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ONE TYPE OF SINGULAR PERTURBATIONS OF

A MULTIDIMENSIONAL STABLE PROCESS

A semigroup of linear operators on the space of all continuous bounded functions

given on a d-dimensional Euclidean space Rd is constructed such that its generator
can be written in the following form

A + q(x)δS(x)Bν ,

where A is the generator of a symmetric stable process in Rd (that is, a pseudo-

differential operator whose symbol is given by (−c|ξ|α)ξ∈Rd , parameters c > 0 and

α ∈ (1, 2] are fixed); Bν is the operator with the symbol (2ic|ξ|α−2(ξ, ν))ξ∈Rd (i =√
−1 and ν ∈ Rd is a fixed unit vector); S is a hyperplane in Rd that is orthogonal

to ν; (δS(x))x∈Rd is a generalized function whose action on a test function consists

in integrating the latter one over S (with respect to Lebesgue measure on S); and
(q(x))x∈S is a given bounded continuous function with real values. This semigroup

is generated by some kernel that can be given by an explicit formula. However, there

is no Markov process in Rd corresponding to this semigroup because it does not
preserve the property of a function to take on only non-negative values.

1. Introduction

Denote by ĝ(t, x, y), t > 0, x ∈ Rd, and y ∈ Rd, transition probability density of a
Wiener process in Rd:

ĝ(t, x, y) = (2πt)−d/2 exp
{
−|y − x|2/2t

}
.

Let S be a hyperplane in Rd that is orthogonal to a fixed unit vector ν ∈ Rd: S = {x ∈
Rd : (x, ν) = 0} and let a continuous bounded function (q(x))x∈S be given. We define a

function Ĝ of the arguments t > 0, x ∈ Rd, and y ∈ Rd by the formula

(1) Ĝ(t, x, y) = ĝ(t, x, y) +

∫ t

0

dτ

∫
S

ĝ(t− τ, x, z)∂ĝ(τ, z, y)

∂νz
q(z) dσz,

where ∂ĝ(τ,z,y)
∂νz

is the derivative of ĝ (as a function of the argument z) in the direction ν:

∂ĝ(τ, z, y)

∂νz
=

(y − z, ν)

τ
ĝ(τ, z, y)

2000 Mathematics Subject Classification. Primary 47D06, 47G30; Secondary 60E07, 60G52.
Key words and phrases. Markov process, Wiener process, symmetric stable process, singular per-

turbation, pseudo-differential operator, pseudo-differential equation, semigroup of operators, transition
probability density.

42



SINGULAR PERTURBATIONS OF A STABLE PROCESS 43

and the inner integral on the right hand side of (1) is a surface integral over S. It is

well-known that the function Ĝ satisfies the Kolmogorov-Chapman equation

(2) Ĝ(s+ t, x, y) =

∫
Rd
Ĝ(s, x, z)Ĝ(t, z, y) dz

for all s > 0, t > 0, x ∈ Rd, and y ∈ Rd; and the following condition∫
Rd
Ĝ(t, x, y) dy = 1

holds true for all t > 0, x ∈ Rd (see, for example, [13]). If additionally the function q is

such that |q(x)| ≤ 1 for all x ∈ S, then the function Ĝ takes on only non-negative values.

In this case there exists a continuous Markov process in Rd with the function Ĝ being
its transition probability density and this process can be characterized as a solution to
the following stochastic differential equation (see [13])

dx̂(t) = νq(x̂(t))δS(x̂(t))dt+ dw(t),

where (w(t))t≥0 is a d-dimensional Wiener process and the generalized function (δS(x))x∈Rd
is determined by the relation

〈δS , ϕ〉 =

∫
S

ϕ(x) dσ

valid for any continuous compactly supported function ϕ on Rd.
If d = 1 (in this case S = {0} and q(0) is a constant q from the segment [−1, 1]), then

Ĝ is transition probability density of the so-called skew Brownian motion

Ĝ(t, x, y) = (2πt)−1/2
[
exp

{
−(y − x)2/2t

}
+ q sign y exp

{
−(|y|+ |x|)2/2t

}]
,

t > 0, x ∈ R1, and y ∈ R1 (see [6], [13]).
Formula (1) gives thus some transformation of a d-dimensional Wiener process. The

aim of this article is to transform likewise a d-dimensional symmetric stable process, that
is a Markov process in Rd with its transition probability density given by

g(t, x, y) =
1

(2π)d

∫
Rd

exp {i(y − x, ξ)− ct|ξ|α} dξ, t > 0, x ∈ Rd, y ∈ Rd

(parameters c > 0 and α ∈ (1, 2) will be fixed throughout this article).
If we put into formula (1) the function g instead of ĝ, we arrive at the situation when

the integrals on the right hand side of (1) do not exist. This suggests an idea to change
at the same time the operator ∂

∂νz
in (1) by a weaker one in some sense. It is not difficult

to comprehend that the operator Bν with its symbol given by (2ic|ξ|α−2(ξ, ν))ξ∈Rd is
suitable.

So, we arrive at the formula

(3) G(t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
S

g(t− τ, x, z)gν(τ, z, y)q(z) dσz,

where t > 0, x ∈ Rd, y ∈ Rd, gν(τ, z, y) = Bνg(τ, ·, y)(z).
We will show that the function G is well-defined and the family of operators (Tt)t>0

defined for any bounded continuous function ϕ on Rd by the equality

(4) Ttϕ(x) =

∫
Rd
G(t, x, y)ϕ(y) dy, t > 0, x ∈ Rd,

indeed constitutes a semigroup generated (in some sense) by the operator

A + q(x)δS(x)Bν ,

where A is the generator of a symmetric stable process in Rd, that is, a pseudo-differential
operator with its symbol given by (−c|ξ|α)ξ∈Rd . The case of d = 1 was considered in
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[10]. The generalization of that result on a multidimensional situation is not trivial for
the simple reason that a multidimensional stable process, unlike a Wiener one, is not a
set of independent one-dimensional processes.

Symmetric stable processes (and some more general ones) were perturbed by terms
of the type (a(x),∇) with a more or less singular function (a(x))x∈Rd in various papers
that can be considered as close to this article (see, for example, [3, 5, 8, 9, 11, 12, 14]).

The article is organized as follows. In Section 2 we formulate some assertions about
multidimensional symmetric stable distributions, in Section 3 the operator B is intro-
duced, Section 4 is devoted to describing the properties of the function G, in Section 5 the
corresponding semigroup of operators is described, and finally, in Section 6 the pseudo-
differential equation for the semigroup is found.

2. Multidimensional stable distributions

Denote by (hd(x))x∈Rd for an integer d the function given by

hd(x) = (2π)−d
∫
Rd

exp {−i(x, ξ)− c|ξ|α} dξ.

The function g defined above can be written in the form

g(t, x, y) = t−d/αhd((y − x)t−1/α)

for all t > 0, x ∈ Rd, and y ∈ Rd.
The following representation of hd is well-known (see, for example, [1]):

(5) hd(x) = (2π)−d/2|x|1−d/2
∫ ∞
0

e−cρ
α

ρd/2Jd/2−1(ρ|x|) dρ, x ∈ Rd,

where Jµ is the Bessel function of order µ:

Jµ(z) =
(z/2)µ√

πΓ(µ+ 1/2)

∫ 1

−1
(1− u2)µ−1/2 cos(zu) du

for Reµ > −1/2 and J−1/2(z) =
√

2
πz cos z.

The formula (5) implies the following statement characterizing the behavior of hd(x)
for large x (see [1]):

(6) lim
|x|→∞

|x|d+αhd(x) = cα2α−1π−d/2−1 sin
πα

2
Γ

(
d+ α

2

)
Γ
(α

2

)
It follows from the relation (6) that there exists a constant N > 0 such that

hd(x) ≤ N 1

(1 + |x|)d+α

for all x ∈ Rd. This inequality implies the following one

(7) g(t, x, y) ≤ N t

(t1/α + |x− y|)d+α

valid for all t > 0, x ∈ Rd, and y ∈ Rd.
The inequality (7) as well as similar ones for (fractional) derivatives of g can be found

in [4]. We will have below the opportunities to use them.
The next assertion seems to be almost evident from the probabilistic point of view,

nevertheless, it will be provided by an analytical proof.

Proposition 2.1. Let d ≥ 2, ν be a fixed unit vector in Rd and x̃ be an arbitrary vector
in Rd orthogonal to ν. Then for any ξ ∈ R1 the following formula

(8)

∫
R1

eiλξhd(λν + x̃) dλ = (2π)−
d−1
2 |x̃|−

d−3
2

∫ ∞
0

e−c(ξ
2+ρ2)α/2ρ

d−1
2 J d−3

2
(ρ|x̃|) dρ
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holds true.

Proof. The integral on the left hand side of (8)(denote it by I) can be written as follows

I =
2

(2π)d/2

∫ ∞
0

e−cρ
α

ρd/2 dρ

∫ ∞
0

J d−2
2

(
ρ
√
λ2 + b2

)(√
λ2 + b2

)− d−2
2

cos(λξ) dλ,

where b = |x̃|. The inner integral here can be calculated (see [2, Ch. III, §16]). Namely∫ ∞
0

J d−2
2

(
ρ
√
λ2 + b2

)(√
λ2 + b2

)− d−2
2

cos(λξ) dλ =

=


0 if |ξ| > ρ;√

π
2 ρ
− d−2

2 J d−3
2

(
b
√
ρ2 − ξ2

)(√
ρ2−ξ2
b

) d−3
2

if |ξ| < ρ.

Hence,

I = (2π)−
d−1
2 b−

d−3
2

∫ ∞
|ξ|

e−cρ
α

ρJ d−3
2

(
b
√
ρ2 − ξ2

)(√
ρ2 − ξ2

) d−3
2

dρ.

Integrating here by the substitution ρ′ =
√
ρ2 − ξ2, we arrive at formula (8) �

Corollary 2.1. Let L be a subspace of Rd, dimL = k, 1 ≤ k < d. For any ξ ∈ L and
x̃ ∈ L⊥ the formula∫

L
ei(x,ξ)hd(x+ x̃) dx = (2π)−

d−k
2 |x̃|−

d−k−2
2

∫ ∞
0

e−c(|ξ|
2+ρ2)α/2ρ

d−k
2 J d−k−2

2
(ρ|x̃|) dρ

is valid.

In particular, if ν ∈ Rd is a fixed unit vector and S =
{
x ∈ Rd : (x, ν) = 0

}
, then for

ξ ∈ S and λ ∈ R1 the following relation

(9)

∫
S

ei(x,ξ)hd(x+ λν) dx =
1

π

∫ ∞
0

e−c(|ξ|
2+ρ2)α/2 cos(ρλ) dρ

is held.

3. The operator B

Denote by B the operator whose symbol is a vector-valued function given by 2ic|ξ|α−2ξ
for ξ ∈ Rd. This means that the result of its action on a function (ϕ(x))x∈Rd given by
the Fourier transform

ϕ(x) =

∫
Rd
ei(x,ξ)Φ(ξ) dξ, x ∈ Rd,

is a vector-valued function expressed by the integral

Bϕ(x) = 2ic

∫
Rd
ei(x,ξ)|ξ|α−2ξΦ(ξ) dξ

under the assumption that this integral is well-defined. This operator will play the
role analogous to that of the gradient in classical theories. Notice, by the way, that
A = 1

2divB, and the operator A can be thought of as an analogy to Laplacian.

We put κ = −
2π

d−1
2 Γ(2− α)Γ

(
α+1
2

)
cos πα2

α(α− 1)Γ
(
d+α
2

) . Then the action of the operators A and

B on a function (ϕ(x))x∈Rd can be given by the following integrals

Aϕ(x) =
c

κ

∫
Rd

[ϕ(x+ y)− ϕ(x)− (∇ϕ(x), y)] |y|−d−α dy,

Bϕ(x) =
2c

ακ

∫
Rd

[ϕ(x+ y)− ϕ(x)] |y|−d−αy dy



46 M. M. OSYPCHUK AND M. I. PORTENKO

under the assumption, of course, that the function ϕ is sufficiently smooth and bounded.
Denote by Bν the operator whose symbol is (2ic|ξ|α−2(ξ, ν))ξ∈Rd for a given unit

vector ν ∈ Rd. This operator is an analogy to differentiating in the direction ν.
We introduce the following notation gν(τ, z, y) = Bνg(τ, ·, y)(z) for all τ > 0, z ∈ Rd,

and y ∈ Rd. Then

gν(τ, z, y) =
2ic

(2π)d

∫
Rd

exp {i(z − y, ξ)− cτ |ξ|α} |ξ|α−2(ξ, ν) dξ

and integrating by parts, we get the formula

(10) gν(τ, z, y) =
2

α

(y − z, ν)

τ
g(τ, z, y)

valid for τ > 0, z ∈ Rd, and y ∈ Rd. This formula is quite analogous to that for ∂ĝ(τ,z,y)
∂νz

(see above).

4. Properties of the function G

We first verify that the function G is defined correctly by formula (3). In order to do
this, we have to show that the integrals on the right hand side of (3) do exist.

Notice that gν(t, z, y) = 0 if z ∈ S and y ∈ S, and the integral on the right hand side
of (3) vanishes. So, we have to consider the case of (y, ν) 6= 0.

For a vector x ∈ Rd, denote by x̃ its orthogonal projection on S: x̃ = x − ν(x, ν).
Formula (9) implies the relation∫

S

g(t− τ, x, z)ei(z,ξ) dσz =
1

2π
ei(x,ξ̃)

∫
R1

exp
{
−iρ(x, ν)− c(t− τ)(ρ2 + |ξ̃|2)α/2

}
dρ

valid for x ∈ Rd, ξ ∈ Rd, and 0 < τ < t. As a consequence of this and formula (10), we
get ∫

S

g(t− τ, x, z)gν(τ, z, y) dσz =(11)

=
2(y, ν)

ατ(2π)d+1

∫
R1

∫
R1

∫
Rd−1

exp{−i(ỹ − x̃, η)− iρ(x, ν)− ir(y, ν)−

−caτ,t(ρ, r, η)} dρ dr dη,

where aτ,t(ρ, r, η) = τ(r2 + |η|2)
α
2 + (t− τ)(ρ2 + |η|2)

α
2 for all r ∈ R1, ρ ∈ R1, η ∈ Rd−1,

and 0 < τ < t.
For fixed τ > 0 and t > τ , the function aτ,t of the arguments (ρ, r, η) ∈ R1×R1×Rd−1

is a homogeneous one of the degree α. Its minimal value on the sphere

{(ρ, r, η) : ρ2 + r2 + |η|2 = 1}

is easily seen be equal to τ ∧ (t − τ). Assuming τ ∈ (0, t/2) and making use of the
substitution η = τ−1/αξ, ρ = τ−1/αθ, and r = τ−1/αλ, we can rewrite the right hand
side of (11) as follows

2(y, ν)τ−
d+1+α
α

α(2π)d+1

∫
R1

∫
R1

∫
Rd−1

exp{−iτ−1/α[λ(y, ν) + θ(x, ν) + (ỹ − x̃, ξ)]−

−câτ,t(θ, λ, ξ)} dθ dλ dξ,

where âτ,t(θ, λ, ξ) = (θ2 + |ξ|2)α/2 · t−ττ + (λ2 + |ξ|2)α/2. Since t−τ
τ ≥ 1 for τ ∈ (0, t/2),

we have inf âτ,t(θ, λ, ξ) = 1, where infimum is taken over the sphere mentioned above.
Therefore, we can apply Lemma 4.1 from [4] to the last integral to obtain the estimate∫

S

g(t− τ, x, z)|gν(τ, z, y)| dσz ≤
N |(y, ν)|

[τ1/α + ((x, ν)2 + (y, ν)2 + |ỹ − x̃|2)1/2]d+α+1
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valid for τ ∈ (0, t/2), x ∈ Rd, and y ∈ Rd, where N is a positive constant depending only
on c and α. Similar reasons for the case of τ ∈ (t/2, t) lead us to the inequality∫

S

g(t− τ, x, z)|gν(τ, z, y)| dσz ≤
N |(y, ν)|

[(t− τ)1/α + ((x, ν)2 + (y, ν)2 + |ỹ − x̃|2)1/2]d+α+1

held true for τ ∈ (t/2, t), x ∈ Rd, and y ∈ Rd. We have thus arrived at the estimation∣∣∣∣∫ t

0

dτ

∫
S

g(t− τ, x, z)gν(τ, z, y)q(z) dσz

∣∣∣∣ ≤(12)

≤ 2N‖q‖|(y, ν)|
∫ t/2

0

[τ1/α + ((x, ν)2 + (y, ν)2 + |ỹ − x̃|2)1/2]−d−α−1 dτ,

where ‖q‖ = supz∈S |q(z)|. If (y, ν) 6= 0, then the last integral is finite, and the function
G is indeed defined correctly.

Since

∫
Rd
gν(t, x, y) dy ≡ 0, t > 0, x ∈ Rd, we have∫

Rd
G(t, x, y) dy ≡ 1, t > 0, x ∈ Rd.

The fact that the function G satisfies the Kolmogorov-Chapman equation (see (2)) can
be established in the same way as it is done in one-dimensional case (see [10]).

Remark 4.1. Considering the integral

I(t, y) =

∫ t

0

dτ

∫
S

gν(τ, z, y) dσz, t > 0, y /∈ S,

one can observe that (see formula (9))

I(t, y) =
2(y, ν)

πα

∫ t

0

dτ

τ

∫ ∞
0

e−cτρ
α

cos(ρ(y, ν)) dρ.

Integrating now by parts, we get for t > 0, y /∈ S

I(t, y) =
2c

π

∫ t

0

dτ

∫ ∞
0

ραe−cτρ
α sin(ρ(y, ν))

ρ
dρ =

= lim
δ→0+

2

π

∫ ∞
0

e−cδρ
α sin(ρ(y, ν))

ρ
dρ− 2

π

∫ ∞
0

e−ctρ
α sin(ρ(y, ν))

ρ
dρ.

Hence, the following formula

I(t, y) = sign(y, ν)− 2

π

∫ ∞
0

e−ctρ
α sin(ρ(y, ν))

ρ
dρ

holds true for t > 0 and (y, ν) 6= 0.
As a consequence of this we have the following analogy to the classical theorem (see,

for example, [13, Ch. III]).

lim
y→x±

∫ t

0

dτ

∫
S

v(t− τ, z)gν(τ, z, y) dσz = ±v(t, x),

where t > 0, x ∈ S, and (v(τ, z))τ>0,z∈S is a continuous bounded function; the symbol
y → x± means that y = x± δν for x ∈ S and δ → 0+. In particular,

lim
ŷ→y±

∫ t

0

dτ

∫
S

g(t− τ, x, z)gν(τ, z, ŷ)q(z) dσz = ±q(y)g(t, x, y)

for t > 0, x ∈ Rd, and y ∈ S. This implies the formula

G(t, x, y±) = (1± q(y))g(t, x, y)

valid for all t > 0, x ∈ Rd, and y ∈ S.
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5. The semigroup of operators (Tt)t>0

Denote by Cb(Rd) the set of all real-valued continuous bounded functions on Rd with
the norm ‖ϕ‖ = supx∈Rd |ϕ(x)|.

Proposition 5.1. For any t > 0, the operator Tt defined by formula (4) is a linear
bounded operator on Cb(Rd) and the family of them (Tt)t>0 forms a semigroup.

Proof. The assertion can be deduced from the inequality (12), but we propose another
way. Put

u(t, x, ϕ) =

∫
Rd
g(t, x, y)ϕ(y) dy

and

uν(t, x, ϕ) =

∫
Rd
gν(t, x, y)ϕ(y) dy

for t > 0, x ∈ Rd, and ϕ ∈ Cb(Rd). Since g is a transition probability density, we have

|u(t, x, ϕ)| ≤ ‖ϕ‖

for all t > 0, x ∈ Rd. The function uν(τ, z, ϕ) for τ > 0, z ∈ S, and ϕ ∈ Cb(Rd) can be
estimated as follows (we use the formula (10))

|uν(τ, z, ϕ)| ≤ 2

ατ
‖ϕ‖

∫
Rd
|(y, ν)|g(τ, z, y) dy =

2‖ϕ‖
ατ1−1/α

∫
Rd
|(y, ν)|hd(y) dy.

It is well-known that the first absolute moment of the distribution hd is finite. So, there
exists a constant K > 0 such that

(13) |uν(τ, z, ϕ)| ≤ K‖ϕ‖τ−1+1/α

for all τ > 0, z ∈ S, and ϕ ∈ Cb(Rd). In order to estimate the integral

∫
S

g(t−τ, x, z) dσz,

0 < τ < t, x ∈ Rd, we use formula (9)∫
S

g(t− τ, x, z) dσz =
1

π
(t− τ)−1/α

∫ ∞
0

e−cρ
α

cos(ρ(x, ν)(t− τ)−1/α) dρ.

This implies the existence of a constant (we again denote it by K) such that

(14)

∫
S

g(t− τ, x, z) dσz ≤ K(t− τ)−1/α.

As a consequence of (13) and (14), we have the following inequality (t > 0, x ∈ Rd,
ϕ ∈ Cb(Rd)) ∣∣∣∣∫ t

0

dτ

∫
S

g(t− τ, x, z)uν(τ, z, ϕ)q(z) dσz

∣∣∣∣ ≤ K‖ϕ‖‖q‖
where K is a constant (we can choose it the same as in (13) and (14)). Since

Ttϕ(x) = u(t, x, ϕ) +

∫ t

0

dτ

∫
S

g(t− τ, x, z)uν(τ, z, ϕ)q(z) dσz,

we have thus proved boundedness of the operator Tt for fixed t > 0. The rest of properties
of Tt claimed in Proposition 5.1 are obvious. �
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6. The equation for the function (Ttϕ(x))t>0,x∈Rd

It is well-known that the function u(t, x, ϕ) (see Proposition 5.1) satisfies the equation

(15)
∂u(t, x, ϕ)

∂t
= Au(t, ·, ϕ)(x), t > 0, x ∈ Rd

and the initial condition

lim
t→0+

u(t, x, ϕ) = ϕ(x), x ∈ Rd.

We now put for t > 0, x ∈ Rd, and ϕ ∈ Cb(Rd)

V (t, x, ϕ) =

∫ t

0

dτ

∫
S

g(t− τ, x, z)uν(τ, z, ϕ)q(z) dσz.

Proposition 6.1. The function V satisfies the equation (15) for t > 0 and x /∈ S.

Proof. We first estimate the function Ag(t, ·, y)(x). Represent it as follows

Ag(t, ·, y)(x) = − c

(2π)d

∫
Rd
ei(x−y,ξ)|ξ|αe−ct|ξ|

α

dξ =

= − c

(2π)d
t−

d+α
α

∫
Rd
ei(x−y,ξ)t

−1/α

|ξ|αe−c|ξ|
α

dξ.

Lemma 4.2 from [4] mentioned above allows us to obtain the estimation

|Ag(t, ·, y)(x)| ≤ N

(t1/α + |x− y|)d+α
,

where t > 0, x ∈ Rd, y ∈ Rd, and N is a positive constant. Using this inequality we can
write down the following chain of estimations (t > 0, x /∈ S).∣∣∣∣∫ t

0

dτ

∫
S

Ag(t− τ, ·, z)(x)uν(τ, z, ϕ)q(z) dσz

∣∣∣∣ ≤
≤ const ‖ϕ‖‖q‖

∫ t

0

dτ

τ1−1/α

∫
Rd−1

dz

[(t− τ)1/α + (|z|2 + (x, ν)2)1/2]d+α
≤

≤ const ‖ϕ‖‖q‖ t1/α

|(x, ν)|α+1

∫
Rd−1

dz

[|z|2 + 1](d+α)/2
=

= const ‖ϕ‖‖q‖ t1/α

|(x, ν)|α+1
.

Therefore, for x /∈ S and t > 0 the integral∫ t

0

dτ

∫
S

∂g(t− τ, x, z)
∂t

uν(τ, z, ϕ)q(z) dσz

exists as well. The proposition will be proved if we show that the relation

(16) lim
ε→0+

∫
S

g(ε, x, z)uν(t, z, ϕ)q(z) dσz = 0

holds true for fixed t > 0 and x /∈ S. We can estimate the integral in (16) in the following
way ∣∣∣∣∫

S

g(ε, x, z)uν(t, z, ϕ)q(z) dσz

∣∣∣∣ ≤ const

t1−1/α
‖q‖

∫
S

g(ε, x, z) dσz =

= const ‖q‖t1/α−1 1

πε1/α

∫ ∞
0

e−cρ
α

cos
ρ(x, ν)

ε1/α
dρ
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(we have just used formula (9)). According to (6), we have asymptotical relation

1

πε1/α

∫ ∞
0

e−cρ
α

cos
ρ(x, ν)

ε1/α
dρ ∼ const ε

|(x, ν)|α+1

as ε→ 0+, and (16) has been established. �

Remark 6.1. One can easily see that for any compactly supported function (ψ(x))x∈Rd
the following relation

lim
ε→0+

∫
Rd
ψ(x) dx

∫
S

g(ε, x, z)uν(t, z, ϕ)q(z) dσz =

∫
S

ψ(z)uν(t, z, ϕ)q(z) dσz

holds.

This means that

∂V (t, x, ϕ)

∂t
= AV (t, ·, ϕ)(x) + q(x)δS(x)uν(t, x, ϕ).

Proposition 6.2. For t > 0 and x ∈ S, the following equalities

Vν(t, x±, ϕ) = ∓q(x)uν(t, x, ϕ)

hold true, where Vν(t, x±, ϕ) = limε→0+ Vν(t, x± εν, ϕ) and Vν(t, z, ϕ) = BνV (t, ·, ϕ)(z).

Proof. This assertion can be proved in a way quite similar to the calculations in Re-
mark 4.1. �

Now, it is a simple observation that the function δS is a symmetrical one in the
following sense

δS(x)Vν(t, x, ϕ) = 0, x ∈ Rd.
It means that the function

U(t, x, ϕ) = u(t, x, ϕ) + V (t, x, ϕ), t > 0, x ∈ Rd,
satisfies the equation

∂U(t, x, ϕ)

∂t
= AU(t, ·, ϕ)(x) + q(x)δS(x)BνU(t, ·, ϕ)(x), t > 0, x ∈ Rd

and the initial condition

lim
t→0+

U(t, x, ϕ) = ϕ(x), x ∈ Rd.

In other words, the operator A + q(x)δSBν generates the semigroup (Tt)t>0.
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