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ON THE STRONG EXISTENCE AND UNIQUENESS TO A

SOLUTION OF A COUNTABLE SYSTEM OF SDES WITH

MEASURABLE DRIFT

We consider a countable system of stochastic differential equations that describes a

motion of an interacting particles in a random environment. A theorem on existence
and uniqueness of a strong solution is proved if the drift term is a bounded measurable

function that satisfies finite radius interaction condition.

Introduction

The aim of this paper is to prove existence and uniqueness for strong solution of
a countable system of stochastic differential equations (SDEs) describing a motion of
infinite system of interacting particles. Let (Ω,F , (Ft, t ≥ 0), P ) be a filtered probability
space, {wk(t), t ≥ 0}k∈Z be independent Ft-adapted Wiener processes, {uk|k ∈ Z} be a
nondecreasing sequence such that limk→+∞ uk = +∞, limk→−∞ uk = −∞.

Denote by M the space of all locally finite measures on R with a vague topology τ
defined by

νn
τ→ ν ⇔ ∀f ∈ Cc(R) :

∫
R
fdνn →

∫
R
fdν, n→∞,

where Cc(R) is a set of all continuous functions with compact support.
Consider the following infinite system of SDEs

(1)

 dXk(t) = a(Xk(t), µt)dt+ dwk(t), k ∈ Z, t ∈ [0, T ],
µt =

∑
k∈Z δXk(t),

Xk(0) = uk, k ∈ Z,
where a : [0, T ]×M→ R is a measurable function.

Here Xk(t) may be interpreted as a coordinate at the instant t of the k-th particle
that started from uk. If we assume that each particle has a unit mass, then the measure
µt may be considered as the distribution of mass at the instant t.

Note that assumptions of theorems on existence and uniqueness of the strong solutions
of SDEs may be much weaker than the ones for ODEs. For example, if b : [0,∞)×Rd →
Rd is a bounded and measurable function, {W (t), t ≥ 0} is an Rd-valued Wiener process,
then SDE

dX(t) = b(t,X(t))dt+ dW (t), t ≥ 0,
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has a unique strong solution for any F0-adapted X(0). This result in one-dimensional
case was obtained by Zvonkin [1] and then it was generalized by Veretennikov [2] for the
multidimensional situation (even for non-additive noise).

System (1) can be considered as an SDE in multidimensional space. The analogue of
Veretennikov’s result in a Hilbert space case was proved in [3], however their assumptions
are not satisfied for (1).

We will assume that a function a from (1) satisfies a finite interaction radius condition.
This will allow us to apply Veretennikov’s result if the initial distribution {uk} has a lot
of “big gaps”. For example (Theorem 1.3), this condition is satisfied if {uk} are atoms of
a Poisson point measure with constant intensity. Reasoning similar to ours were applied
to a construction of a system of coalescing diffusions with changing mass in [4]. See
also paper [5], where strong solutions to a countable system of interacted SDEs was
investigated.

Equation (1) corresponds to a system, when each particle has a unit mass. The case
when the total mass of a particle system is finite and may be non-atomic was considered,
for example, in [6, 7, 8].

The question on existence and uniqueness of weak solutions for countable system of
SDEs with interaction was considered by different approaches such as Dirichlet forms,
Gibbs measures, etc., see, for example, [9, 10, 11, 12].

1. Main results

Theorem 1.1. Suppose that
1. a is a bounded measurable function:

‖a‖∞ := sup
x∈R

sup
ν∈M
|a(x, ν)| <∞;

2. the finite interaction radius condition is satisfied:

∃d > 0 ∀x ∈ R ∀ν ∈M : a(x, ν) = a(x, 1I(x−d,x+d)ν),

where (1IBν)(A) = ν(A ∩B), A,B ∈ B(R);
3. there exists a (random) sequence {yn|n ∈ Z} such that

∀n ∈ Z inf
i:ui≥yn

inf
t∈[0,T ]

(
ui + (wi(t) ∧ 0)

)
− sup
i:ui<yn

sup
t∈[0,T ]

(
ui + (wi(t) ∨ 0)

)
≥ 2‖a‖∞T + d

almost surely.
Then there exists a unique strong solution of (1).

We postpone all proofs to the next sections.

Remark 1.1. Condition 2 means that if distance between two particles is greater than d,
then they do not interact.

Remark 1.2. Condition 3 yields that system of particles can be divided into a countable
number of finite subsystems so that distance between any two subsystems is greater than
d for every t ∈ [0, T ]. Hence, these subsystems do not interact.

Condition 3 in Theorem 1.1 is the hardest one to check. The following theorems give
sufficient conditions ensuring condition 3.

Denote

(2) pw(t, x) = P ( sup
s∈[0,t]

w(s) ≥ x) = 2

∫ ∞
x∨0

1√
2πt

exp (−y2/2t)dy, x ∈ R,

where w is a Wiener process in R.
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Theorem 1.2. Suppose that there exists a deterministic increasing sequence {zn|n ∈ Z}
such that:

1. limn→∞ zn = +∞, limn→−∞ zn = −∞.
2. ∃ε̃ > 0 ∀n ∈ Z :

∏
i∈Z
(
1− pw(T, |zn − ui| − ‖a‖∞T − d/2)

)
> ε̃

Then condition 3 of Theorem 1.1 is satisfied.

Remark 1.3. If the sequence {xk(t)} is indexed by k ∈ N instead of k ∈ Z and {uk, k ≥ 1}
is a nondecreasing sequence such that

lim
k→+∞

uk = +∞,

then Theorems 1.1 and 1.2 are also true.

Theorem 1.3. Let µ0 = µ, where µ =
∑
j δuj

is a Poisson point measure with intensity

measure m. Suppose that µ is independent of {wk, k ∈ Z} and

∃Cm ∀[a, b] ⊂ R : m([a, b]) ≤ Cm(b− a+ 1).

If conditions 1 and 2 of Theorem 1.1 are satisfied, then there exist a unique strong solution
to equation (1) for every T > 0.

For a locally finite measure ν denote

Λ(ν) := lim sup
n→∞

ν([−n, n])

2n
.

The value Λ(ν) is an upper bound for the “average density” of the measure ν.
For any λ > 0 denote

Mλ = {ν| Λ(ν) ≤ λ}.

Theorem 1.4. Suppose that µ0 =
∑
k∈Z δuk

∈ Mλ with λd < 1 and conditions 1 and 2
of Theorem 1.1 are satisfied. Then there exists a unique strong solution of the equation
(1) for any T > 0.

2. Proof of Theorem 1.1

Veretennikov’s theorem [2] yields that if a function b : [0, T ] × Rd → Rd is bounded
and measurable, then stochastic differential equation

(3)

{
dY (t) = b(t, Y (t))dt+ dW (t), t ∈ [0, T ],
Y (0) = Y0

has a unique strong solution. Here W (t), t ∈ [0, T ], is a Wiener process in Rd.
It follows from condition 3 that we can represent the set {uk} as a union of disjoint

subsets

(4) {uk} = ∪n
{
ukn , ukn+1, ..., ukn+1−1

}
such that for any n 6= m, and for any kn ≤ i < kn+1, km ≤ j < km+1 processes Xi(t)
and Xj(t) do not interact (provided that a solution of (1) exists). Note that represen-
tation (4) is random and anticipating. Hence Theorem 1.1 does not follow directly from
Veretennikov’s theorem and we need to make some additional justification.

For every n ∈ N consider a system of equations

(5)


dXn

i (t) = a(Xn
i (t), µt)dt+ dwi(t), −n ≤ i ≤ n, t ∈ [0, T ],

dXn
i (t) = 0, |i| > n,

µnt =
∑
k∈Z δXn

k (t),

Xn
i (0) = ui, i ∈ Z.

It is easy to see that system (5) is equivalent to a finite system of stochastic differential
equations. So Veretennikov’s theorem yields that there exists a unique solution of the
equation (5).
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Denote

τn1,n2
= inf

{
t ∈ [0, T ] | ∃k1 ∈ (n1, n2] ∃k2 /∈ (n1, n2]

|uk1 + wk1(t)− uk2 − wk2(t)| ∨ |uk1 − uk2 − wk2(t)|∨

∨|uk1 + wk1(t)− uk2 | ∨ |uk1 − uk2 | ≤ 2‖a‖∞T + d
}
∧ T.

Let us prove that

(6) ∀t ∈ [0, τn1,n2
] ∀n ≥ |n1| ∨ |n2| : X

|n1|∨|n2|
i (t) = Xn

i (t) a.s.

It follows from the definition of τn1,n2 that for any n ≥ |n1| ∨ |n2|, k ∈ (n1, n2]

∀j /∈ (n1, n2] ∀s ∈ [0, τn1,n2 ] : |Xn
j (s)−Xn

k (s)| ≥ d.
Hence,

µns = 1I[Xn
k (s)−d,Xn

k (s)+d]µ
n
s =

∑
n1<j≤n2

1I[Xn
k (s)−d,Xn

k (s)+d]δXn
j (s), s ∈ [0, τn1,n2

].

So, condition 2 of the Theorem implies that for n ≥ |n1| ∨ |n2|, t ≤ τn1,n2 , k ∈ (n1, n2]

Xn
k (t) = uk + wk(t) +

∫ t

0

a(Xn
k (s), µns )ds =

(7) uk + wk(t) +

∫ t

0

a(Xn
k (s), 1I[Xn

k (s)−d,Xn
k (s)+d]µ

n
s )ds.

Hence,

Xn
k (t) = uk + wk(t) +

∫ t

0

a(Xn
k (s),

∑
n1<j≤n2

δXn
j (s))ds, t ∈ [0, τn1,n2 ].

Therefore Xn
k (t), t ∈ [0, τn1,n2

], k ∈ (n1, n2] and X
|n1|∨|n2|
k (t), t ∈ [0, τn1,n2

], k ∈
(n1, n2], are solutions of the same system of stochastic differential equations. Thus by
Veretennikov’s theorem we have

(8) X
|n1|∨|n2|
k = Xn

k (t), t ∈ [0, τn1,n2
] a.s.

Remark 2.1. It can be checked that Veretennikov’s theorem is also true for solutions
defined up to a stopping time.

Condition 3 yields that with probability 1

(9) ∀k ∈ Z ∃n1 < k ∃n2 ≥ k : τn1,n2 = T.

It follows from (8) and (9) that with probability 1 there exists n0 such that for any
fixed k ∈ Z solutions {Xn

k (t), t ∈ [0, T ]} coincide for n ≥ n0.
Denote

(10) Xk(t) = lim
n→∞

Xn
k (t).

So,

(11) Xk(t) = uk + wk(t) +

∫ t

0

a(Xk(s),
∑

n1<j≤n2

δXj(s))ds, k ∈ (n1, n2], t ∈ [0, τn1,n2
].

Now, using (9), we obtain that Xk(t), k ∈ Z, t ∈ [0, T ] is a strong solution of (1).
Suppose {Yk(·), k ∈ Z} is another solution of (1). Then by the same arguments as

above, for any n1 < n2 we have a.s. the equality

Xk(s) = Yk(s), k ∈ (n1, n2], s ∈ [0, τn1,n2
].

As above, using (9), we get that solutions {Xk(·), k ∈ Z} and {Yk(·), k ∈ Z} coincide.
The Theorem is proved.
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3. Proof of Theorem 1.2

At first let us prove that

(12) ∀k ≥ 1 P ( sup
i:ui<zk

sup
t∈[0,T ]

(ui + wi(t)) <∞) = 1.

Let k ∈ N be arbitrary. It follows from condition 2 of the Theorem that

(13)
∑

i:ui<zk

pw(T, |zk − ui| − ‖a‖∞T − d/2) < +∞,

so

(14)
∑

i:ui<zk

P
(

sup
t∈[0,T ]

(ui + wi(t)) ≥ zk − ‖a‖∞T − d/2
)
< +∞.

It follows from the Borel-Cantelli lemma that with probability 1 there is only a finite
number of integers i such that ui < zk and supt∈[0,T ](ui + wi(t)) ≥ zk − ‖a‖∞T − d/2.

Therefore, (12) is satisfied.
Analogously,

∀k ≥ 1 P
(

inf
i:ui>zk

inf
t∈[0,T ]

(ui + wi(t)) > −∞
)

= 1.

Denote

(15) ξk = max
t∈[0,T ]

(uk + wk(t)),

(16) ηk = min
t∈[0,T ]

(uk + wk(t)),

and

(17) Ak = { sup
i:ui<zk

ξi ≤ zk − d/2− ‖a‖∞T, inf
i:ui>zk

ηi ≥ zk + d/2 + ‖a‖∞T}.

To prove the Theorem it is sufficient to verify that

(18) P (lim sup
k→∞

Ak) = 1

and

(19) P (lim sup
k→−∞

Ak) = 1.

We prove only (18). Formula (19) can be proved similarly.
Events Ak are dependent, so the second Borel-Cantelli lemma can’t be directly applied.

The idea of the proof is to approximate events from some subsequence {Akn} by a
sequence {A′kn}, where A′kn are defined in a similar way as Akn but supremum and
infimum are taken over a finite set of indices. If for different n these sets of indices have
empty intersection, then events A′kn will be independent.

Let us make the formal reasoning. Analogously to proof of (12) it can be proved that
for every integer k the set {i ∈ Z|ui > zk, ηi ≤ zk + ‖a‖∞T + d/2} is finite a.s. Hence,

lim
n→+∞

ξn = lim
n→+∞

ηn = +∞ a.s.

So, for any n ∈ Z and ε > 0 there exists l(n, ε) such that

(20) ∀l ≥ l(n, ε) : P ( sup
n<k≤n+l

ξk 6= sup
k≤n+l

ξk) < ε, P ( inf
k>n

ηk 6= inf
n<k≤n+l

ηk) < ε.

For any increasing sequence {mk|k ∈ N} ⊂ Z denote

i(k) = im(k) = max{i|ui ≤ zmk
}.

Let us select a sequence {mk} such that

(21) ∀k ≥ 1 i(k + 1)− i(k) ≥ max{l(i(k), 1/2k), 2}.
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Then

P

(
∀M ∃k > M : sup

i≤i(k)
ξi ≤ zmk

− d

2
− ‖a‖∞T, inf

i>i(k)
ηi ≥ zmk

+
d

2
+ ‖a‖∞T

)
≥

P

(
∀M ∃k > M : sup

i≤i(k)
ξi = sup

i(k−1)<i≤i(k)
ξi, inf

i>i(k)
ηi = inf

i(k+1)≥i>i(k)
ηi,

sup
i(k−1)<i≤i(k)

ξi ≤ zmk
− d/2− ‖a‖∞T, inf

i(k+1)≥i>i(k)
ηi ≥ zmk

+ d/2 + ‖a‖∞T

)
≥

(22) ≥ P (B1 ∩B2),

where

(23) B1 =

{
∃M ∀k > M : sup

i≤i(k)
ξi = sup

i(k−1)<i≤i(k)
ξi, inf

i>i(k)
ηi = inf

i(k+1)≥i>i(k)
ηi

}
,

B2 =

{
∀M ∃k > M : sup

i(k−1)<i≤i(k)
ξi ≤ zmk

− d/2− ‖a‖∞T,

(24) inf
i(k+1)≥i>i(k)

ηi ≥ zmk
+ d/2 + ‖a‖∞T

}
.

Event B1 means that all but a finite number of the events

{ sup
i≤i(k)

ξi = sup
i(k−1)<i≤i(k)

ξi, inf
i>i(k)

ηi = inf
i(k+1)≥i>i(k)

ηi}

occur. Event B2 means that events

{ sup
i(k−1)<i≤i(k)

ξi ≤ zmk
− d/2− ‖a‖∞T, inf

i(k+1)≥i>i(k)
ηi ≥ zmk

+ d/2 + ‖a‖∞T}

occur infinitely often.
From (20) and (21) we obtain that∑

k≥1

P

(
{ sup
i≤i(k)

ξi 6= sup
i(k−1)<i≤i(k)

ξi} ∪ { inf
i>i(k)

ηi 6= inf
i(k+1)≥i>i(k)

ηi}

)
≤

∑
k≥1

(1/2k + 1/2k) < +∞.

It follows from the Borel-Cantelli lemma that P (B1) = 1.
Consider now event B2. Denote

Ck = { sup
i(2k−1)<i≤i(2k)

ξi ≤ zm2k
− d/2− ‖a‖∞T,

inf
i(2k+1)≥i>i(2k)

ηi ≥ zm2k
+ d/2 + ‖a‖∞T}

Events {Ck, k ≥ 1} are mutually independent. If we prove that

(25)
∑
k≥1

P (Ck) = +∞,

then the Borel-Cantelli lemma will imply P (B2) = 1.
Let us estimate probability P (Ck) from below:

P (Ck) = P

 i(2k)⋂
i=i(2k−1)+1

{ max
t∈[0,T ]

(ui + wi(t)) ≤ zmk
− d/2− T‖a‖∞}∩
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i(2k+1)⋂
i=i(2k)+1

{ min
t∈[0,T ]

(ui + wi(t)) ≥ zmk
+ d/2 + T‖a‖∞}

 =

i(2k+1)∏
i=i(2k−1)+1

(
1− pw(T, |zmk

− ui| − d/2− T‖a‖∞)
)
≥

∏
i∈Z

(
1− pw(T, |zmk

− ui| − d/2− T‖a‖∞)
)
> ε̃,

where ε̃ > 0 is from condition 2 of the Theorem. Hence (25) is satisfied and consequently
P (B2) = 1.

Therefore, P (B1 ∩ B2) = 1, and (22) yields that events Ak occur infinitely often a.s.
when k → +∞. The case k → −∞ can be considered similarly. This completes the proof
of the Theorem.

4. Proof of Theorem 1.3

If intensity of a Poisson point measure is a finite measure, then µ has a finite number
of atoms a.s. In this case existence and uniqueness of a strong solution of (1) follows
from Veretennikov’s theorem. Further we consider the case when m([0,+∞)) = +∞ and
m((−∞, 0]) = +∞. The proof for the case when m([0,+∞)) < ∞ or m((−∞, 0]) < ∞
is similar.

Let µ =
∑
k∈Z δuk

. Without loss of generality we will assume that {uk, k ∈ Z} is a
non-decreasing sequence. Since {uk, k ∈ Z} and {wi, i ∈ Z} are independent, it suffices
to construct a σ(uk, k ∈ Z)-measurable sequence {zn|n ∈ Z} that satisfies conditions of
Theorem 1.2 a.s.

Denote

A = d/2 + ‖a‖∞T,

D1(x, r) =
∏

|ui−x|>r

(1− pw(T, |x− ui| −A)),

D2(x, r) =
∏

|ui−x|≤r

(1− pw(T, |x− ui| −A)),

D(x) =
∏
i∈Z

(1− pw(T, |x− ui| −A)).

Lemma 4.1. Let µ be a Poisson point measure that satisfies conditions of Theorem 1.3.
Then for all B > 0, x ∈ R :∑

i∈Z
pw(T, |x− ui| −B) < +∞ a.s.

Proof of Lemma 4.1. Denote fT (y) = m([0, y))1Iy≥0 −m([y, 0))1Iy<0. Without loss
of generality we can assume that

µ([y1, y2)) = Π([fT (y1), fT (y2))), [y1, y2) ⊂ R,

where Π is a Poisson point measure with intensity 1. The application of the strong law
of large numbers yields that

P (lim sup
n→∞

µ([x− n, x+ n])/2n ≤ Cm) = 1.

Hence,

P (∃Q > 0 ∀n ∈ N µ([x− n, x+ n]) ≤ 2Qn) = 1.
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Then with probability 1∑
i∈Z

pw(T, |x− ui| −B) =
∑
k∈N

∑
i:|x−ui|∈[k−1,k)

pw(T, |x− ui| −B) ≤

∑
k∈N
|{i : |x− ui| ∈ [k − 1, k)}|pw(T, k − 1−B) ≤

∑
k∈N

2Qkpw(T, k − 1−B) < +∞,

because

(26) pw(t, y) ∼
√

2t√
πy

exp (−y2/2t), y → +∞.

The Lemma is proved.
Let x ∈ Z be fixed.
Denote

(27) Ix(k) =

 [x+ k, x+ k + 1), k ≥ 1,
(x− 1, x+ 1), k = 0,

(x− k − 1, x− k], k ≤ −1.

Let {ξk|k ∈ Z} be independent Poisson random variables, ξk ∼ Pois(2Cm −m(Ix(k))),
where m is intensity of µ. Assume also that {ξk|k ∈ Z} are independent of µ. Set
µx(R\Z) = 0 and µx({k}) = µ(Ix(k)) + ξk, k ∈ Z.

Observe that µx is a Poisson point measure with intensity 2Cm
(
δx +

∑
k∈Z δk

)
and

∀r > 0 µ([x− r, x+ r]) ≤ µx([x− r, x+ r]).

Let µx =
∑
k∈Z δvk(x), where {vk(x), k ∈ Z} is a non-decreasing sequence. Denote

Dv
1(x, r) =

∏
|vi(x)−x|>r

(1− pw(T, |x− vi(x)| −A)),

Dv
2(x, r) =

∏
|vi(x)−x|≤r

(1− pw(T, |x− vi(x)| −A)),

Dv(x) =
∏
i∈Z

(1− pw(T, |x− vi(x)| −A)).

The distributions of Dv
1(x, r), Dv

2(x, r) and Dv(x) are independent of x ∈ Z. Moreover,

(28) ∀x ∈ Z ∀r > 0 : D1(x, r) ≥ Dv
1(x, r), D2(x, r) ≥ Dv

2(x, r), D(x) ≥ Dv(x).

It follows from Lemma 4.1 that Dv
1(x, r) → 1, r → +∞ with probability 1. Hence,

there exists an increasing sequence {ri, i ≥ 1} (independent of x) such that

(29) ∀i ∈ N ∀x ∈ Z : P (Dv
1(x, ri) < 1/2) < 1/2i.

Combining (28) and (29) we obtain

∀i ∈ N ∀x ∈ Z : P (D1(x, ri) < 1/2) < 1/2i.

Let us construct a sequence {xi|i ≥ 1} ⊂ Z in a following way:

x1 = 0, xk+1 = xk + rk + rk+1 + 1, k ≥ 1.

Then it follows from the Borel-Cantelli lemma that

(30) P (∃k0 ∀k > k0 : D1(xk, rk) > 1/2) = 1.

Choose Ã > A = ‖a‖∞T + d/2 such that pw(T, Ã−A) < 1/2. Without loss of generality

we can assume that {rk, k ≥ 1} were chosen so that Ã < rk for all k ∈ N. Let us estimate

P (D2(xk, rk) > 1/2) ≥

P
(
µ([xk − Ã, xk + Ã]) = 0, D2(xk, rk) > 1/2

)
≥
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P
(
µ([xk − Ã, xk + Ã]) = 0

)
P

 ∏
Ã<|vi(x)−x|<rk

(1− pw(T, |x− vi(x)| −A)) > 1/2


(31) ≥ exp(−Cm(2Ã+ 1))P (Dv

1(x, Ã) > 1/2).

Events {D2(xk, rk) > 1/2} are independent and the estimate of probability (31) is
independent of k. Hence, by the second Borell-Cantelli lemma

P (D2(xk, rk) > 1/2 i.o.) = 1.

Combining this with (30) we obtain

P (D(xk) > 1/4 i.o.) = P (D1(xk, rk)D2(xk, rk) > 1/4 i.o.) = 1.

It follows from the construction of {xk} that there exists σ{uk, k ∈ Z}-measurable
subsequence zk = xnk

that a.s. satisfies conditions of Theorem 1.2 for k ≥ 0 and ε̃ = 1/4.
Negative indices can be considered analogously. Theorem 1.3 is proved.

5. Proof of Theorem 1.4

Let us verify conditions of Theorem 1.2 for some T = T0. Denote AT = ‖a‖∞T +d/2,
fT (x) = pw(T, |x| −AT ) ∧ 1/2.

It follows from (26) that

I(T ) :=

∫
R
fT (x)dx < +∞, In(T ) :=

∫
|x|>n

fT (x)dx < +∞.

Denote

ST (x) =
∑
i∈Z

fT (x− ui).

Then ∫ n

−n
ST (x)dx =

∑
i∈Z

∫ n

−n
fT (x− ui)dx ≤

∑
i:ui∈[−n,n]

∫
R
fT (x− ui)dx+

(32)
∑
k∈N

∑
i:|ui|∈(k+n−1,k+n]

∫
|x−ui|≥k

fT (x− ui)dx ≤

|{i : ui ∈ [−n, n]}|I(T ) +
∑
k∈N
|{i : |ui| ≤ k + n}|Ik(T ).

Choose ε > 0 such that λ(1 + ε) < 1/d. Since µ(0) ∈Mλ, there exists n0 = n0(ε) such
that

|{i : ui ∈ [−n, n]}| ≤ 2nλ(1 + ε), |{i : |ui| ≤ k + n}| ≤ 2(k + n)λ(1 + ε)

for all n ≥ n0(ε).
Hence

(33)

∫ n

−n
ST (x)dx ≤ 2nλ(1 + ε)I(T ) +

∑
k∈N

2(k + n)λ(1 + ε)Ik(T ) < +∞.

The finiteness of (33) follows from the definitions of I(T ), Ik(T ), and relation (26).
Denote

(34) f(x) = lim
T→0+

fT (x) =
1

2
1I|x|≤d/2.

Notice that I(T )→ d and Ik(T )→ (d− 2k)1Ik<d/2 as T → 0 + .
Denote S(x) =

∑
i∈Z f(x− ui).
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Combining (33), (34), and using Lebesgue dominated convergence theorem, we obtain∫ n

−n
S(x)dx = lim

T→0

∫ n

−n
ST (x)dx.

Let us prove that

(35) lim
T→0

lim sup
n→∞

∫ n
−n(ST (x)− S(x))dx

2n
= 0.

Denote

K(T ) =

∫
R

(fT (x)− f(x))dx, Kn(T ) =

∫
|x|∈[n,n+1)

(fT (x)− f(x))dx.

Analogously to (32) we have

1

2n

∫ n

−n
(ST (x)− S(x))dx ≤ 1

2n
|{i : ui ∈ [−n, n]}|K(T )+

1

2n

∑
k∈N

∑
i:ui∈(k+n−1,k+n]

∑
j≥k

Kj(T ) ≤ 1

2n
λ(1 + ε)nK(T )+

1

2n

∑
j∈N

Kj(T )
∑

0≤ k≤ j

|{i : |ui| ∈ (k + n− 1, k + n]}| =

1

2n
λ(1 + ε)nK(T ) +

1

2n

∑
j∈N

Kj(T )|{i : |ui| ∈ (n− 1, j + n]}| ≤

1

2n
λ(1 + ε)nK(T ) +

1

2n

∑
j∈N

Kj(T )|{i : |ui| ≤ j + n}| ≤

≤ 1

2n
λ(1 + ε)nK(T ) +

1

2n

∑
j∈N

2λ(1 + ε)(j + n)Kj(T ), n ≥ n0(ε).

Hence,

1

2n

∫ n

−n
(ST (x)− S(x))dx ≤ λ(1 + ε)/2

K(T ) +
∑
j∈N

Kj(T )

+

λ(1 + ε)

n

∑
j∈N

jKj(T ) ≤ λ(1 + ε)K(T ) +
λ(1 + ε)

n

∑
j∈N

jKj(T ), n ≥ n0(ε).

It follows from Lebesgue dominated convergence theorem that K(T )→ 0 as T → 0.
Using the definition of Kj(T ) it is easy to see that supT∈(0,1]

∑
j∈N jKj(T ) < +∞.

So, (35) is proved.
Observe that

(36) lim
n→∞

∫ n
−n S(x)dx

2n
= λd/2 < 1/2.

Denote H(x) = sup{T > 0 | K(T ) < x}. It follows from (35) and (36) that

(37) ∀T0 < H

(
1− λd

2λ(1 + ε)

)
: lim sup

n→∞

∫ n
−n ST0(x)dx

2n
< 1/2.

Set

T0 =
1

2
H

(
1− λd

2λ(1 + ε)

)
.

Then

(38) ∀n0 ∃x, |x| > n0 : ST0
(x) < 1/2.
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It follows from the definition of ST (x) that if ST (x) < 1/2, then

∀i ≥ 1 pw(T, |x− ui| −AT ) < 1/2.

Note that
ln(1− y) ≥ −2y, y ∈ [0, 1/2].

Hence if ST0
(x) < 1/2, then∑

i∈Z
ln(1− pw(T0, |ui − x| −AT0

)) ≥ −
∑
i∈Z

2pw(T0, |ui − x| −AT0
) = −2ST0

(x) ≥ −1.

It follows from (38) that we can construct a sequence {zn, n ∈ Z} such that

z0 ∈ {z ∈ R|ST0
(z) < 1/2},

zn+1 ∈ {z ≥ zn + 1|ST0
(z) < 1/2}, n ≥ 1,

zn−1 ∈ {z ≤ zn − 1|ST0
(z) < 1/2}, n < 0.

Then ∏
i∈Z

(
1− pw(T, |zn − ui| − ‖a‖∞T − d/2)

)
≥ e−1.

Theorem 1.2 yields that there exists a unique strong solution to (1) for t ∈ [0, T0].

Lemma 5.1. Let {Xk(t)|t ∈ [0, T ], k ∈ Z} be a solution of (1), Λ(µ0) < +∞. Then

P (∀t ∈ [0, T ] : Λ(µ0) = Λ(µt)) = 1.

Proof of Lemma 5.1. Since Λ(µ0) < +∞ we have

lim inf
|k|→+∞

uk
k

= lim inf
|k|→+∞

Xk(0)

k
≥ 2

Λ(µ0)
.

Hence

∀δ > 0
∑
k∈Z

P

(
sup
t∈[0,T ]

|wk(t)| > δ|Xk(0)|

)
< +∞.

It follows from the Borel-Cantelli lemma that a.s.

sup
t∈[0,T ]

|wk(t)| ≤ δ|Xk(0)|

for all k except of maybe a finite number.
Hence

sup
t∈[0,T ]

|Xk(t)−Xk(0)| ≤ ‖a‖∞T + sup
t∈[0,T ]

|wk(t)| ≤ ‖a‖∞T + δ|Xk(0)|.

Therefore there a.s. exists n0 such that for any n ≥ n0{
k : |Xk(0)| ≤ n

1 + 2δ

}
⊂ {k : |Xk(t)| ≤ n} ⊂ {k : |Xk(0)| ≤ n(1 + 2δ)}.

So,

lim sup
n→∞

µt([−n, n])

2n
≤ lim sup

n→∞

µ0([−n(1 + 2δ), n(1 + 2δ)])

2n
= Λ(µ0)(1 + 2δ).

Analogously

lim sup
n→∞

µt([−n, n])

2n
≥ Λ(µ0)

1 + 2δ
.

Since δ > 0 is arbitrary, we obtain Λ(µt) = Λ(µ0).
The Lemma is proved.
It follows from Lemma 5.1 that µT0

∈Mλ. Hence the solution of the equation (1) can
be extended in a unique way to the interval t ∈ [T0, 2T0], then it can be extended to the
interval [2T0, 3T0], and so on. Theorem 1.4 is proved.



ON THE STRONG EXISTENCE AND UNIQUENESS 63

Thanks. This paper was partially prepared during a visit of authors to Potsdam
University. Authors are grateful to Sylvie Roelly for the invitation, hospitality and
helpful discussions.

References

1. A. K. Zvonkin, A transformation of the phase space of a diffusion process that removes the
drift, Mat. Sb. (N.S.), 93(135) (1974), 129–149.

2. A. Yu. Veretennikov, On strong solutions and explicit formulas for solutions of stochastic in-

tegral equations, Mat. Sb. 111(153) (1980), no. 3, 434–452.
3. G. Da Prato, F. Flandoli, E. Priola, M. Rockner, Strong uniqueness for stochastic evolution

equations in Hilbert spaces with bounded and measurable drift, arXiv: 1109.0363v1 (2011).

4. V. V. Konarovskii, On infinite system of diffusing particles with coalescing, Theory of Proba-
bility and Its Applications, 55(1) (2011), 134–144.

5. T. Ichiba, I. Karatzas, M. Shkolnikov, Strong solutions of stochastic equations with rank-based
coefficients, Probability Theory and Related Fields, 156(1-2) (2013), 229–248.

6. A. S. Sznitman, Topics in propagation of chaos, In Ecole d’Ete de Probabilites de Saint-Flour

XIX, 1989, Springer Berlin Heidelberg, (1991) pp. 165–251.
7. A. A. Dorogovtsev, Measure-valued processes and stochastic flows, Proceedings of Institute of

Mathematics of NAS of Ukraine. Mathematics and its Applications, v. 66, Kiev 290 pp. ISBN:

978-966-02-4540-2, 2007.
8. A. Pilipenko, Measure-valued diffusions and continual systems of interacting particles in ran-

dom media, Ukrainian mathematical journal, 9, (2005), 1289–1301.

9. A. V. Skorokhod, Stochastic equations for complex systems, Springer, 13 (1988).
10. H. Georgii, Gibbs measures and phase transitions, de Gruyter Studies in Mathematics, 9 (1988).

11. H. Osada, Dirichlet form approach to infinite-dimensional Wiener processes with singular in-

teractions, Communications in mathematical physics, 176(1) (1996), 117–131.
12. F. Redig, S. Roelly, W. Ruszel, Short-time Gibbsianness for infinite-dimensional diffusions

with space-time interaction, Journal of Statistical Physics, 138(6) (2010) 1124–1144.

Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivska
str. 3, 01601, Kiev, Ukraine

Ukraine, 01601, Kyiv, Tereschenkivska 3, Institute of Mathematics
E-mail address: mtan@meta.ua


