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M. P. LAGUNOVA

STOCHASTIC DIFFERENTIAL EQUATIONS WITH INTERACTION

AND THE LAW OF ITERATED LOGARITHM

We consider a one-dimensional stochastic differential equation with interaction with

no drift part. For single trajectories, we obtain the result similar to the law of iterated

logarithm for a Wiener process.

1. Introduction

The main object of this paper is the one-dimensional stochastic differential equation
(SDE) with interaction with no drift part

(1)


dx(u, t) = σ(x(u, t), µt)dw(t)

x(u, 0) = u, u ∈ R
µt = µ0 ◦ x(·, t)−1, t ≥ 0.

Such equations and stochastic flows driven by them were introduced by A.A. Doro-
govtsev [1]. It occurs that the properties of the solutions to such equations differ from
those of the solutions to usual SDEs [5]. So it is of interest to compare their asymptotic
behavior with the behavior of the diffusion processes. We want to obtain some kind
of the law of iterated logarithm for trajectories of (1). For the stochastic differential
equations without interaction, such results are known (see, e.g., [2], [3]). The difficulty
of our case is that the behavior of a single trajectory {x(u, t), t ≥ 0} depends on all other
trajectories through the measure-valued process {µt, t ≥ 0}.

2. Main results

Let M1 be the space of all probability measures on R having the first moment with the
Wasserstein metric [1]. Consider Eq. (1) with σ : R×M1 → R being global Lipschitz, and
µ0 ∈ M1. Under such conditions, there exists a unique strong solution to (1) such that
x is a flow of homeomorphisms ([1]). The following result shows that, for the equation
without drift (1), the trajectories of different particles remain not far from one another
at infinity.

Lemma 1. For all u, v ∈ R, there exists

lim
t→∞

(x(u, t)− x(v, t)) a.e.

Proof. Fix u > v ∈ R. Then, by the random time change [4],

x(u, t)− x(v, t) = u− v +

∫ t

0

(σ(x(u, s), µs)− σ(x(v, s), µs))dw(s) =

= u− v + wu,v

(∫ t

0

(σ(x(u, s), µs)− σ(x(v, s), µs))
2ds
)
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for some Wiener process wu,v. Since x(u, t)− x(v, t) > 0 for all t ≥ 0 and∫ t

0

(σ(x(u, s), µs)− σ(x(v, s), µs))
2ds

is a continuous random process,∫ ∞
0

(σ(x(u, s), µs)− σ(x(v, s), µs))
2ds ≤ τu,v < +∞.

Here, τu,v is the time of the first strike of −(u− v) by wu,v. So with probability 1,

lim
t→∞

(x(u, t)− x(v, t)) = wu,v

(∫ ∞
0

(σ(x(u, s), µs)− σ(x(v, s), µs))
2ds
)
.

The proof is completed. �

Of course, the difference x(u, t) − x(v, t) is a martingale, which does not change the
sign. So, it has a limit at infinity by the general theory [4]. But we present a direct
proof, since we need the precise formula for the characteristics of x(u, t)− x(v, t).

The corollary of this lemma is that the law of iterated logarithm holds (or does not
hold) for all u ∈ R simultaneously. Indeed, since x(u, ·)− x(v, ·) is bounded,

lim
t→∞

( x(u, t)√
2t lln t

− x(v, t)√
2t lln t

)
= 0 a.e.

So, we can obtain the law of iterated logarithm only for some fixed u, for example, u = 0.
Denote z(u, t) = x(u, t)− x(0, t). We need the following result.

Lemma 2. Let β > 0 be a positive number. Then

(2) lim
|u|→∞

supt≥0 |z(u, t)|
1 + |u|1+β

<∞ a.e.

Proof. We will consider only u > 0, the proof for u < 0 being similar. Consider some
sequence un ↑ +∞. We have

z(un, t) = un + wun,0

(∫ t

0

σ2(x(u, s), µs)ds
)
.

Hence,

P{sup
t≥0

z(un, t) > u1+βn } ≤ P{ sup
0≤s≤τun,0

wun,0(s) > u1+βn − un} =

=
un

u1+βn

= u−βn .

Put un = n2/β . Then we have

∞∑
n=1

P{sup
t≥0

z(un, t) > u1+βn } < +∞,

and, by the Borel–Cantelli lemma with probability 1, there exists N ∈ N such that

sup
t≥0

z(un, t) < u1+βn for all n ≥ N.

Since x is a homeomorphism, for u > uN , u ∈ [un, un+1],

sup
t≥0

z(u, t) < sup
t≥0

z(un+1, t) < 2
2
β+2u1+β ,

so (2) holds. The proof is completed. �
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Consider now Eq. (1) with σ(u, µ) =
∫
R b(u− v)µ(dv) for some real function b. Then

Eq. (1) takes the form

(3)

{
dx(u, t) =

∫
R b(x(u, t)− x(v, t))µ0(dv)dw(t)

x(u, 0) = u.

Now, the interaction of particles in a random environment depends on distances between
them. Equation (3) can be considered as a stochastic analog of the Kuramoto model for
interacting oscillators [6].

Theorem 1. Let the coefficients of (3) satisfy the following conditions:
1) b is global Lipschitz with some constant L,
2) sup(−∞;0] b < +∞; inf [0;∞) b > −∞,
3) µ0 ∈M1+α for some α > 0.
Then

P
{

lim
t→∞

x(0, t)√
2t lln t

∈ D
}

= P
{

lim
t→∞

x(0, t)√
2t lln t

∈ −D
}

= 1,

where D = {|u| : u ∈ [inf [0;+∞) b; sup(−∞;0] b]}.

Proof. For every u ∈ R, we denote

ζu = lim
t→∞

z(u, t).

For every u ∈ R, this limit exists almost everywhere. Now, let S be a (countable) set of
all rational numbers and all atoms of measure µ0. Then, with probability 1,

z(u, t)→ ζu, t→∞ for all u ∈ S.

Let

ξu =

{
ζu, u ∈ S
limS3v→u− ζv, u /∈ S

(the limit exists, since ζv is non-decreasing). ξu is also non-decreasing, and it is continuous
except for a countable number of jumps. Hence,

µ0{u : ξu 6= ζu} = 0,

and

µ0{u : z(u, t)→ ξu, t→∞} = 1.

With regard for the proof of Lemma 1, we have

(4)

∫ ∞
0

(∫
R

(b(z(u, s)− z(v, s))− b(−z(v, s)))µ0(dv)
)2
ds <∞ a.e.

Applying Lemma 2 with β = α, we have, for all s ≥ 0,

|b(z(u, s)− z(v, s))− b(−z(v, s))| ≤ L|z(u, s)| ≤ LC(ω)(1 + |u|1+α).

Thus, by the Lebesgue theorem,∫
R

(b(z(u, s)− z(v, s))− b(−z(v, s)))µ0(dv)→

→
∫
R

(b(ξu − ξv)− b(−ξv))µ0(dv), s→∞ a.e.

(5)

From (4) and (5), we have, with probability 1,∫
R
b(ξu − ξv)µ0(dv) =

∫
R
b(−ξv)µ0(dv), u ∈ R.
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Now let un ↑ +∞, n→∞. Applying the Fatou lemma to the functions b(ξun−ξv)1I{v<un}
(which are bounded below by a constant by condition 2) of the theorem), we have∫

R
lim
n→∞

(b(ξun − ξv)1I{v<un})µ0(dv) ≤

≤ lim
n→∞

∫ un

−∞
b(ξun − ξv)µ0(dv) =

∫
R
b(−ξv)µ0(dv)−

− lim
n→∞

∫ +∞

un

b(ξun − ξv)µ0(dv) =

∫
R
b(−ξv)µ0(dv)

(we used Lemma 2 and the condition µ0 ∈M1+α).
Now, we have

lim
n→∞

b(ξun − ξv)1I{v<un} ≥ inf
z≥0

b(z),

and, thus,

(6)

∫
R
b(−ξv)µ0(dv) ≥ inf

[0;+∞)
b.

Analogously,

(7)

∫
R
b(−ξv)µ0(dv) ≤ sup

(−∞;0]

b.

Now returning to the process x, we have, for some Wiener process w0,

x(0, t) =

∫ t

0

∫
R
b(−z(v, s))µ0(dv)dw(s) =

= w0

(∫ t

0

(∫
R
b(−z(v, s))µ0(dv)

)2
ds
)
.

Denote

T (t) =

∫ t

0

(∫
R
b(−z(v, s))µ0(dv)

)2
ds.

Then

lim
t→∞

T (t)

t
= lim
t→∞

(∫
R
b(−z(v, t))µ0(dv)

)2
=
(∫

R
b(−ξv)µ0(dv)

)2
.

If T (t)→∞, t→∞,

lim
t→∞

x(0, t)√
2t lln t

= lim
t→∞

w0(T (t))√
2T (t) llnT (t)

·
√

lim
t→∞

T (t)

t
=

=
∣∣∣ ∫

R
b(−ξv)µ0(dv)

∣∣∣.
Else,

lim
t→∞

x(0, t)√
2t lln t

= lim
t→∞

w0(T (∞))√
2t lln t

= 0 =
∣∣∣ ∫

R
b(−ξv)µ0(dv)

∣∣∣.
Analogously,

lim
t→∞

x(0, t)√
2t lln t

= −
∣∣∣ ∫

R
b(−ξv)µ0(dv)

∣∣∣.
Together with (6) and (7), this proves the theorem. �
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Corollary. Under the conditions of the theorem, if b is such that

u(b(u)− b(0)) ≥ 0 (≤ 0), u ∈ R,
then

P
{

lim
t→∞

x(0, t)√
2t lln t

= |b(0)|
}

= P
{

lim
t→∞

x(0, t)√
2t lln t

= −|b(0)|
}

= 1.

Example. Let

µ0 =
1

2
δ0 +

1

2
δπ

2
,

b(u) = 1 + cosu+ sinu1I{u≥0}.

Then

dx(0, t) = (
1

2
b(0) +

1

2
b(x(0, t)− x(

π

2
, t)))dw(t)

dx(
π

2
, t) = (

1

2
b(0) +

1

2
b(x(

π

2
, t)− x(0, t)))dw(t).

Now

dz(
π

2
, t) =

1

2
sin z(

π

2
, t)dw(t).

The limit
ξπ

2
= lim
t→∞

z(
π

2
, t)

takes only values 0 and π. Due to the symmetry,

P (ξπ
2

= 0) = P (ξπ
2

= π) =
1

2
,

P
{∫

R
b(−ξv)µ0(dv) = 2

}
= P

{∫
R
b(−ξv)µ0(dv) = 1

}
=

1

2
.

So, we have

P
{

lim
t→∞

x(0, t)√
2t lln t

= 2
}

= P
{

lim
t→∞

x(0, t)√
2t lln t

= 1
}

=
1

2
.
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