f1
∂tlm

(tl), j, l,m = 1, 2
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is nondegenerate. This can be done by explicitly computing the correlation matrix of
these Gaussian variables. As our field is isotropic, it suffices to perform these computa-
tions for the particular case

t1 =

(
0
0

)
, t2 =

(
r
0

)
,

where r > 0. We have the following auxiliary propositions. We omit some of the proofs,
as they include only standard technical considerations.

Proposition 5.3. The correlation matrix of the random variables

f1(tj), ∂f1
∂tlm

(tl), j, l,m = 1, 2,

where

t1 =

(
0
0

)
, t2 =

(
r
0

)
, r > 0,

is equal to

bN (0) bN (r) 0 ∂bN (r)
∂r 0 0

bN (r) bN (0) −∂bN (r)
∂r 0 0 0

0 −∂bN (r)
∂r βN −∂

2bN (r)
∂r2 0 0

∂bN (r)
∂r 0 −∂

2bN (r)
∂r2 βN 0 0

0 0 0 0 βN −∂bN (r)
∂r /r

0 0 0 0 −∂bN (r)
∂r /r βN


.

Proposition 5.4. The determinant of the correlation matrix of the random variables

f1(tj), ∂f1
∂tlm

(tl), j, l,m = 1, 2

is equal to

1

r2
(βNbN (0)− b′N (r)2 + bN (r)b′′N (r) + βNbN (r) + bN (0)b′′N (r))×

× (βNbN (0)− b′N (r)2 + bN (r)b′′N (r)− βNbN (r)− bN (0)b′′N (r))×
× (βNr − b′N (r))(βNr + b′N (r)) =

=
1

r2
((βNbN (0)− b′N (r)2 + bN (r)b′′N (r))2 − (βNbN (r) + bN (0)b′′N (r))2)×

× ((βNr)
2 − b′N (r)2),

where r = ‖t1 − t2‖.

Proposition 5.5. For any x > 0, we have

|J ′1(x)| < 1
2 , and |J1(x)| < x

2 .

The inequality |J ′1(x)| < 1
2 can be proved using standard methods. The inequality

|J1(x)| < x
2 is an easy consequence (as J1(0) = 0).

Proposition 5.6. For any x > 0, we have

(
1

2
− J ′1(x))(1 + J0(x)) > J1(x)2,

and

(
1

2
+ J ′1(x))(1− J0(x)) > J1(x)2.
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Proof. We put

f(x) = (
1

2
− J ′1(x))(1 + J0(x))− J1(x)2

and

g(x) = (
1

2
+ J ′1(x))(1− J0(x))− J1(x)2.

The plots of the corresponding functions look like
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For x ∈ [0.5, 20], it is seen from the plots (and, of course, can be verified strictly) that
f(x) > 0 and g(x) > 0. So, we need to verify our inequalities for small values of x (i.e.,
0 < x < 0.5) and for the large ones (say, for x > 20).

Performing the symbolic differentiation with the computer algebra system Maxima,
we obtain f(0) = f ′(0) = 0, f (2)(x) > 0 on [0, 1], g(0) = g(1)(0) = g(2)(0) = g(3)(0) =
g(4)(0) = g(5)(0) = 0 and g(6)(x) > 0 on [0, 0.8] (of course, all of these can be proved
strictly). The plots of the corresponding derivatives look like
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So, we conclude that f(x) > 0 on (0, 1] and g(x) > 0 on (0, 0.8].
For values of x larger than 20, we can use the following proposition.

Proposition 5.7. For any x > 20, we have

|J0(x)| < 0.3, |J ′1(x)| < 0.3, J1(x)2 < 0.05

Using this proposition, we obtain, for x > 20,

(
1

2
− |J ′1(x)|)(1− |J0(x)|)− J1(x)2 > 0.2× 0.7− 0.05 > 0.

Therefore, for x > 20, we have f(x) > 0 and g(x) > 0. �

Proposition 5.8. For any α > 0, β > 0, we have the following inequalities:

1

2
(α2 + β2)− 2αβJ1(α)J1(β)− J0(α)β2J ′1(β)−

− J0(β)α2J ′1(α)− α2J ′1(α)− β2J ′1(β) +
1

2
α2J0(β) +

1

2
β2J0(α) > 0
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and

1

2
(α2 + β2)− 2αβJ1(α)J1(β)− J0(α)β2J ′1(β)−

− J0(β)α2J ′1(α) + α2J ′1(α) + β2J ′1(β)− 1

2
α2J0(β)− 1

2
β2J0(α) > 0.

Proof. We can rewrite our first inequality in the form

α2(
1

2
− J0(β)J ′1(α)− J ′1(α) +

1

2
J0(β))+

+ β2(
1

2
− J0(α)J ′1(β)− J ′1(β) +

1

2
J0(α))−

− 2αβJ1(α)J1(β) > 0.

We put

a =
1

2
− J0(β)J ′1(α)− J ′1(α) +

1

2
J0(β),

b = −2J1(α)J1(β),

c =
1

2
− J0(α)J ′1(β)− J ′1(β) +

1

2
J0(α).

It is sufficient to prove that the quadratic form ax2 + bxy + cy2 has no zeros, except
x = y = 0. To do this, we will show that b2 − 4ac < 0. We have from Proposition 5.6:

( 1
2 − J

′
1(α))(1 + J0(α)) > J1(α)2, and ( 1

2 − J
′
1(β))(1 + J0(β)) > J1(β)2.

Muliplying these inequalities, we get

(
1

2
− J ′1(α))(

1

2
− J ′1(β))(1 + J0(α))(1 + J0(β)) > J1(α)2J1(β)2.

After some technical manipulations, we get exactly b2 − 4ac < 0. So, the first inequality
from our proposition is proved. The second one is proved in the same way, using the
inequalities

( 1
2 + J ′1(α))(1− J0(α)) > J1(α)2, and ( 1

2 + J ′1(β))(1− J0(β)) > J1(β)2,

from the same proposition 5.6. �

Proposition 5.9. For any r > 0, the following inequality holds:

|βNbN (0)− b′N (r)2 + bN (r)b′′N (r)| > |bN (0)b′′N (r) + βNbN (r)|.

Proof. We have b′N (r) = −
∞∫
0

αJ1(rα)Φ(dα). Therefore,

b′N (r)2 =

∞∫
0

∞∫
0

αβJ1(rα)J1(rβ)Φ(dα)Φ(dβ).

Using the equality b′′N (r) = −
∞∫
0

β2J0(rβ)Φ(dβ), we obtain

bN (r)b′′N (r) = −
∞∫

0

β2J0(rα)J ′1(rβ)Φ(dα)Φ(dβ) =

= −1

2

∞∫
0

∞∫
0

J0(rα)β2J ′1(rβ)Φ(dα)Φ(dβ)− 1

2

∞∫
0

∞∫
0

J0(rβ)α2J ′1(rα)Φ(dα)Φ(dβ).
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As for the term βNbN (0), we get from βN = 1
2

∞∫
0

α2Φ(dα) and bN (0) =
∞∫
0

Φ(dβ) that

βNbN (0) =
1

2

∞∫
0

α2Φ(dα)Φ(dβ) =
1

2

∞∫
0

α2 + β2

2
Φ(dα)Φ(dβ).

In the same way, we get

bN (0)b′′N (r) = −
∞∫

0

α2J ′1(rα) + β2J ′1(rβ)

2
Φ(dα)Φ(dβ).

So, we need to prove the following inequality:

|1
2

∞∫
0

α2 + β2

2
Φ(dα)Φ(dβ)−

∞∫
0

∞∫
0

αβJ1(rα)J1(rβ)Φ(dα)Φ(dβ)−

− 1

2

∞∫
0

∞∫
0

J0(rα)β2J ′1(rβ)Φ(dα)Φ(dβ)− 1

2

∞∫
0

∞∫
0

J0(rβ)α2J ′1(rα)Φ(dα)Φ(dβ)| >

> | −
∞∫

0

∞∫
0

α2J ′1(rα) + β2J ′1(rβ)

2
Φ(dα)Φ(dβ)+

+
1

4

∞∫
0

∞∫
0

α2J0(rβ)Φ(dα)Φ(dβ) +
1

2

∞∫
0

∞∫
0

β2J0(rα)Φ(dα)Φ(dβ)|.

It suffices to prove that, for every α, β > 0, the two following inequalities hold:{
1

2
(α2 + β2)− 2αβJ1(rα)J1(rβ)−

−J0(rα)β2J ′1(rβ)− J0(rβ)α2J ′1(rα)− α2J ′1(rα)

}
±

±
{
−α2J ′1(rα)− β2J ′1(rβ) +

1

2
α2J0(rβ) +

1

2
β2J0(rα)

}
> 0.

We can put r = 1, as the multiplication by r2 and setting α̂ = rα, β̂ = rβ reduce our
inequality to the case r = 1. So, we need to prove that{

1

2
(α2 + β2)− 2αβJ1(α)J1(β)−

− J0(α)β2J ′1(β)− J0(β)α2J ′1(α)− α2J ′1(α)

}
±

±
{
−α2J ′1(α)− β2J ′1(β) +

1

2
α2J0(β) +

1

2
β2J0(α)

}
> 0.

These are exactly the inequalites from Proposition 5.8. �

Proposition 5.10. For any r > 0, βN · r > |b′N (r)|.

Proof. We have βN = 1
2

∞∫
0

α2Φ(dα) and b′N (r) = −α
∞∫
0

J1(rα)Φ(dα).

So, it suffices to prove that |αJ1(rα)| < 1
2α

2r, or |J1(rα)| < 1
2αr, which is known from

Proposition 5.5. �
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Using Proposition 5.10 with propositions 5.9 and 5.4 proves Proposition 5.2.
The latter allows to check the conditions b′, c′, d′ of Theorem 2.1 for our case.
We now apply Theorem 2.1. It suffices to prove that

E(det∇f(t1) det∇f(t2) | f(t1) = f(t2) = 0) =

=
2b′N (‖t1 − t2‖)
‖t1 − t2‖

{
bN (‖t1 − t2‖)b′N (‖t1 − t2‖)2

bN (0)2 − bN (‖t1 − t2‖)2
+ b′′N (‖t1 − t2‖)

}
and E(|det∇f(t)| | f(t) = 0) = βN , where βN is defined in Proposition 3.4.

Denote, by (Xij , Yij), a conditional distribution (∂fi∂tj
(t1), ∂fi∂tj

(t2)) given f(t1) = f(t2) =

0. It follows from the theorem of normal correlation that (Xij , Yij) is again a Gaussian

vector. We put uijkl = E( ∂fi∂tk
(t1)

∂fj
∂tl

(t2) | f(t1) = f(t2) = 0).

Note that the following three lemmas (Lemma 5.1,5.2, 5.3) hold for any centered
homogeneous Gaussian vector field.

Lemma 5.1. The following relation holds:

E(det∇f(t1) det∇f(t2) | f(t1) = f(t2) = 0) =

=
1

2

∑
i,j,k,l=1,2

(−1)i+j+k+luijklu3−i,3−j,3−k,3−l+

+ E(det∇f(t1)|f(t1) = f(t2) = 0)E(det∇f(t2) | f(t1) = f(t2) = 0).

Proof. In our notation, we have

E(det∇f(t1) det∇f(t2) | f(t1) = f(t2) = 0) =

= E{(X11X22 −X12X21)(Y11Y22 − Y12Y21)} =

= EX11X22Y11Y22 − EX12X21Y11Y22 − EX11X22Y12Y21 + EX12X21Y12Y21.

The application of Wick’s formula ([1], Lemma 11.6.1) gives:

E(det∇f(t1) det∇f(t2) | f(t1) = f(t2) = 0) =

= EX11X22EY11Y22 − EX12X21EY11Y22 − EX11X22EY12Y21 + EX12X21EY12Y21︸ ︷︷ ︸
E(det∇f(t1)|f(t1)=f(t2)=0)E(det∇f(t2)|f(t1)=f(t2)=0)

+

+ EX11Y11EX22Y22 + EX11Y22EX22Y11 − EX12Y11EX21Y22 − EX12Y22EX21Y11−
− EX11Y12EX22Y21 − EX11Y21EX22Y12 + EX12Y12EX21Y21 + EX12Y21EX21Y12 =

= E(det∇f(t1) | f(t1) = f(t2) = 0)× E(det∇f(t2) | f(t1) = f(t2) = 0)+

+ u1111u2222 + u1212u2121 − u1121u2212 − u1222u2111−
− u1112u2221 − u1211u2122 + u1122u2211 + u1221u2112.

�

Denote, by K, the covariance matrix K = cov(f1(t1), f2(t1), f1(t2), f2(t2)).

Lemma 5.2.

uijkl = E(
∂fi
∂tk

(t1)
∂fj
∂tl

(t2)) +
(

0 0 ∂bi1
∂tk

∂bi2
∂tk

)
K−1


∂b1j
∂tl
∂b2j
∂tl
0
0

 =

= E(
∂fi
∂tk

(t1)
∂fj
∂tl

(t2)) +
(
∂bi1
∂tk

∂bi2
∂tk

)
K−1

12

(
∂b1j
∂tl
∂b2j
∂tl

)
.
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Here, K−1
12 is a submatrix of K−1, formed with the intersection of its two last rows

and two first columns, and bij = bij(t
2 − t1) = Efi(t1)fj(t

2).

Proof. Here, we calculate the conditional expectation

E{X1X2 | Y1 = Y2 = Y3 = Y4 = 0}

for jointly Gaussian centered random variables X1, X2, Y1, Y2, Y3, Y4. We can write:

X1 =

4∑
i=1

αiYi +X1⊥, X2 =

4∑
i=1

βiYi +X2⊥,

where X1⊥, X2⊥ are independent of Y1, Y2, Y3, Y4.
Denote Xiq = Xi −Xi⊥, i = 1, 2, C = cov(Y1, Y2, Y3, Y4).
Then

E{X1X2|Y1 = Y2 = Y3 = Y4 = 0} = EX1X2 − EX1qX2q.

But

EX1qX2q = EX1qX2 =

4∑
i=1

αiEYiX2 =


EY1X2

EY2X2

EY3X2

EY4X2


T

α,

where α =


α1

α2

α3

α4

 . As α = C−1


EX1Y1

EX1Y2

EX1Y3

EX1Y4

 , we get the statement. �

Lemma 5.3.

E(det∇f(t1) | f(t1) = f(t2) = 0) =

=
(
∂b11
∂t2

∂b12
∂t2

)
K−1

22

(
∂b21
∂t1
∂b22
∂t1

)
−
(
∂b11
∂t1

∂b12
∂t1

)
K−1

22

(
∂b21
∂t2
∂b22
∂t2

)
.

Here, K−1
22 is a submatrix of the matrix K−1 formed by the intersection of its two last

rows and two last columns.

Proof.

E(det∇f(t1) | f(t1) = f(t2) = 0) =

= E(
∂f1

∂t1

∂f2

∂t2
(t1)− ∂f1

∂t2

∂f2

∂t1
(t1) | f(t1) = f(t2) = 0) =
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= E
∂f1

∂t1

∂f2

∂t2
(t1)−

−
(
E∂f1
∂t1

(t1)f1(t1) E∂f1
∂t1

(t1)f2(t1) E∂f1
∂t1

(t1)f1(t2) E∂f1
∂t1

(t1)f2(t2)
)
K−1·

·


E∂f2
∂t2

(t1)f1(t1)

E∂f2
∂t2

(t1)f2(t1)

E∂f2
∂t2

(t1)f1(t2)

E∂f2
∂t2

(t1)f2(t2)

− E
∂f1

∂t2

∂f2

∂t1
(t1)+

+
(
E∂f1
∂t2

(t1)f1(t1) E∂f1
∂t2

(t1)f2(t1) E∂f1
∂t2

(t1)f1(t2) E∂f1
∂t2

(t1)f2(t2)
)
K−1·

·


E∂f2
∂t2

(t1)f1(t1)

E∂f2
∂t2

(t1)f2(t1)

E∂f2
∂t1

(t1)f1(t2)

E∂f2
∂t1

(t1)f2(t2)

 =

= E
∂f1

∂t1

∂f2

∂t2
(t1)−

−
(

0 0 E∂f1
∂t1

(t1)f1(t2) E∂f1
∂t1

(t1)f2(t2)
)
K−1


0
0

E∂f2
∂t2

(t1)f1(t2)

E∂f2
∂t2

(t1)f2(t2)

−
− E

∂f1

∂t2

∂f2

∂t1
(t1)+

+
(

0 0 E∂f1
∂t2

(t1)f1(t2) E∂f1
∂t2

(t1)f2(t2)
)
K−1


0
0

E∂f2
∂t1

(t1)f1(t2)

E∂f2
∂t1

(t1)f2(t2)

 =

= E(
∂f1

∂t1

∂f2

∂t2
(t1)− E(

∂f1

∂t2

∂f2

∂t1
(t1)+

+

(
E∂f1
∂t2

(t1)f1(t2)

E∂f1
∂t2

(t1)f2(t2)

)
K−1

22

(
E∂f2
∂t1

(t1)f1(t2)

E∂f2
∂t1

(t1)f2(t2)

)
−

−

(
E∂f2
∂t1

(t1)f1(t2)

E∂f2
∂t1

(t1)f2(t2)

)
K−1

22

(
E∂f2
∂t2

(t1)f1(t2)

E∂f2
∂t2

(t1)f2(t2)

)
=

= (− ∂b12

∂t1∂t2
(0) +

∂b12

∂t2∂t1
(0))+

+
(
−∂b11∂t2

∂b12
∂t2

)
K−1

22

(
−∂b21∂t1

−∂b22∂t1

)
−
(
−∂b11∂t1

∂b12
∂t1

)
K−1

22

(
−∂b21
∂t2
−∂b22
∂t2

)
=

=
(
∂b11
∂t2

∂b12
∂t2

)
K−1

22

(
∂b21
∂t1
∂b22
∂t1

)
−
(
∂b11
∂t1

∂b12
∂t1

)
K−1

22

(
∂b21
∂t2
∂b22
∂t2

)
.

�

In the following lemmas, we substantially use the form bij(z) = δijbN (‖z‖) of the
covariance function of the components. The proofs of these statements are made by
direct computations with the use of above-mentioned expressions from [3]. We denote
r = ‖t1 − t2‖. As the considered random field is isotropic, the value of the expression
E{det∇f(t1) det∇f(t2) | f(t1) = f(t2) = 0} depends only on r = ‖t1 − t2‖. So, in
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Lemmas 5.4-5.8 we put

t1 =

(
0
0

)
, t2 =

(
r
0

)
,

and this will not influence the final result.

Lemma 5.4.

E(
∂fi
∂tk

(t1)
∂fj
∂tl

(t2)) = −δijδkl
{
δk1

∂2bN (r)

∂r2
+ δk2

1

r

∂bN (r)

∂r

}
.

Lemma 5.5. The matrix K = cov(f1(t1), f2(t1), f1(t2), f2(t2)) has the form

K =


bN (0) 0 bN (r) 0

0 bN (0) 0 bN (r)
bN (r) 0 bN (0) 0

0 bN (r) 0 bN (0)

 .

Lemma 5.6. Matrices K−1
22 , K

−1
12 are of the form

K−1
22 =

bN (0)

bN (0)2 − bN (r)2
I, K−1

12 = − bN (0)

bN (0)2 − bN (r)2
I,

where I is a 2× 2 unit matrix.

Lemma 5.7. The following relations hold:

∂

∂t1
b11(r, 0) =

∂

∂t1
b22(r, 0) = b′N (r),

∂

∂t2
b11(r, 0) =

∂

∂t1
b12(r, 0) =

∂

∂t2
b12(r, 0) =

=
∂

∂t1
b21(r, 0) =

∂

∂t2
b21(r, 0) =

∂

∂t2
b22(r, 0) = 0.

Lemma 5.8.

uijkl = −δijδkl

{
δk1

[
∂2bN (r)

∂r2
+

bN (r)

bN (0)2 − bN (r)2

(
∂bN (r)

∂r

)2
]

+ δk2
1

r

∂bN (r)

∂r

}
.

The proof of this lemma is based on Lemmas 5.2, 5.4, 5.6, and 5.7.

Lemma 5.9.

E(det∇f(t1) | f(t1) = f(t2) = 0) = 0.

The proof of this lemma is based on Lemmas 5.3, 5.6, and 5.7. Note that, although
Lemmas 5.6 and 5.7 are proved for the special case

t1 =

(
0
0

)
, t2 =

(
r
0

)
,

the result of Lemma 5.9 holds for any two points t1 6= t2. The same is true for the next
lemma.

Lemma 5.10.

E(det∇f(t1) det∇f(t2) | f(t1) = f(t2) = 0) =

=
2b′N (‖t1 − t2‖)
‖t1 − t2‖

{
bN (‖t1 − t2‖)b′N (‖t1 − t2‖)2

bN (0)2 − bN (‖t1 − t2‖)2
+ b′′N (‖t1 − t2‖)

}
.

This lemma is proved with the use of the Lemmas 5.1, 5.8, and 5.9.
We now calculate E{|det∇f(t)| | f(t) = 0}.
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Lemma 5.11.

E
∂fi
∂tk

(t)
∂fj
∂tl

(t) = δijδklβN ,

where βN = −b′′N (0), as in Proposition 3.4

Lemma 5.12.

E{|det∇f(t)| | f(t) = 0} = βN .

Proof. It is easily seen that all ∂fi∂tk
(t) are independent of f(t). So, det∇f(t) has the form

ξ1ξ2 − ξ3ξ4, where ξi ∈ N(0, βN ), i = 1, 2, 3, 4 are jointly independent Gaussian random
variables (as can be seen from Lemma 5.11), and

E{|det∇f(t)| | f(t) = 0} = E|det∇f(t)| = E|ξ1ξ2 − ξ3ξ4|.

Setting ηi = 1√
βN
ξi, we get for the jointly independent standard Gaussian random vari-

ables ηi, i = 1, 2, 3, 4:

E|ξ1ξ2 − ξ3ξ4| = βNE|η1η2 − η3η4|,
and taking

ζ1 =
η1 + η2√

2
, ζ2 =

η1 − η2√
2

, ζ3 =
η3 + η4√

2
, ζ4 =

η3 − η4√
2

,

we get, for the jointly independent standard Gaussian random variables ζi, i = 1, 2, 3, 4:

E|η1η2 − η3η4| =
1

2
E|ζ2

1 + ζ2
4 − ζ2

2 − ζ2
3 |.

So, we get

E|ζ2
1 + ζ2

4 − ζ2
2 − ζ2

3 | =
∫
R4

|x2
1 + x2

4 − x2
2 − x2

3|
1
√

2π
4 e
− x

2
1+x22+x23+x24

2 dx1dx2dx3dx4 =

= (x1 = r1 cosφ1, x4 = r1 sinφ1, x2 = r2 cosφ2, x3 = r2 sinφ2) =

=

∞∫
0

∞∫
0

|r2
1 − r2

2|e−
r21+r22

2 r1r2dr1dr2 =

= (u =
r2
1

2
, v =

r2
2

2
) = 2

∞∫
0

∞∫
0

|u− v|e−(u+v)dudv = 2.

�

Thus, Theorem 5.1 is completely proved. �

Theorem 5.2. Let {fσ}σ>0 be a family of random isotropic Gaussian vector fields on
R2, defined by

fσ(t) =

(
f1,σ(t)
f2,σ(t)

)
=


∫
R2

φσ(t+ v)W1(dv)∫
R2

φσ(t+ v)W2(dv)

 ,

where φσ(x, y) = σ2φ(σx, σy), φ ∈ C∞0 (R2) is a nonnegative function with the property∫
R2

φ2(u)du = 1, W1 and W2 are two independent Brownian sheets on R2. Then the

variance of the winding number of the curve

1

σ
Γ =

{(
1

σ
x,

1

σ
y

)
| (x, y) ∈ Γ

}
is constant (i.e., it does not depend on σ).
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Proof. Consider a random field f̃σ(t) = f(σt). It is clear that the number of windings

of the field f̃σ along the curve 1
σΓ coincides (with probability 1) with the number of

windings of the field f along Γ: indΓf = ind 1
σΓf̃σ. On the other hand, the fields f̃σ and

fσ have the same distribution (since these fields are Gaussian and centered, this can be
easily checked by comparing the correlation functions). This implies that the random
variables indΓf and ind 1

σΓfσ have the same distribution. So, E(indΓfσ)2 is constant. �
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