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ITÔ-WIENER EXPANSION FOR FUNCTIONALS OF THE

ARRATIA’S FLOW N-POINT MOTION

The structure of square integrable functionals measurable with respect to the n−point
motion of the Arratia flow is studied. Relying on the change of measure technique,

a new construction of multiple stochastic integrals along trajectories of the flow is
presented. The analogue of the Itô-Wiener expansion for square integrable functionals

from the Arratia’s flow n−point motion is constructed.

1. Introduction

The present paper continues the study of orthogonal structure of square integrable
functionals from coalescing stochastic flows undertaken in [1]. The main object of our
considerations is the Arratia flow on the real line. It is a family {x(u, t) : u ∈ R, t ≥ 0}
of random variables such that

1) for every u ∈ R x(u, ·) is a continuous square integrable martingale with respect to
the filtration Fxt = σ({x(v, s) : v ∈ R, s ≤ t});

2) x(u, 0) = u;
3) < x(u, ·), x(v, ·) > (t) = (t− τu,v)+, where τu,v = inf{t ≥ 0 : x(u, t) = x(v, t)}.
The Arratia flow was constructed in [2]. Informally, it represents the motion of Brow-

nian particles that start from every point of R and move independently until some of the
particles meet each other. Thereafter these particles coalesce and continue their motion
as one particle. Given u ∈ Rn the Rn−valued process xu(t) = (x(u1, t). . . . , x(un, t)),
t ≥ 0 is called the n−point motion of the Arratia flow starting from u. It is a Feller
process in Rn [3, Prop. 4.2].

Development of stochastic analysis for the Arratia flow was initiated by A. A. Doro-
govtsev in [6] where the stochastic integral with respect to the Arratia flow was built.
It was applied to prove analogues of the Clark representation theorem, the Girsanov
theorem and to define the Fourier-Wiener transform for functionals of the Arratia flow
[7, 8, 9] (a review of the mentioned results is presented in [10, Ch. 7]). Let σn be the
moment when all particles {x(u, ·), u ∈ [0, 1]} have coalesced into exactly n particles, i.e.

σn = inf{t ≥ 0 : |x([0, 1], t)| = n}.
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Denote the trajectories of the n particles on the interval [σn, σn−1) by (ηn1 , . . . , η
n
n). By

definition [6], the stochastic integral with respect to the Arratia flow is the following sum
of one-dimensional stochastic integrals with respect to individual trajectories

(1)

∞∑
n=1

n∑
l=1

∫ σn−1

σn

anl (t)dηnl (t).

This construction and its applications in [7, 8, 9] rely heavily on the fact that individual
trajectory x(u, ·) is a Brownian motion.

For n > 1 the n−point motion (x(u1, ·). . . . , x(un, ·)) is no longer Gaussian process.
Moreover, the filtration generated by the Arratia flow is an example of a black noise in
the terminology of B. S. Tsirelson [5] (i.e. the Gaussian part of the filtration is trivial).
Understanding such filtration was the main motivation of the research undertaken in
[1]. In this paper we investigate the structure of square integrable random variables
measurable with respect to the finite-point motion xu of the Arratia flow.

Among the main instruments in the description of functionals from the Gaussian noise
are the Itô-Wiener expansion and its specification – the Krylov-Veretennikov expansion
[4]. These notions proved to be fruitfull in the study of filtrations with non-trivial
Gaussian parts as well [3]. Consider the Brownian motion {w(t), t ≥ 0}. Let L2(w)
be the space of square integrable random variables measurable with respect to σ(w).
The Itô-Wiener expansion is the representation of L2(w) as a Hilbert sum of pairwise
orthogonal subspaces [12]

L2(w) = ⊕∞n=0In(L2
symm(Rn+)),

where In : L2
symm(Rn+) → L2(w) is the operator of n−fold stochastic integration with

respect to w,

Ina =

∫ ∞
0

∫ tn

0

. . .

∫ t2

0

a(t1, . . . , tn)dw(t1) . . . dw(tn).

An analogous decomposition holds in a more general case of L2(β), where β is a
Gaussian random measure on a certain measure space [11].

In the case of Arratia flow, multiple stochastic integrals

(2)

∫ ∞
0

∫ tn

0

. . .

∫ t2

0

a(t1, . . . , tn)dx(u1, t1) . . . dx(un, tn)

of different multiplicity are no longer orthogonal (which in turn comes from the random-
ness of the quadratic covariation < x(u, ·), x(v, ·) >). This obstacle makes integrals (2)
an inappropriate tool in description of functionals from the Arratia flow. For example,
the expansion of a random variable as a series of integrals (2) is nonunique [1, Ex. 1].
Analogous problem for the stopped Brownian motion was treated in [13] and [1]. Let τ
be the moment when the Brownian motion w has reached a level a > 0. Again, multiple
stochastic integrals

(3)

∫ τ

0

∫ tn

0

. . .

∫ t2

0

a(t1, . . . , tn)dw(t1) . . . dw(tn)

of different multiplicity fail to be orthogonal (due to the randomness of the quadratic
variation < w(· ∧ τ) >). An application of the Gram-Schmidt orthogonalization proce-
dure to integrals of the kind (3) was studied in [13]. However, the structure of integrals
(3) occured to be too complicated either to find a closed expression for resulting orthog-
onal objects or to calculate the orthogonal expansion for a specific functional via this
procedure. It was noted in [1] that rather to apply classical orthogonalization procedure,
a simple transformation of differentials in (3) leads to orthogonal multiple stochastic in-
tegrals. Moreover, it was shown that thus constructed integrals constitute an analogue of
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the Itô-Wiener expansion for the stopped Brownian motion. Namely, stochastic integrals

(4)

∫ τ

0

∫ tn

0

. . .

∫ t2

0

a(t1, . . . , tn)(dw(t1)− f(w(t1), t1, tn)dt1) . . .

. . . (dw(tn−1)− f(w(tn−1), tn−1, tn)dtn−1)dw(tn),

with f(y, s, t) = ∂y logP(∀ r ∈ [s, t] y + w(r − s) < g(r)), corresponding to different
n are orthogonal, and any square integrable w(· ∧ τ)−measurable random variable can
be represented as a series of integrals (4). Thus, the space L2(w(· ∧ τ)) of all square
integrable functionals of w(· ∧ τ) is the Hilbert sum of pairwise orthogonal subspaces
of multiple stochastic integrals (4). Moreover, the space of n−fold multiple stochastic
integrals (4) is naturally isometric to the space L2(P(τ > tn)dt), as the squared norm of
the integral (4) equals∫ ∞

0

∫ tn

0

. . .

∫ t2

0

P(τ > tn)a(t1, . . . , tn)2dt1 . . . dtn.

As opposed to the Gaussian case, stochastic integrals (4) are no longer polynomials from
the stopped Brownian motion.

In the present paper we adopt the approach of [1] to study the structure of the space
L2(xu) of all square integrable functionals measurable with respect to the n−point motion
xu of the Arratia flow. We find suitable transformations of differentials in (2) that lead
to multiple stochastic integrals with the properties

1) multiple stochastic integrals of different multiplicity are orthogonal in L2(xu);
2) the space of multiple stochastic integrals of a fixed multiplicity is closed in L2(xu)

(and in fact is naturally isometric to certain L2 space of integrands);
3) the Hilbert sum of all spaces of multiple stochastic integrals coincides with L2(xu);

thus defining an analogue of the Itô-Wiener expansion of the space L2(xu).
Next we introduce the notation and briefly describe the construction. In the end of the

Introduction we discuss applications of our results to the description of square integrable
functionals measurable with respect to the whole Arratia flow x.

Notations.
For any metric space X , B(X ) denotes the Borel σ−field on X .
Following regions will be used:

Sn = {u ∈ Rn : u1 < . . . < un}; Sn+ = {u ∈ Sn : u1 > 0}; Sn1,...,nm
+ = Sn1

+ × . . .× S
nm
+ .

Cn is the space of all continuous functions ω : R+ → Rn equipped with the metric
of uniform convergence on compacts. Cn([0, T ]) is the space of all continuous functions
f : [0, T ]→ Rn equipped with the uniform norm.
Bn = B(Cn) is the Borel σ−field on Cn.
w : R+ × Cn → Rn is the canonical process on Cn, i.e. w(t, ω) = ω(t).
Cn is equipped with the natural filtration (Bnt )t≥0, i.e. Bnt = σ(w(s) : 0 ≤ s ≤ t).
P is the σ−field of progressively measurable sets on R+ × Cn. It is a σ−field of all

subsets A ⊂ R+ × Cn, such that for all t ≥ 0

A ∩ [0, t]× Cn ∈ B([0, t])× Bnt
(see, for example, [14, Ch. I, §4]). Progressively measurable processes arise naturally as
integrands in stochastic integrals with respect to the Brownian motion [14, Ch. IV, §2].

Given u ∈ Rn, µu denotes the Wiener measure on (Cn,Bn) that corresponds to the
standard n−dimensional Brownian motion starting from u. For every k ∈ {1, . . . , n}, Iuk
denotes the operator of stochastic integration with respect to the Brownian motion wk
on (Cn,Bn, µu):

(5) Iuk : L2(R+ × Cn,P, dt× µu(dω))→ L2(Cn,Bn, µu), Iukh =

∫ ∞
0

h(t)dwk(t).
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According to the Clark representation formula [14, Ch.5, Th.(3.5)] each functional g ∈
L2(Cn,Bn, µu) is uniquely represented as a sum

g = Eµ
u

g +

n∑
k=1

Iuk gk.

Denote Qukg = gk, so that Quk : L2(Cn,Bn, µu)→ L2(R+ ×Cn,P, dt× µu(dω)), in such a
way that for each g ∈ L2(Cn,Bn, µu),

(6) g = Eµ
u

g +

n∑
k=1

Iuk (Qukg).

For all (k1, . . . , kd) ∈ {1, . . . , n}d, Iuk1,...,kd denotes the operator of d−fold stochastic

integration with respect to Brownian motions wk1 , . . . , wkd on (Cn,Bn, µu);
(7)

Iuk1,...,kd : L2(Sd+)→ L2(Cn,Bn, µu), Iuk1,...,kda =

∫ ∞
0

. . .

∫ t2

0

a(t)dwk1(t1) . . . dwkd(td).

Following formulas hold

Eµ
u

Iuk1,...,kdaI
u
l1,...,lmb = δ(k1,...,kd),(l1,...,lm)

∫
Sd+
a(t)b(t)dt;

(8)

Iuk1,...,kda =

∫ ∞
0

(∫ t

0

. . .

∫ t2

0

a(t1, . . . , td−1, t)dwk1(t1) . . . dwkd−1
(td−1)

)
dwkd(t) =

=

∫ ∞
0

Iuk1,...,kd−1
(ã(t))dwkd(t) = Iukd(Iuk1,...,kd−1

(ã(·))), µu − a.e.,

where

ã(t)(t1, . . . , td−1) =

{
a(t1, . . . , td−1, t), td−1 < t,

0, td−1 ≥ t.

Existence of a progressively measurable modification for the process {Iuk1,...,kd−1
(ã(t)), t ≥

0} follows from the existence of a progressively measurable modification for any measur-
able adapted process (see, for example, [15]).
Kn is the set of all finite sequences of elements 1, . . . , n, i.e. Kn = ∪∞d=0{1, . . . , n}d;

the length of a sequence k ∈ Kn is denoted by |k|; K1,...,n = K1 × . . . × Kn. With these
notations the Itô-Wiener expansion for the n−dimensional Brownian motion is

(9) L2(Cn,Bn, µu) = ⊕k∈KnIuk (L2(S |k|+ )).

Respectively, operators Quk : L2(Cn,Bn, µu) → L2(S |k|+ ) are defined in such a way that
every g ∈ L2(Cn,Bn, µu) has a unique series representation

(10) g =
∑
k∈Kn

Iuk (Qukg).

Multiple stochastic integrals with respect to xu.
Given u ∈ Sn, νu denotes the distribution in (Cn,Bn) of the n−point motion xu of

the Arratia flow started from u. τSn is the moment when two of trajectories of xu have
met each other. Measures νu and µu coincide on the σ−field BnτSn [16]. In particular,
when n = 1, νu is the distribution of the Brownian motion started from u. Hence, the
Itô-Wiener expansion of the space L2(C1,B1, νu) is determined by the multiple stochastic
integrals along the Brownian motion w, i.e.

L2(C1,B1, νu) = ⊕k∈K1
Iuk (L2(S |k|+ )).
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If n > 1, the moment τSn is νu−a.s. finite and the set {w1(τSn), . . . , wn(τSn)} consists
of exactly n−1 points. Enumerate these points in the ascending order by pn−1

1 , . . . , pn−1
n−1

(pn−1
1 < . . . < pn−1

n−1). According to the strong Markov property, the distribution of xu
after the moment τSn coincides with the distribution of xpn−1 (to be precise, it coincides
with the distribution of xpn−1 lifted to the space Cn by repeating a coordinate j for which

wj(τSn) = wj+1(τSn) = pn−1
j ). Hence, the space (Cn,Bn, νu) is naturally isomorphic to

the space with mixture of measures (Cn−1×Cn,Bn−1×BnτSn , ν
pn−1(ωn)(dωn−1)µu(dωn)).

Consider at first the case n = 2 and a functional f ∈ L2(C2,B2, νu). To give an
example of how our construction works, let us describe the orthogonal expansion of f
leaving measurability questions apart. The considerations below are justified in Theorems
2.1, 3.1 and Lemmata 4.1, 4.2.

Due to the isomorphism described above, f = f(ω1, ω2), where ω1 refers to the only
trajectory left after the coalescence, and ω2 refers to the 2-point motion before the

coalescence. For every fixed ω2, f(·, ω2) ∈ L2(C1,B1, µp
1(ω2)). Hence, f(·, ω2) possesses

an Itô-Wiener expansion

f(·, ω2) =
∑
k1∈K1

I
p1(ω2)
k1 (ak1(·, ω2)).

In this expansion, each kernel ak1 is a functional of ω2 and in fact

ak1(t1, ·) ∈ L2(C2,B2
τS2

, µu).

By the Theorem 2.1, ak1(t1, ·) can be further expanded as a sum of multiple stochastic
integrals with respect to the stopped Brownian motion (27)

ak1(t1, ·) =
∑
k2∈K2

J u,S
2

k2 (ak1,k2(t1, ·)).

Finally, in L2(C2,B2, νu)

(11) f =
∑

(k1,k2)∈K1,2

Auk1,k2ak1,k2 ,

where

(12) Auk1,k2ak1,k2(ω1, ω2) = I
p1(ω2)
k1 (J u,S

2

k2 (ak1,k2(t1, ·))(ω2))(ω1),

all the summands are pairwise orthogonal. Theorem 2.1 implies that the squared norm

of Ip
1

k1 (J u,S
2

k2 ak1,k2) equals

(13)

∫
S|k

1|,|k2|
+

ak1,k2(t1, t2)2αS2(u, t2|k2|)dt
1dt2,

αS2(u, t) is the probability that trajectories of a two-dimensional Brownian motion
started from u haven’t met up to the moment t. Auk1,k2 is the operator of multiple sto-

chastic integration with respect to xu. The index k1 defines the multiplicity of integrals
along the only trajectory left after the coalescence and the index k2 defines the order
of differentials and the multiplicity of integrals along trajectories before the coalescence.
Respectively, the kernel ak1,k2 is a function of (t1, t2), where tj = (tj1, . . . , t

j
|kj |) varies

over the |kj |−dimensional simplex S |k
j |

+ . To handle questions like measurability of the
expression in (12), we give following definition. Let (X ,B), (Ω,F) be measurable spaces,
(µω)ω∈Ω be a regular family of measures on (X ,B), that is a mapping (B,ω) → µω(B)
of B × Ω into [0,∞], such that

1) for all ω ∈ Ω µω is a (possibly infinite) measure on (X ,B);
2) for every B ∈ B the mapping ω → µω(B) is F−measurable.

For a detailed exposition of the theory of regular measures see [24, Ch. 10].
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Definition 1.1. Assume that for each ω ∈ Ω, ξω is a measurable function on (X ,B). If
there exists measurable mapping h : X × Ω→ R such that

∀ω ∈ Ω h(·, ω) = ξω, µω − a.s.,

then we will say that a family {ξω}ω∈Ω can be realized as a measurable function on X ×Ω
with respect to the family {µω}ω∈Ω. When all measures µω are equal to some measure µ
we will say that a family {ξω}ω∈Ω can be realized as a measurable function with respect
to the measure µ.

Section 4 is devoted to two general results on measurable realizations which cover all the
measurability issues of our construction.

In section 3 the described approach will be carried out to define multiple stochastic
integrals with respect to xu that produce an analogue of the Itô-Wiener expansion of the
space L2(Cn,Bn, νu) (Theorem 3.1). The only modification comes from the formula (13).
Consider, for example, n = 3. Then every f ∈ L2(C3,B3, νu) is a functional of (ω2, ω3),
where ω2 refers to two trajectories left after the first coalescence, and ω3 refers to the
3-point motion before the first coalescence. As above, f(·, ω3) is expanded into the sum

f(·, ω3) =
∑

(k1,k2)∈K1×K2

Ap
2(ω3)
k1,k2 (ak1,k2(·, ω3)).

Due to (13) the squared norm of the summand Ap
2

k1,k2ak1,k2 equals

(14)

∫
C3

∫
S|k

1|,|k2|
+

ak1,k2(t1, t2, ω3)2αS2(p2(ω3), t2|k2|)dt
1dt2µu(dω3),

what means that ak1,k2(t1, t2, ·) ∈ L2(C3,B3
τS3

, αS2(p2(ω3), t2|k2|)µ
u(dω3)). Hence, for

ak1,k2(t1, t2, ·) to become a square integrable functional from the stopped Brownian mo-
tion, an additional weight αS2(p2(ω3), t2|k2|) is needed. The problem of expanding such

functionals as a series of pairwise orthogonal multiple stochastic integrals is solved in the
Lemma 2.4 for a class of measures κ � µu on (Cn,Bnτ ). Obtained results are used in the
inductive definition (45) of multiple stochastic integrals with respect to n−point motion
of the Arratia flow.

In Theorem 3.1 it is proved that each f ∈ L2(Cn,Bn, νu) is uniquely represented as a
series of pairwise orthogonal multiple stochastic integrals

f =
∑

(k1,...,kn)∈K1,...,n

Auk1,...,knak1,...,kn .

Auk1,...,kn is an operator of multiple stochastic integration with respect to the trajectories

of x(u, ·). It contains |kj | integrals over a region where exactly j particles, integrals are
taken with respect to the trajectories of these particles transformed in the manner of
(4). Differentials are transformed with the help of mappings (25) and (33). The squared
norm of the summand Auk1,...,knak1,...,kn equals∫

S|k
1|,...,|kn|

+

ak1,...,kn(t1, . . . , tn)2ρt2
|k2|

,...,tn|kn|
(u)dt1 . . . dtn,

where functions ρt2,...,tn are defined in (41).
Multiple stochastic integrals with respect to x.
Obtained results indicate possible way to define multiple stochastic integrals with

respect to the whole Arratia flow. Recall that σn is the moment when all particles
{x(u, ·), u ∈ [0, 1]} have coalesced into exactly n particles. Denote pn1 < . . . < pnn the po-
sitions of n remaining particles at the moment σn. The strong Markov property of x imply
that L2(Ω,Fx,P) is naturally isometric to L2(Cn × Ω,Bn × Fxσn , ν

pn(ωn)(dωn)P(dωn)),
where ωn refers to n trajectories left after the moment σn and ωn refers to the flow x
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before the moment σn. From the Theorem 3.1 it follows that each α ∈ L2(Ω,Fx,P) has
a series expansion

(15) α =
∑

(k1,...,kn)∈K1,...,n

Ap
n(ωn)
k1,...,kn

(ak1,...,kn(·, ωn)).

Denote KN =
∏
n≥1Kn. Due to the orthogonality of summands in (15), for each k ∈ KN,

k = (k1, k2, . . .), elements Ap
n(ωn)
k1,...,kn

(ak1,...,kn(·, ωn)) converge to some element Pkα in

L2(Ω,Fx,P). (Pkα)k∈KN is a continuum family of pairwise orthogonal elements, which
may be considered as multiple stochastic integrals of some kernels with respect to x. If
such point of view is possible, obtained multiple stochastic integrals would be natural
candidates to form an analogue of the Itô-Wiener expansion of L2(Ω,Fx,P). As for
now, the description of Pkα and construction of the expansion of L2(Ω,Fx,P) are open
problems. We leave them for further investigations.

2. Stopped Brownian Motion

Let G ⊂ Rn be an open connected set and ℵ : G → Rn be an infinitely differentiable
vector field on G. Given ω ∈ Cn, consider the following integral equation

(16) ξ(t) = ω(t) +

∫ t

0

ℵ(ξ(s))ds, t ≥ 0.

Of course, the solution to (16) may not exist for all t > 0. The precise definition of the
solution and its properties are given below. Though the result seems known we add the
proof because our situation differs from the usual one - we seek for a solution that is an
adapted functional on the space (Cn,Bn) without referring to any probability measure.

Consider the set

D = {(T, ω) ∈ R+ × Cn : there exists continuous function ξ : [0, T ]→ G,

such that for all t ∈ [0, T ] (16) holds}.

Lemma 2.1. 1) Each section Dω is the interval of the form [0, τ(ω)) (Dω = ∅, if τ(ω) = 0
and Dω = R+, if τ(ω) =∞). In particular, D = {(T, ω) ∈ R+ × Cn : τ(ω) > T}.

2) For each ω ∈ Cn there exists unique continuous function ξ(·, ω) : [0, τ(ω)) → G,
such that for all t ∈ [0, τ(ω)) (16) holds.

3) D ∈ P, i.e. D is a progressively measurable subset of R+ × Cn.
4) τ : Cn → [0,∞] is a stopping time.
5) ξ : D → G is a progressively measurable process.
6) Relatively to Wiener measures µu, u ∈ G, ξ is a strong Markov process [17, Ch.

III, §3], i.e. for any Bn−stopping time σ ≤ τ, t ≥ 0 and a Borel set A ⊂ G,
µu(ξ(t+ σ) ∈ A, t+ σ < τ |Bnσ) = 1σ<τµ

v(ξ(t) ∈ A, t < τ)|v=ξ(σ).

Proof. 1) and 2). Assume that T ∈ Dω. Evidently, [0, T ] ⊂ Dω. There exists continuous
function ξ : [0, T ] → G, such that for all t ∈ [0, T ] (16) holds. We will show that for
δ small enough, ξ can be uniquely extended to continuous function on [0, T + δ] that
satisfies (16) for all t ∈ [0, T + δ]. To this end it is enough to prove that there exists
continuous function ξ1 : [0, δ]→ G that satisfies

ξ1(t) = ω1(t) +

∫ t

0

ℵ(ξ1(s))ds, t ∈ [0, δ],

with ω1(·) = ξ(T ) + ω(· + T ) − ω(T ). The difference ξ2(t) = ξ1(t) − ω1(t) must then be
a solution to the Cauchy problem

(17)

{
dξ2(t) = ℵ(ξ2(t) + ω1(t))dt,

ξ2(0) = 0.
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Denote B(δ) a closed ball in Rn with centre 0 and radius δ. For small enough δ, a compact
set K = {x+ ω1(t) : t ∈ [0, δ], x ∈ B(δ)} is a subset of G. Hence, C = supK |∇ℵ| <∞,
and for all (t, x1), (t, x2) ∈ [0, δ]×B(δ) one has

|ℵ(x1 + ω1(t))− ℵ(x2 + ω1(t))| ≤ C|x1 − x2|.

The existence and uniqueness of a solution to (17) now follows from [18, Ch. 1, Th. 2.3].
3) Given S ≥ 0 let us show that D ∩ ([0, S] × Cn) ∈ B([0, S]) × BnS . This is exactly

what the progressive measurability means. Denote Gδ = {x ∈ G : dist(x, ∂G) ≥ δ}. For
all T ≥ 0 and δ > 0 the space Cn([0, T ];Gδ) of all continuous functions f : [0, T ] → Gδ

is a closed subset of Cn([0, T ]). In particular, it is a Polish space. The mapping FT,δ :
Cn([0, T ];Gδ)→ Cn([0, T ]),

FT,δ(f)(t) = f(t)−
∫ t

0

ℵ(f(s))ds, t ∈ [0, T ],

is injective (see part 1) of the proof). By the Souslin Theorem [24, Th. 6.8.6], the image
FT,δ(Cn([0, T ];Gδ)) is a Borel set in Cn([0, T ]). Let AS be some dense countable set in
[0, S], such that S ∈ AS . Then

D ∩ ([0, S]× Cn) =
⋃
δ>0

⋃
T∈AS

[0, T ]× FT,δ(Cn([0, T ];Gδ)) ∈ B([0, S])× BnS .

It is enough to take union only in T ∈ AS , as every solution to (16) can be continued
from a closed interval to an interval with the right end in AS (see part 1) of the proof).

4) Follows from 3):

{ω : τ(ω) > t} = Dt ∈ Bnt .
5) By continuity of ξ and [14, Ch. 1, Prop. (4.8)], it is enough to prove that ξ(T )

is BnT−measurable on the set {τ > T} = DT . Recall mappings FT,δ from part 3) of the
proof. Then, for every Borel set ∆ ⊂ G,

{ω ∈ DT : ξ(T, ω) ∈ ∆} =
⋃
δ>0

{ω ∈ DT : ξ(T, ω) ∈ ∆ and ξ([0, T ], ω) ⊂ Gδ} =

=
⋃
δ>0

{ω ∈ DT : the restriction ω|[0,T ] ∈ FT,δ({f ∈ Cn([0, T ];Gδ) : f(T ) ∈ ∆})}.

By the Souslin Theorem, the latter set belongs to BnT .
6) Introduce shift operators θr,vω = v+ω(·+ r)−ω(r). If τ(ω) > s, then τ(ω) > t+ s

if and only if τ(θs,ξ(s,ω)) > t, and in this case

ξ(s+ ·, ω) = ξ(·, θs,ξ(s,ω)ω) on [0, t].

Hence, by the strong Markov property of the Wiener process [14, Ch. 3, Cor. (3.6)],

µu(ξ(t+ σ) ∈ ∆, τ > t+ σ/Bnσ) =

= 1τ>σµ
u(ξ(t, θσ,ξ(σ)w) ∈ ∆, τ(θσ,ξ(σ)w) > t/Bnσ) =

= 1τ>σµ
v(ξ(t) ∈ ∆, τ > t)|v=ξ(σ).

�

τ will be referred to as the lifetime of the solution to (16). The main result of this
section is an analogue of the Itô-Wiener expansion of the space L2(Cn,Bnτ , µu).

Introduce the function

(18) α(t, u) = µu(τ > t), u ∈ G, t ∈ R.

In the section 3 we will write αℵ,G instead of α to indicate its dependence on the domain
G and the vector field ℵ. Note, that α(t, u) = 1 for t ≤ 0.
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Lemma 2.2. 1) α satisfies the equation

(19)
∂α

∂t
(t, u) =

1

2
∆uα(t, u) + (ℵ(u),∇uα(t, u)), t > 0, u ∈ G.

In particular, α is infinitely differentiable in R+ ×G.
2) The Clark representation formula [14, Ch.5, Th.(3.5)] for 1τ>t is

(20) 1τ>t = α(t, u) +

∫ t∧τ

0

∇uα(t− s, ξ(s))dw(s), µu − a.s.

3) Eµu [1τ>t/Bns ] = 1τ>t∧sα(t− t ∧ s, ξ(t ∧ s)), µu − a.s.

Proof. 1) Consider an open ball B b G and a starting point u ∈ B. Let τB be the
moment when the process ξ leaves B. Denote gB(t, u, v) the distribution density of the
pair (τB , ξ(τB)) with respect to dt × σ(dv), where σ is the surface measure on B. Such
density exists since for all t > 0 the distribution of ξ(· ∧ τB ∧ t) is equivalent to the
distribution of the stopped Brownian motion w(· ∧ τwB ∧ t), τwB is the moment when w
leaves B [20, Th. 7. 10], while the distribution density of (τwB , w(τwB )) is known explicitly
[21]. From the strong Markov property of ξ following representation follows

(21) α(t, u) =

∫ t

−∞

∫
∂B

α(s, v)gB(t− s, u, v)σ(dv)ds, t > 0, u ∈ B.

If one knows that gB(·, v) satisfies (19) in R+ × B, then the representation (21) implies
that α solves (19) as a distribution on R+ × B. Next, according to the hypoellipticity
of the operator 1

2∆u + (ℵ(u),∇u) − ∂
∂t [19, Th. 3.4.1], α is infinitely differentiable on

R+ ×B and (19) holds in the usual sense.
Let us check (19) for gB . Denote pB(t, x, y) the transition density of the process ξ

killed at the moment τB [19, §5.2]. Due to the Markov property of ξ,∫ ∞
t

∫
A

gB(s, u, v)σ(dv)ds = µu(τB > t, ξ(τB) ∈ A) =

=

∫
B

pB(t, u, y)

∫ ∞
0

∫
A

gB(s, y, v)σ(dv)dsdy.

Which implies the representation

gB(t, u, v) = −
∫
B

∂pB
∂t

(t, u, y)

∫ ∞
0

gB(s, y, v)dsdy.

pB(·, y) satisfies (19) [19, Th. 5.2.8]. Hence, another application of the hypoellipticity of
1
2∆u + (ℵ(u),∇u)− ∂

∂t proves (19) for gB .
2) At first we consider the case when G is bounded with an infinitely smooth boundary

and ℵ is a restriction to G of an infinitely differentiable compactly supported vector field
on Rn. In this case there exist global solution ξ of (16). We will understand τ as the
moment when ξ leaves G. In this case α(t, u) =

∫
G
pG(t, u, y)dy, where pG is a transition

density of the process ξ killed at the moment τ [19, §5.2]. pG is a Green function of the
parabolic boundary value problem{

∂f
∂t (t, u) = 1

2∆uf(t, u) + (ℵ(u),∇uf(t, u)), u ∈ G, t > 0,

f(t, u) = 0, u ∈ ∂G, t > 0.

The explicit construction of the Green function pG [22, §VI.2.1] leads to

sup
t≥ε

(
α(t, u) +

∣∣∣∣∂α∂t (t, u)

∣∣∣∣)→ 0, u→ u0 ∈ ∂G.
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Recall that Gδ is the set of points of G whose distance to ∂G exceeds δ. Denote τδ =
inf{t ≥ 0 : ξ(t) 6∈ Gδ}. From the Itô’s formula applied to the function α(t− s, ξ(s ∧ τδ)),
0 ≤ s ≤ t− ε it follows that µu−a.s.

(22)

α(ε, ξ((t− ε) ∧ τδ)) = α(t, u) +

∫ (t−ε)∧τδ

0

∇uα(t− s, ξ(s))dw(s)

−1τδ<t−ε

∫ t−ε

τδ

∂α

∂t
(t− s, ξ(τδ))ds.

Consider the case τ > t. Then for small enough ε and δ one has τδ > t − ε and the
left-hand side of (22) transforms into α(ε, ξ(t−ε)). ξ(t−ε)→ ξ(t) ∈ G, so, by continuity
of ξ,

α(ε, ξ(t− ε))→ α(0, ξ(t)) = 1, ε→ 0.

Hence, multiplying (22) by 1τ>t and taking limits ε, δ → 0 implies the relation

(23) 1τ>t = 1τ>tα(t, u) + 1τ>t

∫ t

0

∇uα(t− s, ξ(s))dw(s).

Consider the case τ < t − ε. Then for all δ, τδ < t − ε and the left-hand side of (22) is
α(ε, ξ(τδ)). ξ(τδ)→ ξ(τ) ∈ ∂G and, from the boundary conditions, one has

α(ε, ξ(τδ))→ α(ε, ξ(τ)) = 0, δ → 0.

Hence, multiplying (22) by 1τ<t−ε and taking the limit δ → 0 one gets

(24) 0 = 1τ<t−εα(t, u) + 1τ<t−ε

∫ τ

0

∇uα(t− s, ξ(s))dw(s).

Finally, (23) and (24) imply the relation (20).
According to [23, Ch. 5, Th. 4.20], G can be written as an increasing union of bounded

domains Gn b G with infinitely differentiable boundaries. Denote τn = inf{t ≥ 0 : ξ(t) 6∈
Gn}, αn(t, u) = µu(τn > t). As τn ↗ τ, it follows that functions αn converge pointwise
to α. From the representation (21) it follows that all derivatives of αn also converge to
respective derivatives of α. Hence, (20) holds for any G and ℵ.

The property 3) is an immediate consequence of the Markov property of ξ.
�

Denote πt,u the probability on (Cn,Bn) defined via the density

dπt,u

dµu
= α(t, u)−11τ>t.

In what follows we introduce a family of transformations of Cn that send πt,u into µu.
Recall the equality D = {(t, ω) : τ(w) > t} (Lemma 2.1). Define mappings

(25)
φ(t, ω) = 1τ(ω)>t(ω(·)−

∫ ·∧t
0

∇u logα(t− s, ξ(s, ω))ds),

Φ(t, ω) = (t, φ(t, ω))

and the set R = Φ(D). Next Lemma states measurability properties of Φ with respect
to the Borel σ−field B(R+ × Cn) and the σ−field P of progressively measurable sets on
R+ × Cn [14, Ch. I, §4].

Lemma 2.3. 1) Φ : R+ × Cn → R+ × Cn is both B(R+ × Cn)/B(R+ × Cn)− and
P/P−measurable;

2) D,R ∈ P and Φ is a bimeasurable bijection of D onto R when both sets are simul-
taneously equipped either with the Borel or with the progressively measurable σ−fields.
In particular, there exists B(R+ × Cn)/B(R+ × Cn)− and P/P−measurable mapping
Ψ : R+ × Cn → R+ × Cn that coincides with Φ−1 on R;
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3) For each t ≥ 0

πt,u ◦ φ(t, ·)−1 = µu;

Proof. 1) To prove P/P−measurability of Φ it is enough to check that the restriction
of Φ onto [0, T ] × Cn is B([0, T ]) × BnT /P−measurable. As Φ([0, T ] × Cn) ⊂ [0, T ] × Cn,
the needed measurability is equivalent to B([0, T ]) × BnT /B([0, T ]) × BnT−measurability,
which immediately follows from the definition.

2) The inclusion D ∈ P was proved in the Lemma 2.1. Let us check that Φ is
injective on D. Assume that Φ(t, ω) = Φ(t′, ω′), τ(ω) > t, τ(ω′) > t′. Then t = t′,
ϕ(t, ω) = ϕ(t, ω′). The last equality means that for all r ≥ 0

(26) ω(r)−
∫ r∧t

0

∇ logα(t− s, ξ(s, ω))ds = ω′(r)−
∫ r∧t

0

∇ logα(t− s, ξ(s, ω′))ds.

In particular, ω(0) = ω′(0) and ξ(0, ω) = ξ(0, ω′). After the moment t the difference
between ω and ω′ is constant. Consider differences ω(r) − ω′(r) and ξ(r, ω) − ξ(r, ω′),
r ∈ [0, t]. They are differentiable on [0, t), as it follows from (26) and (16), and

∂(ω − ω′)
∂r

= ∇ logα(t− r, ξ(r, ω))−∇ logα(t− r, ξ(r, ω′)),

∂(ξ(·, ω)− ξ(·, ω′))
∂r

= ℵ(ξ(r, ω))− ℵ(ξ(r, ω′)) +
∂(ω − ω′)

∂r
.

Combining the relations one has

∂(ξ(·, ω)− ξ(·, ω′))
∂r

= ℵ(ξ(r, ω))− ℵ(ξ(r, ω′))+

+∇ logα(t− r, ξ(r, ω))−∇ logα(t− r, ξ(r, ω′)).
In the view of the infinite differentiability of α (Lemma 2.2) and ℵ, for all r ≤ t− ε∣∣∣∣∂(ξ(·, ω)− ξ(·, ω′))

∂r

∣∣∣∣ ≤ C|ξ(r, ω)− ξ(r, ω′)|

By the Gronwall lemma, the difference ξ(r, ω) − ξ(r, ω′) is bounded by a multiple of
ξ(0, ω)− ξ(0, ω′) = 0. Hence, ξ(r, ω) = ξ(r, ω′) and ω = ω′.

It follows that Φ : D → R is a bijection. The Souslin Theorem [24, Th. 6.8.6]
implies that the image under Φ of every Borel subset of D is a Borel subset of R. It
remains to check that for every progressively measurable set A ⊂ D its image Φ(A) is
progressively measurable. Given T ≥ 0 denote ΦT the restriction of Φ onto [0, T ] ×
Cn. The σ−field B([0, T ]) × BnT is naturally isomorphic to the Borel σ−filed B([0, T ] ×
Cn([0, T ])). Another application of the Souslin theorem gives the inclusion Φ(A)

⋂
([0, T ]×

Cn) = ΦT (A
⋂

([0, T ]× Cn)) ∈ B([0, T ])× BnT .
3) The Clark representation for the density ρ = dπt,u

dµu = α(t, u)−11τ>t was derived in

the Lemma 2.2, 2):

ρ = 1 + α(t, u)−1

∫ t∧τ

0

∇uα(t− s, ξ(s))dw(s), µu − a.s.

Its conditional expectation with respect to the Bns is given by the Lemma 2.2, 3):

Eµ
u

[ρ/Bns ] = 1τ>t∧sα(t, u)−1α(t− t ∧ s, ξ(t ∧ s)), µu − a.s.

According to the Girsanov theorem [14, Ch.8, Th.(1.4)], the process

ϕ(t, ω)(·) = w(·)−
∫ ·∧t

0

α(t− s, ξ(s, w))−1∇α(t− s, ξ(s, w))ds

is the Wiener process with respect to πu,t. In other words, πt,u ◦ ϕ(t, ·)−1 = µu.
�
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The Lemma 2.3 makes it possible to define stochastic integrals J u,ℵ,Gk a for all k ∈ Kn
and a ∈ L2(Sd+, α(td, u)dt), d = |k|, as follows

(27) J u,ℵ,Gk a = Iukd(1·<τ (h ◦ Φ)(·))
(

=

∫ τ

0

(h ◦ Φ)(t)dwkd(t)

)
,

where

h(t, ω) = Iuk1,...,kd−1
(ã(t))(ω), ã(t)(t1, . . . , td−1) =

{
a(t1, . . . , td−1, t), td−1 < t,

0, td−1 ≥ t.

Composition (h ◦ Φ)(t, ω) equals Iuk1,...,kd−1
(ã(t))(ϕ(t, ω)). Comparing this expression to

(8), one sees that the differentials in the inner d − 1 integral are transformed according
to ϕ. Progressive measurability of the integrand in (27) follows from the Lemma 2.3 and
the existence of a progressively measurable modification of {Iuk1,...,kd−1

(ã(t)), t ≥ 0} [15].

Following calculation shows that J u,ℵ,Gk is well-defined.

(28) Eµ
u

∫ ∞
0

1τ>t(h ◦ Φ)(t)2dt =

∫ ∞
0

α(t, u)Eπ
t,u
ℵ,G(h ◦ Φ)(t)2dt =

=

∫ ∞
0

α(t, u)Eµ
u

h(t)2dt =

∫
Sd+
α(td, u)a(t)2dt.

In the next Theorem we prove that operators J u,ℵ,Gk constitute the Itô-Wiener ex-
pansion of the space L2(Cn,Bnτ , µu).

Theorem 2.1. 1) Spaces J u,ℵ,Gk (L2(S |k|+ , α(t|k|, u)dt)) corresponding to different k ∈ Kn
are pairwise orthogonal;

2) J u,ℵ,Gk is an isometry of L2(S |k|+ , α(t|k|, u)dt) into L2(Cn,Bnτ , µu);

3) L2(Cn,Bnτ , µu) = ⊕k∈KnJ
u,ℵ,G
k (L2(S |k|+ , α(t|k|, u)dt)).

Proof. Properties 1) and 2) immediately follow from the calculation (28).
Consider f ∈ L2(Cn,Bnτ , µu) with Eµuf = 0. According to the Clark representation

theorem [14, Ch.5, Th.(3.5)] and (6)

f =

n∑
j=1

∫ τ

0

Quj f(t)dwj(t), µ
u − a.s.,

and

Eµ
u

f2 =

n∑
j=1

∫ ∞
0

Eµ
u

1τ>tQuj f(t)2dt.

Consider the progressively measurable process ((Quj f)◦Ψ)(t). Next identities follow from
the Lemma 2.3.∫ ∞

0

α(t, u)Eµ
u

((Quj f) ◦Ψ)(t)2dt =

∫ ∞
0

α(t, u)Eπ
t,u

Quj f(t)2dt =

=

∫ ∞
0

Eµ
u

1τ>tQuj f(t)2dt <∞.

Hence, (Quj f) ◦ Ψ can be viewed as a measurable mapping of R+ into L2(Cn,Bn, µu).

The Itô-Wiener expansion then produces kernels bk,j(t) ∈ L2(S |k|+ ), k ∈ Kn such that for
a.a. t > 0

(29) ((Quj f) ◦Ψ)(t) =
∑
k∈Kn

Iuk (bk,j(t)) in L2(Cn,Bn, µu).

In fact (10),
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(30) bk,j(t) = Quk(((Quj f) ◦Ψ)(t)).

From the Lemma 4.1 it follows that bk,j can be chosen as measurable functions
(t1, . . . , t|k|, t)→ bk,j(t)(t1, . . . , t|k|). Put

ak,j(t1, . . . , t|k|, t) = bk,j(t)(t1, . . . , t|k|).

Then

(31) Eµ
u

f2 =

n∑
j=1

∑
k∈Kn

∫ ∞
0

α(t, u)

∫
S|k|+

bk,j(t)(s)
2dsdt =

=
∑

k∈Kn,|k|≥1

∫
S|k|+

α(t|k|, u)ak(t)2dt.

In particular, ak ∈ L2(S |k|+ , α(t|k|, u)dt) and integrals J u,ℵ,Gk ak are well-defined. Also

(31) shows that the series
∑
k∈Kn J

u,ℵ,G
k,j ak,j converges in L2(Cn,Bnτ , µu). It remains to

show that

(32)
∑
k∈Kn

J u,ℵ,Gk,j ak,j =

∫ τ

0

Quj f(t)dwj(t).

Denote hk,j(ω, t) = Iuk (bk,j(t))(ω). From (29) it follows that Quj f ◦ Ψ =
∑
k∈Kn hk,j in

L2(R+×Cn,P, α(t, u)dt×µu(dω)). Finally, for each g ∈ L2(R+×Cn,P, 1τ(ω)>tdt×µu(dω))
one has

Eµ
u

∫ τ

0

Quj f(t)dwj(t)

∫ τ

0

g(t)dwj(t) =

∫ ∞
0

Eµ
u

1τ>tQuj f(t)g(t)dt =

=

∫ ∞
0

Eµ
u

α(t, u)(Quj f ◦Ψ)(t)(g ◦Ψ)(t)dt =

=
∑
k∈Kn

∫ ∞
0

Eµ
u

α(u, t)hk,j(t)(g ◦Ψ)(t)dt =

=
∑
k∈Kn

∫ ∞
0

Eµ
u

1τ>t(hk,j ◦ Φ)(t)g(t)dt =
∑
k∈Kn

Eµ
u

J u,ℵ,Gk,j ak,j

∫ τ

0

g(t)dwj(t)

and (32) is verified.
�

Consider the case ℵ = 0. Then the lifetime τ of the solution to (16) is the moment
when the Brownian motion w has left G, and the process ξ in (16) coincides with w up
to the moment τ. To separate this particular case, we will denote τ by τG and abbreviate

J u,0,Gk to J u,Gk . Next we generalize Theorem 2.1 to some measures on (Cn,BnτG) that are
absolutely continuous with respect to µu.

Assume that κ � µu on BnτG with ρ = dκ
dµu . Let the Clark representation [14, Ch.5,

Th.(3.5)] of ρ be

ρ = 1 +

∫ τG

0

h(s)dw(s), µu − a.s.,

for some progressively measurable Rn−valued process h. Denote

ρ(t) = 1 +

∫ t∧τG

0

h(s)dw(s).

According to the Girsanov theorem [14, Ch.8, Th.(1.4)] the process

(33) G(t, ω) = ω(t ∧ τG(ω))−
∫ t∧τG(ω)

0

h(s, ω)

ρ(s, ω)
ds
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on the probability space (Cn,BnτG ,κ) is a continuous square integrable martingale with
G(0) = u and

(34) < Gi,Gj > (t) = δi,jt ∧ τG.

Lemma 2.4. Assume that in (33) h(s,ω)
ρ(s,ω) = ℵ(ω(s)) for some infinitely differentiable

vector field ℵ : G → Rn. Denote σ the lifetime of the solution to (16) corresponding
to ℵ. Then G is the measurable isomorphism of the space (Cn,BnτG ,κ) onto the space
(Cn,Bnσ , µu). In particular, the correspondence f → f ◦ G is an isometry of the space
L2(Cn,Bnσ , µu) onto the space L2(Cn,BnτG ,κ), and operators

ak → (J u,ℵ,Gk ak) ◦ G, k ∈ Kn, ak ∈ L2(S |k|+ , αℵ,G(t|k|, u)dt)

possess following properties

1) spaces J u,ℵ,Gk (L2(S |k|+ , αℵ,G(t|k|, u)dt)) ◦G corresponding to different k ∈ Kn are pair-
wise orthogonal;

2) ak → (J u,ℵ,Gk ak) ◦ G is an isometry of L2(S |k|+ , αℵ,G(t|k|, u)dt) into L2(Cn,BnτG ,κ);

3) L2(Cn,BnτG ,κ) = ⊕k∈Kn(J u,ℵ,Gk (L2(S |k|+ , αℵ,G(t|k|, u)dt)) ◦ G).

Proof. Denote ξ the solution to (16) defined up to σ. The assumption of the Lemma
imply that

ω(t) = G(t, ω) +

∫ t

0

ℵ(ω(s))ds, t < τG(ω).

Hence, ω(t) = ξ(t,G(·, ω)), t < τG(ω) and τG(ω) = σ(G(·, ω)). From (34) it follows that
the distribution of G under the measure κ coincides with the distribution of the Brownian
motion stopped at the moment σ. That is,

κ ◦ G−1 = µu on Bnσ .
G is an isomorphism, as it is κ−a.s. invertible. Actually, its inverse is ξ.

�

3. n−point Motion of the Arratia Flow

The main result of this section is an analogue of the Itô-Wiener expansion for the space
L2(Cn,Bn, νu), where u ∈ Sn, n ≥ 1, νu is the distribution of the n−point motion xu of
the Arratia flow. Denote τSn the first moment when two of the components of xu have met
each other (and coalesced) and pn−1 ∈ Sn−1 is the vector of positions of the remaining
particles (pn−1

1 < . . . < pn−1
n−1 and {x(u1, τSn), . . . , x(un, τSn)} = {pn−1

1 , . . . , pn−1
n−1}). The

space (Cn,Bn, νu) is identified with the space with mixture of measures (Cn−1×Cn,Bn−1×
BnτSn , ν

pn−1(ωn)(dωn−1)µu(dωn)) (see the Introduction). Accordingly, the function f ∈
L2(Cn,Bn, νu) will be considered as a function of (ωn−1, ωn), where ωn−1 refers to the
n−1 trajectory left after the first coalescence and ωn refers to the trajectories before the
first coalescence. Using this representation, the Itô-Wiener expansion will be constructed
inductively.

When n = 1, νu = µu and the Itô-Wiener expansion of L2(C1,B1, νu) is determined by
the operators (Iuk )k∈K1

of multiple stochastic integration with respect to the Brownian
motion (8). So we set

(35) Auk = Iuk , k ∈ K1.

Then

Auk : L2(S |k|+ , dt)→ L2(C1,B1, νu)

is the isometry, Auka ⊥ Aul b for k 6= l, and

L2(C1,B1, νu) = ⊕k∈K1Auk(L2(S |k|+ , dt)).
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To illuminate the key moments of the inductive construction let us consider some
partial cases. We won’t justify statements concerning measurability as they will be
proved in the general case. When n = 2, u ∈ S2, the only trajectory remained after the
coalescence is the Brownian motion that is independent on the trajectories before the
coalescence. Hence, it is natural to construct the Itô-Wiener expansion combining the
usual Itô-Wiener expansion for the Brownian motion (via operators Ivk in (7)) with the
one for the two-dimensional Brownian motion stopped when its trajectories meet each

other (via operators J u,S
2

k in (27)). Define operators Auk1,k2 as follows:

(36) Auk1,k2a(ω1, ω2) = I
p1(ω2)
k1 (J u,S

2

k2 a(t1, ·)(ω2))(ω1).

Then the squared norm of Auk1,k2a equals

(37) ∫
C2

∫
C1
Auk1,k2a(ω1, ω2)2µp

1(ω2)(dω1)µu(dω2) =

=

∫
C2

∫
C1
I
p1(ω2)
k1 (J u,S

2

k2 a(t1, ·)(ω2))(ω1)2µp
1(ω2)(dω1)µu(dω2) =

=

∫
C2

∫
S|k

1|
+

J u,S
2

k2 a(t1, ·)(ω2)2dt1µu(dω2) =

∫
S|k

1|
+

∫
C2
J u,S

2

k2 a(t1, ·)(ω2)2µu(dω2)dt1 =

=

∫
S|k

1|
+

∫
S|k

2|
+

a(t1, t2)2αS2(t2|k2|, u)dt2dt1.

It follows that Auk1,k2 is an isometry of L2(S |k
1|,|k2|

+ , αS2(t2|k2|, u)dt2dt1) into the space

L2(C2,B2, νu). Also, from (37) and properties of operators Ivk and J u,S
2

k it follows that

ranges Auk1,k2(L2(S |k
1|,|k2|

+ , αS2(t2|k2|, u)dt2dt1)) corresponding to different indices (k1, k2)

are orthogonal. Hence, operators Auk1,k2 may be viewed as analogues of operators of
multiple stochastic integration. They indeed produce the Itô-Wiener expansion for the
two-point motion of the Arratia flow in the sense that

L2(C2,B2, νu) = ⊕(k1,k2)∈K1,2
Auk1,k2(L2(S |k

1|,|k2|
+ , αS2(t2|k2|, u)dt2dt1))

(see Theorem 3.1 for the proof).
Consider u ∈ S3. To construct the Itô-Wiener expansion for the 3-point motion xu we

will use the same isomorphism as above

(C3,B3, νu) ' (C2 × C3,B2 × B3
τS3

, νp
2(ω3)(dω2)µu(dω3)).

Using operators Auk1,k2 (36), each functional f ∈ L2(C3,B3, νu) can be written in the
form

(38) f(·, ω3) =
∑

(k1,k2)∈K1,2

Ap
2(ω3)
k1,k2 (ak1,k2(·, ω3)).

According to (37) the squared norm of the summand Ap
2

k1,k2ak1,k2 equals

(39)

∫
C3

∫
S|k

1|,|k2|
+

ak1,k2(t1, t2, ω3)2αS2(t2|k2|, p
2(ω3))dt1dt2µu(dω3),

what means that ak1,k2(t1, t2, ·) ∈ L2(C3,B3
τS3

,κt
2
|k2|;u), where for t2 = t2|k2| the measure

κt2;u is defined via the density

dκt2;u

dµu
(ω3) =

αS3(t2, p
2(ω3))

βt2(u)
, βt2(u) = Eµ

u

αS3(t2, p
2).
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Hence, to expand further ak1,k2(t1, t2, ·) as a series of integrals, Lemma 2.4 have to be
used. Put ρt2(u) = αS3(t2, u). It will be proved in the Lemma 3.1 that the Clark
representation formula for ρt2(p2) is

ρt2(p2) = βt2(u) +

∫ τS3

0

∇βt2(w(r))dw(r), µu − a.s.

Also, Eµu [ρt2(p2)/B3
r ] = βt2(w(r ∧ τS3)). Consequently, the vector field ℵ in the Lemma

2.4 equals

ℵt2(u) = ∇ log βt2(u).

From the Lemma 2.4 it follows that operators

ak → (J u,ℵt2,Gk ak) ◦ Gt2 , k ∈ K3,

constitute the Itô-Wiener expansion of the space L2(C3,B3
τS3

,κt2;u), where

Gt2(ω3) = ω3(· ∧ τS3(ω3))−
∫ ·∧τS3 (ω3)

0

ℵt2(ω3(r))dr.

Accordingly, functions ak1,k2(t1, t2, ·) can be expanded further:

(40) ak1,k2(t1, t2, ·) =
∑
k3∈K3

(J
u,ℵ

t2
|k2|

,G

k3 ak1,k2,k3(t1, t2, ·)) ◦ Gt
2
|k2| .

Equations (38),(40) suggest that for the case n = 3, u ∈ S3 operators Auk1,k2,k3 have to
be defined as

Auk1,k2,k3a(ω2, ω3) = Ap
2(ω3)
k1,k2

(
J
u,ℵ

t2
|k2|

,G

k3 a(t1, t2, ·)(Gt
2
|k2|(ω3))

)
(ω2).

In our main result (Theorem 3.1) we prove that these operators indeed lead to the
Itô-Wiener expansion for the 3-point motion xu. Let us calculate the squared norm of
Auk1,k2,k3a. ∫

C3

∫
C2
Auk1,k2,k3a(ω2, ω3)2νp

2(ω3)(dω2)µu(dω3) =

=

∫
C3

∫
C2
Ap

2(ω3)
k1,k2

(
J
u,ℵ

t2
|k2|

,G

k3 a(t1, t2, ·)(Gt
2
|k2|(ω3))

)
(ω2)2νp

2(ω3)(dω2)µu(dω3) =

=

∫
C3

∫
S|k

1|,|k2|
+

J
u,ℵ

t2
|k2|

,G

k3 a(t1, t2, ·)(Gt
2
|k2|(ω3))2αS2(t2|k2|, p

2(ω3))dt1dt2µu(dω3) =

=

∫
S|k

1|,|k2|
+

βt2
|k2|

(u)

∫
C3
J
u,ℵ

t2
|k2|

,G

k3 a(t1, t2, ·)(Gt
2
|k2|(ω3))2κt

2
|k2|;u(dω3)dt1dt2 =

=

∫
S|k

1|,|k2|,|k3|
+

a(t1, t2, t3)2βt2
|k2|

(u)αℵ
t2
|k2|

,S3(t3|k3|, u)dt1dt2dt3.

In the last equality Lemma 2.4 was used. Comparing this formula to (39) note that the
density αS2(t2|k2|, u) have changed to βt2

|k2|
(u)αℵ

t2
|k2|

,S3(t3|k3|, u). Relying on this observa-

tion we introduce functions ρt2,...,tn(u), that will appear as densities in the general case.
Simultaneously, functions βt2,...,tn−1(u), ℵt2,...,tn−1(u) are defined.

(41)

ρt2(u) = αS2(u, t2), u ∈ S2;

βt2,...,tn−1(u) = Eµ
u

ρt2,...,tn−1(pn−1), ℵt2,...,tn−1(u) = ∇ log βt2,...,tn−1(u),

ρt2,...,tn(u) = αℵt2,...,tn−1
,Sn(tn, u)βt2,...,tn−1

(u), u ∈ Sn,
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where t2, . . . , tn−1 > 0 and αℵ,G is defined in (18). Given u ∈ Sn and positive t2, . . . , tn−1,
consider the measure κt2,...,tn−1;u on (Cn,BnτSn ) defined via the density

dκt2,...,tn−1;u

dµu
(ωn) =

ρt2,...,tn−1(pn−1(ωn))

βt2,...,tn−1
(u)

.

As it is seen from the case n = 3, the orthogonal structure of the space L2(Cn,BnτSn ,
κt2,...,tn−1;u) is needed.

Lemma 3.1. 1) The Clark representation formula for ρt2,...,tn−1(pn−1) is

ρt2,...,tn−1
(pn−1) = βt2,...,tn−1

(u) +

∫ τSn

0

∇βt2,...,tn−1
(w(r))dw(r), µu − a.s.

2) Eµu [ρt2,...,tn−1
(pn−1)/Bnr ] = βt2,...,tn−1

(w(r ∧ τSn)), µu − a.s.
3) The mapping

Gt2,...,tn−1(ωn) = ωn(· ∧ τSn(ωn))−
∫ ·∧τSn (ωn)

0

ℵt2,...,tn−1
(ωn(r))dr

is the measurable isomorphism of the space (Cn,BnτnS ,κ
t2,...,tn−1;u) onto the space (Cn,

Bnτℵt2,...,tn−1
,Sn
, µu). In particular, operators

(42) a→ (J
u,ℵt2,...,tn−1

,Sn

k a) ◦ Gt2,...,tn−1 , k ∈ Kn, a ∈ L2(S |k|+ , αℵt2,...,tn−1
,Sn(t|k|, u)dt)

possess following properties

3.1) each operator a → (J
u,ℵt2,...,tn−1

,Sn

k a) ◦ Gt2,...,tn−1 is an isometry of the space

L2(S |k|+ , αℵt2,...,tn−1
,Sn(t|k|, u)dt) into the space L2(Cn,BnτSn ,κ

t2,...,tn−1;u);

3.2) spaces J
u,ℵt2,...,tn−1

,Sn

k (L2(S |k|+ , αℵt2,...,tn−1
,Sn(t|k|, u)dt)) ◦ Gt2,...,tn−1 corresponding

to different k ∈ Kn are pairwise orthogonal;
3.3) L2(Cn,BnτSn ,κ

t2,...,tn−1;u) =

= ⊕k∈Kn(J
u,ℵt2,...,tn−1

,Sn

k (L2(S |k|+ , αℵt2,...,tn−1
,Sn(t|k|, u)dt)) ◦ Gt2,...,tn−1).

Proof. During the proof we omit indices t2, . . . , tn−1 and put G = Sn. The function
β(u) = Eµuρ(pn−1) is harmonic in G [25, Th.11.1.17]. Denote Gδ the set of points
of G whose distance to ∂G exceeds δ. From the Itô’s formula applied to the function
β(w(t ∧ τGδ)) it follows that µu−a.s.

β(w(t ∧ τGδ)) = β(u) +

∫ t∧τ
Gδ

0

∇β(w(r))dw(r).

Letting t→∞ and δ → 0, part 1) follows.
Part 2) follows from the Markov property of the Wiener process:

Eµ
u

[ρ(pn−1)/Bnr ] = 1τG<rρ(pn−1) + 1τG>rEµ
v

(ρ(pn−1))|v=w(r) = β(w(r ∧ τG)).

Finally, part 3) is an immediate application of the Lemma 2.4 and formulas from first
two parts.

�

Corollary 3.1. There exist operators

(43) Rt2,...,tn−1;u
k : L2(Cn,BnτSn ,κ

t2,...,tn−1;u)→ L2(S |k|+ , αℵt2,...,tn−1
,Sn(t|k|, u)dt),

such that each g ∈ L2(Cn,BnτSn ,κ
t2,...,tn−1;u) has a series representation

g =
∑
k∈Kn

(J
u,ℵt2,...,tn−1

,Sn

k (Rt2,...,tn−1;u
k g)) ◦ Gt2,...,tn−1 .
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In fact, Rt2,...,tn−1;u
k is a composition of the orthogonal projection of L2(Cn,BnτSn ,

κt2,...,tn−1;u) onto J
u,ℵt2,...,tn−1

,Sn

k (L2(S |k|+ , αℵt2,...,tn−1
,Sn(t|k|, u)dt))◦Gt2,...,tn−1 with the

inverse (J
u,ℵt2,...,tn−1

,Sn

k )−1.

Now we are in a position to describe the inductive construction.
Induction base. For every u ∈ R and k ∈ K1 set

Auk = Iuk ,

where Iuk are operators of multiple stochastic integration with respect to the Brownian
motion w on (C1,B1) (8).
Induction hypothesis. For every v ∈ Sn−1 and (k1, . . . , kn−1) ∈ K1,...,n−1 an operator

Avk1,...,kn−1 : L2(S |k
1|,...,|kn−1|

+ , ρt2
|k2|

,...,tn−1

|kn−1|
(v)dt1 . . . dtn−1)→ L2(Cn−1,Bn−1, νv)

is defined in such a way that
(H1) Avk1,...,kn−1 is the isometry;

(H2) spaces Avk1,...,kn−1(L2(S |k
1|,...,|kn−1|

+ , ρt2
|k2|

,...,tn−1

|kn−1|
(v)dt1 . . . dtn)) corresponding to

different (k1, . . . , kn−1) ∈ K1,...,n−1 are pairwise orthogonal;
(H3) L2(Cn−1,Bn−1, νv) =

= ⊕(k1,...,kn−1)∈K1,...,n−1
Avk1,...,kn−1(L2(S |k

1|,...,|kn−1|
+ , ρt2

|k2|
,...,tn−1

|kn−1|
(v)dt1 . . . dtn−1));

respectively, projections

P vk1,...,kn−1 : L2(Cn−1,Bn−1, νv)→ L2(S |k
1|,...,|kn−1|

+ , ρt2
|k2|

,...,tn−1

|kn−1|
(v)dt1 . . . dtn)

are defined in such a way that for each g ∈ L2(Cn−1,Bn−1, νv) an equality holds

g =
∑

(k1,...,kn−1)∈K1,...,n−1

Avk1,...,kn−1P vk1,...,kn−1g;

(H4) for any (k1, . . . , kn−1) ∈ K1,...,n−1 and bounded Borel function with compact support

a : S |k
1|,...,|kn−1|

+ → R, a family {Avk1,...,kn−1a}v∈Sn−1 can be realized as a measurable

function on Cn−1 × Sn−1 w.r.t. the family {νv}v∈Sn−1 (Definition 1.1);
(H5) for any (k1, . . . , kn−1) ∈ K1,...,n−1 and bounded Borel function g : Cn−1 → R, a

family {P vk1,...,kn−1g}v∈Sn−1 can be realized as a measurable function on S |k
1|,...,|kn−1|

+ ×
Sn−1 w.r.t the family {ρt2

|k2|
,...,tn−1

|kn−1|
(v)dt1 . . . dtn−1}v∈Sn−1 (Definition 1.1).

Induction step. Consider (k1, . . . , kn) ∈ K1,...,n. For every a ∈ L2(S |k
1|,...,|kn|

+ ,
ρt2
|k2|

,...,tn|kn|
(u)dt2 . . . dtn) denote T a the result of application an operator (42) to the

last |kn| coordinates, that is

(44) T a(t1, . . . , tn−1, ωn) = J
u,ℵ

t2
|k2|

,...,t
n−1

|kn−1|
,Sn

k (a(t1, . . . , tn−1, ·))(Gt2
|k2|

,...,tn−1

|kn−1|
(ωn)).

Next, define operators Auk1,...,kna for u ∈ Sn by the rule

(45) Auk1,...,kna(ωn−1, ωn) = Ap
n−1(ωn)
k1,...,kn−1(T a(·, ωn))(ωn−1).

In the Theorem 3.1 we will show that operators (45) also satisfy conditions (H1)-
(H5). It gives possibility to define operators Auk1,...,kn with properties (H1)-(H5) for

all n ≥ 1, u ∈ Sn, (k1, . . . , kn) ∈ K1,...,n. From the induction base and the induction
step it is seen that Auk1,...,kn are operators of the multiple stochastic integration with

respect to finite-point motion of the Arratia flow. Thus, properties (H1)-(H3) state
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that these operators constitute an analogue of the Itô-Wiener expansion. Technical
properties (H4)-(H5) are called to justify measurability issues. Indeed, due to the
complicated expression in (45), its measurability in (ωn−1, ωn) is not obvious. To prove
it we will need measurability properties of operators in (5),(6),(7),(10), (44), (42), (43).

The key instrument in deducing the existence of measurable realizations will be the
Lemma 4.2. It states that under rather general assumptions on spaces (X ,BX , µω),
(Y,BY , νω), and operators

Aω : L2(X ,BX , µω)→ L2(Y,BY , νω),

the existence of measurable realizations for “test” families of the kind {Aωf0} auto-
matically implies the existence of measurable realizations for all families {Aωf(·, ω)},
such that for each ω Aωf(·, ω) is well-defined. Accordingly, properties (H4)-(H5) are

immediately strengthened. For example, given measurable a : S |k
1|,...,|kn−1|

+ × Ω → R,
ξ : Ω→ Sn−1 such that

∀ω ∈ Ω a(·, ω) ∈ L2(S |k
1|,...,|kn−1|

+ , ρt2
|k2|

,...,tn−1

|kn−1|
(ξ(ω))dt1 . . . dtn−1),

a family {Aξ(ω)
k1,...,kn−1(a(·, ω))}ω∈Ω can be realized as a measurable function on Cn−1 ×Ω

w.r.t. the family {νξ(ω)}ω∈Ω. For the proof note that
1) there exists a sequence of bounded Borel functions with compact support (fn) on

S |k
1|,...,|kn−1|

+ , which is total in L2 relatively to any Radon measure (see the proof of the
Lemma 3.2 for an example of such sequence);

2) there exists a sequence of bounded Borel functions (gn) on Cn−1, which is total in
L2 relatively to any probability measure (see the proof of the Lemma 3.2 below for an
example of such sequence);

3) in the view of (H4) each family {Aξ(ω)
k1,...,kn−1fn}ω∈Ω can be realized as a measurable

function on Cn−1 × Ω w.r.t. the family {νξ(ω)}ω∈Ω.
Consequently, the Lemma 4.2 gives the needed result.
In the case n = 1, operators Auk coincide with the operators Iuk and evidently satisfy

(H1)-(H3). In the next Lemma we state some measurability properties of operators
(5),(6),(7),(10). Additionally, properties (H4)-(H5) for operators Auk are proved.

Lemma 3.2. Let k, k1, . . . , kd ∈ {1, . . . , n}.
1) Given a measurable function a : Sd+ × Rn → R, such that

∀u ∈ Rn a(·, u) ∈ L2(Sd+),

a family {Iuk1,...,kd(a(·, u))}u∈Rn can be realized as a measurable function on Cn×Rn w.r.t.

the family {µu}u∈Rn .
2) Given a measurable function g : Cn × Rn → R, such that

∀u ∈ Rn g(·, u) ∈ L2(Cn,Bn, µu),

a family {Quk1,...,kd(g(·, u))}u∈Rn can be realized as a measurable function on Sd+ × Rn

w.r.t. the Lebesgue measure on Sd+.
3) Given a P × B(Rn)−measurable a : R+ × Cn × Rn → R such that

∀u ∈ Rn a(·, u) ∈ L2(R+ × Cn,P, dt× µu(dωn)),

a family {Iuk (a(·, u))}u∈Rn can be realized as a measurable function on Cn×Rn w.r.t. the
family {µu}u∈Rn .

4) Given a measurable g : Cn × Rn → R such that

∀u ∈ Rn g(·, u) ∈ L2(Cn,Bn, µu),
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a family {Quk(g(·, u))}u∈Rn can be realized as a P×B(Rn)−measurable function on R+×
Cn × Rn w.r.t. the family {dt× µu}u∈Rn of measures on R+ × Cn.

Proof. Consider translations θu(ω) = u + ω, so that µu = µ0 ◦ θ−1
u . If a : Sd+ → R

is a bounded Borel function with compact support, then Iuk1,...,kda = (I0
k1,...,kd

a) ◦ θ−u,
µu−a.s. Hence, (I0

k1,...,kd
a)(ωn − u) is the needed measurable realization of the family

{Iuk1,...,kda}u∈Rn . With the help of the Lemma 4.2 we will generalize obtained result to

any function a : Sd+ × Rn → R. The space Sd+ is locally compact and separable. Hence,
there exists a sequence (Bk)k≥1 of open relatively compact balls, that is a base of the
topology of Sd+. Let (Kn)n≥1 be a ring generated by these balls, i.e. a smallest family of
sets that contains all Bk and is closed under taking differences and finite unions. Let us
show that the sequence fn = 1Kn is total in L2 relatively to any Radon measure γ on Sd+.
Denote L the closure of the linear span of functions fn in L2(Sd+, γ). Consider any open

relatively compact set G ⊂ Sd+. By definition of a Radon measure, γ(G) <∞. Let H be a
set of all bounded Borel functions on G. Extend each function f ∈ H to a Borel function
f̃ on Sd+ letting f̃ = 0 outside G. Denote M = {1Kn : Kn ⊂ G}. Note that M is closed
under pointwise multiplication and the σ−field generated by {Kn : Kn ⊂ G} coincides

with the Borel σ−field B(G). Consider the set H1 = {f ∈ H : f̃ ∈ L}. By the monotone
class theorem [14, Ch. 0, Th. (2.2)], H1 contains all bounded Borel functions on G.
Hence, L contains all bounded Borel functions with compact support. Usual truncation
arguments imply that L = L2(Sd+, γ).

The same considerations work in the case of the space Cn : separability of Cn implies
that its Borel σ−field is generated by a sequence of open balls (i.e. by the countable base
of topology of Cn). If (An)n≥1 is the countable ring generated by these balls, then the
sequence hn = 1An is total in L2 relatively to any probability measure on Cn. Presented
constructions justify the applicability of the Lemma 4.2, that leads to the needed result.

Due to the Lemma 4.2 and constructions above, it is enough to prove 2) for a bounded
Borel function g : Cn → R. Consider correspondence u → g(· + u) as a measurable
mapping of Rn into L2(Cn,Bn, µ0). Respectively, u→ Q0

k1,...,kd
(g(·+ u)) is a measurable

mapping of Rn into L2(Sd+). Using the Lemma 4.1, it can be realized as a measurable

function hk1,...,kd : Sd+ × Rn → R. Then

g(·+ u) =
∑

(k1,...,kd)∈Kn

I0
k1,...,kd

(hk1,...,kd(·, u)).

It follows that in L2(Cn,Bn, µu)

g =
∑

(k1,...,kd)∈Kn

(I0
k1,...,kd

(hk1,...,kd(·, u))) ◦ θ−u =
∑

(k1,...,kd)∈Kn

Iuk1,...,kd(hk1,...,kd(·, u)),

i.e. hk1,...,kd is a measurable realization of the family {Quk1,...,kdg}u∈Rn .
Proofs of properties 3) and 4) follow the same scheme. The only distinction is that

they deal with the space L2(R+ × Cn,P, dt × µu(dωn)) and one needs a sequence of
P−measurable functions that are total in all such spaces. We assert that one can take
functions of the kind a(t, ωn) = 1[t0,t1](t)ξ(t0, ω

n) with rational 0 < t0 < t1 and Bnt0−
measurable function ξ(t0, ·). Indeed, any predictable Bn−adapted process from L2(R+×
Cn,P, dt×µu(dωn)) is a L2(R+×Cn,P, dt×µu(dωn))−limit of elementary processes, i.e.
sums of the functions of the kind a(t, ωn) = 1[t0,t1](t)ξ(t0, ω

n) [14, Ch. 4, §5]. It remains

to check that any process h ∈ L2(R+ × Cn,P, dt × µu(dωn)) is indistinguishable from
a predictable one. Let M(t) be a stochastic integral of h with respect to the Brownian
motion w1(t, ωn) = ωn1 (t) on (Cn,Bn, µu), that is

M(t) =

∫ t

0

h(s)dw1(s).
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As follows from [14, Ch. 5, Th. (3.5)], there exists predictable process h̃ ∈ L2(R+ ×
Cn,P, dt× µu(dωn)), such that

M(t) =

∫ t

0

h̃(s)dw1(s).

Then
∫∞

0
(h(s)− h̃(s))dw1(s) = 0. The L2−norm of the left-hand side is the norm of the

difference h− h̃ in L2(R+ × Cn,P, dt× µu(dωn)). Hence, h = h̃. �

In the next Lemma measurability properties of operators (42), (43) are stated. Its
proof reduces to the multiple applications of Lemmata 3.2 and 4.2.

Lemma 3.3. 1) Given a measurable function a : S |k|+ × Rn−2
+ × Sn → R, such that

∀t2, . . . , tn−1, u a(·, t2, . . . , tn−1, u) ∈ L2(S |k|+ , αℵt2,...,tn−1
,Sn(t|k|, u)dt),

a family {(J
u,ℵt2,...,tn−1

,Sn

k (a(·, t2, . . . , tn−1, u)))◦Gt2,...,tn−1}t2,...,tn−1,u can be realized as

a measurable function on Cn × Rn−2
+ × Sn w.r.t. the family {κt2,...,tn−1;u}t2,...,tn−1,u.

2) Given a measurable function g : Cn × Rn−2
+ × Sn → R, such that

∀t2, . . . , tn−1, u g(·, t2, . . . , tn−1, u) ∈ L2(Cn,BnτSn ,κ
t2,...,tn−1;u),

a family {Rt2,...,tn−1;u
k (g(·, t2, . . . , tn−1, u))}t2,...,tn−1,u can be realized as a measurable

function on S |k|+ × Rn−2
+ × Sn w.r.t. the family {αℵt2,...,tn−1

,Sn(t|k|, u)dt}t2,...,tn−1,u.

Remark 3.1. Together with the Lemma 4.2, this result imply that T a is a measur-

able function. From (41) it follows that T is the isometry of the space L2(S |k
1|,...,|kn|

+ ,

ρt2
|k2|

,...,tn|kn|
(u)dt1 . . . dtn) into the space L2(S |k

1|,...,|kn1 |
+ × Cn, ρt2

|k2|
,...,tn−1

|kn−1|
(pn−1(ωn))

dt1 . . . dtn−1µu(dωn)).

Theorem 3.1.

Auk1,...,kn : L2(S |k
1|,...,|kn|

+ , ρt2
|k2|

,...,tn|kn|
(u)dt1 . . . dtn)→ L2(Cn,Bn, νu)

are well-defined operators and all the hypotheses (H1)-(H5) hold for a family (Auk1,...,kn).

Proof. The property (H4) of {Avk1,...,kn−1}v∈Sn−1 and Lemma 4.2 imply that Auk1,...,kna
is a measurable function of (ωn−1, ωn). Also, when a is a bounded function of compact
support, the property (H4) for {Auk1,...,kna}u∈Sn immediately follows.

Properties (H1), (H2) follow from the next calculation.∫
Cn

∫
Cn−1

Auk1,...,kna(ωn−1, ωn)2νp
n−1(ωn)(dωn−1)µu(dωn) =∫

Cn

(∫
Cn−1

Ap
n−1(ωn)
k1,...,kn−1(T a(·, ωn))(ωn−1)2νp

n−1(ωn)(dωn−1)

)
µu(dωn) =∫

S|k
1|,...,|kn−1|

+ ×Cn
T a(t1, . . . , tn−1, ωn))2ρt2

|k2|
,...,tn−1

|kn−1|
(pn−1(ωn))dt1 . . . dtn−1µu(dωn) =∫

S|k
1|,...,|kn|

+

a(t1, . . . , tn)2ρt2
|k2|

,...,tn|kn|
(u)dt1 . . . dtn.

Next we prove that the Hilbert sum of all the spaces

Auk1,...,kn(L2(S |k
1|,...,|kn|

+ , ρt2
|k2|

,...,tn|kn|
(u)dt1 . . . dtn))

coincides with L2(Cn,Bn, νu). Consider f ∈ L2(Cn,Bn, νu). As

Eν
u

f2 =

∫
Cn

∫
Cn−1

f(ωn−1, ωn)2νp
n−1(ωn)(dωn−1)µu(dωn) <∞,
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it follows that f has a version such that f(·, ωn) ∈ L2(Cn−1,Bn−1, νp
n−1(ωn)) for all ωn.

The inductive assumption imply that f(·, ωn) has a series representation

(46) f(·, ωn) =
∑

(k1,...,kn−1)∈K1,...,n−1

Ap
n−1(ωn)
k1,...,kn−1(ak1,...kn−1

(·, ωn)),

where for each ωn,

ak1,...,kn−1(·, ωn) ∈ L2(S |k
1|,...,|kn−1|

+ , ρt2
|k2|

,...,tn−1

|kn−1|
(pn−1(ωn))dt1 . . . dtn−1).

Note that ak1,...kn−1
(·, ωn) = P

pn−1(ωn)
k1,...kn−1

(f(·, ωn)). Property (H5) of {Avk1,...,kn−1} and

Lemma 4.2 imply that it is possible to choose functions ak1,...kn−1
measurable in all

arguments. For fixed (t1, . . . , tn−1),

ak1,...,kn−1
(t1, . . . , tn−1, ·) ∈ L2(Cn,BnτSn ,κ

u;t2|k2|,...,t
n−1

|kn−1|),

as the calculation below shows.

Eν
u

f2 =
∑

(k1,...,kn−1)∈K1,...,n−1

∫
Cn

∫
S|k

1|,...,|kn−1|
+

ak1,...,kn−1
(t1, . . . , tn−1, ωn)2

ρt2
|k2|

,...,tn−1

|kn−1|
(pn−1(ωn))dt1 . . . dtn−1µu(dωn) =

=
∑

(k1,...,kn−1)∈K1,...,n−1

∫
S|k

1|,...,|kn−1|
+

βt2
|k2|

,...,tn−1

|kn−1|
(u)

∫
Cn
ak1,...,kn−1

(t1, . . . , tn−1, ωn)2κt
2
|k2|,...,t

n−1

|kn−1|
;u

(dωn)dt1 . . . dtn−1.

From the Lemma 3.1 it follows that each ak1,...,kn−1 can be represented as a sum

(47)

ak1,...,kn−1(t1, . . . , tn−1, ·) =

=
∑

kn∈Kn

(J
u,ℵ

t2
|k2|

,...,t
n−1

|kn−1|
,Sn

kn (ak1,...,kn(t1, . . . , tn−1, ·))) ◦ Gt
2
|k2|,...,t

n−1

|kn−1| .

Here, ak1,...,kn(t1, . . . , tn−1, ·) = R
t2|k2|,...,t

n−1

|kn−1|
;u

kn (ak1,...,kn−1(t1, . . . , tn−1, ·)) (Corollary
3.1) is measurable in all arguments by the Lemma 3.3. In fact,

ak1,...,kn ∈ L2(S |k
1|,...,|kn|

+ , ρt2
|k2|

,...,tn|kn|
(u)dt1 . . . dtn),

as follows from the identity

Eν
u

f2 =
∑

(k1,...,kn)∈K1,...,n

∫
S|k

1|,...,|kn−1|
+

∫
S|k

n|
+

βt2
|k2|

,...,tn−1

|kn−1|
(u)αℵ

t2
|k2|

,...,t
n−1

|kn−1|
,Sn(tn|kn|, u)ak1,...,kn(t1, . . . , tn)2dt1 . . . dtn

and the definition of functions ρ (41). Hence, Auk1,...,knak1,...,kn are well-defined and the
series ∑

(k1,...,kn)∈K1,...,n

Auk1,...,knak1,...,kn

converges. It remains to check that its sum equals f.

Denote fk1,...,kn−1(ωn−1, ωn) = Ap
n−1(ωn)
k1,...,kn−1(ak1,...,kn−1(·, ωn))(ωn−1). It follows from

(47) and the definition of I (44), that

ak1,...,kn−1(t1, . . . , tn−1, ·) =
∑

kn∈Kn

T ak1,...,kn(t1, . . . , tn−1, ·)
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in L2(Cn,BnτSn ,κ
t2|k2|,...,t

n−1

|kn−1|
;u

). A straightforward calculation implies that

fk1,...,kn−1 =
∑

kn∈Kn

Auk1,...,knak1,...,kn .

Hence, the needed conclusion will follow from

f =
∑

(k1,...,kn−1)∈K1,...,n−1

fk1,...,kn−1 ,

which in turn is a consequence of (46).
A property (H5) for {Auk1,...,kn}u∈Sn follows from the identity

(48) Puk1,...,knf(t1, . . . , tn) = R
t2|k2|,...,t

n−1

|kn−1|
;u

kn (P
pn−1(ωn)
k1,...,kn−1(f(·, ωn))),

obtained during the proof.
�

Remark 3.2. Theorems 2.1 and 3.1 not only state the existence of analogues of the Itô-
Wiener expansion for stopped Brownian motion and for n−point motions of the Arratia
flow, but also reduce the calculation of these analogues to the calculation of the Itô-
Wiener expansion in the Gaussian case, as follows from (48), (30).

4. Two results on measurable realizations

The first result is a variant of a measurable selection theorem and seems to be known.
Still, we were not able to find a correct reference, so we provide a proof here. In the
first Lemma we consider the space L0 of all measurable functions on the measure space
(X ,B, µ) equipped with the distance d0(ξ1, ξ2) = Eµ min(|ξ1 − ξ2|, 1).

Lemma 4.1. Let (Ω,F) be a measurable space. For any measurable mapping η : Ω→ L0

with separable range η(Ω) ⊂ L0, a family {η(ω)}ω∈Ω can be realized as a measurable
function on X × Ω w.r.t. the measure µ.

Proof. Let (ξn)n≥1 be a dense sequence in η(Ω). Then for each k ≥ 0

η(Ω) ⊂
⋃
n≥1

∆(k)
n ,

where ∆
(k)
n = B(ξn, 2

−k) \
⋃

1≤m<nB(ξm, 2
−k) and B(ξ, r) is an open ball in (L0, d0).

Define ηk(x, ω) =
∑
n≥1 ξn(x)1

η(ω)∈∆
(k)
n
. Each ηk is a measurable function on X × Ω.

From inequality

sup
ω∈Ω

d0(η(ω), ηk(·, ω)) ≤ 2−k.

it follows that for each ω ∈ Ω ηk(·, ω)→ η(ω) a.s., k →∞. Hence,

η̃(x, ω) =

{
limk→∞ ηk(x, ω), the limit exists

0, otherwise

is a measurable realization of {η(ω)}ω∈Ω. �

The main distinction of the next Lemma from usual measurable selection theorems is
that it describes measurable realizations for families of measurable functions with values
in different measure spaces.
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Lemma 4.2. Let (X ,BX ), (Y,BY), (Ω,F) be measurable spaces, (µω)ω∈Ω, (νω)ω∈Ω be
regular families of measures on (X ,BX ), (Y,BY), respectively. For each ω ∈ Ω let

Aω : L2(X ,BX , µω)→ L2(Y,BY , νω)

be a bounded linear operator. Assume that
1) there exist sequences of measurable functions fn : X → R, kn : Y → R such that for

every ω ∈ Ω the sequence (fn)n≥1 is total in L2(X ,BX , µω) and the sequence (kn)n≥1 is
total in L2(Y,BY , νω);

2) for each n ≥ 1 a family {Aωfn}ω∈Ω can be realized as a measurable function on
Y × Ω w.r.t. the family {νω}ω∈Ω.

Then given a measurable g : X × Ω → R such that ∀ω ∈ Ω g(·, ω) ∈ L2(X ,BX , µω),
a family {Aω(g(·, ω))}ω∈Ω can be realized as a measurable function on Y × Ω w.r.t. the
family {νω}ω∈Ω.

Proof. At first we construct a suitable family of orthonormal bases in L2(X ,BX , µω). We
apply the Gram–Schmidt orthonormalization procedure to a sequence (fn)n≥1, whose
existence is stipulated in the conditions of the Lemma, i.e. put

e1(x, ω) =

(∫
X
f2

1 dµ
ω

)−1/2

f1(x)1{
∫
X f

2
1 dµ

ω>0};

en(x, ω) =

(∫
X
f2
ndµ

ω −
n−1∑
k=1

(

∫
X
fnek(·, ω)dµω)2

)−1/2

(fn(x)−

−
n−1∑
k=1

(

∫
X
fnek(·, ω)dµω)ek(·, ω))1{

∫
X f

2
ndµ

ω>
∑n−1
k=1 (

∫
X fnek(·,ω)dµω)2}.

As a result we obtain functions en of the form

(49) en(x, ω) =

n∑
k=1

cn,k(ω)fk(x),

such that for each ω a set {en(·, ω),
∫
X en(x, ω)2µω(dx) > 0} is an orthonormal basis in

L2(X ,BX , µω).
The same considerations with (kn)n≥1 imply that there exists a sequence of measurable

functions jn : Y ×Ω→ R, such that for each ω a set {jn(·, ω),
∫
Y jn(y, ω)2νω(dy) > 0} is

an orthonormal basis in L2(Y,BY , νω).
Consider a measurable g : X × Ω → R such that ∀ω ∈ Ω g(·, ω) ∈ L2(X ,BX , µω).

Then in L2(Y,BY , νω),

Aω(g(·, ω)) =

∞∑
n=1

(∫
X
g(·, ω)en(·, ω)dµω

)
Aω(en(·, ω))

From (49) and the assumption of the Lemma, each family {Aω(en(·, ω))}ω∈Ω can be
realized as a measurable function on Y × Ω. Integrating Aω(g(·, ω)) with jk(·, ω) gives∫
Y
Aω(g(·, ω))jk(·, ω)dνω =

∞∑
n=1

(∫
X
g(·, ω)en(·, ω)dµω

)(∫
Y
Aω(en(·, ω))jk(·, ω)dνω

)
.

Consequently, the mapping ω →
∫
Y A

ω(g(·, ω))jk(·, ω)dνω is measurable. Define

hn(y, ω) =

n∑
k=1

(∫
Y
Aω(g(·, ω))jk(·, ω)dνω

)
jk(y, ω).
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For each l ≥ 1 define

nl(ω) = min{n ≥ 1 :
∑
k>n

(∫
Y
Aω(g(·, ω))jk(·, ω)dνω

)2

< 2−l}.

Every function hnl(ω)(y, ω) is measurable and

νω{|Aω(g(·, ω))− hnl(ω)(·, ω)| > 1/l} ≤ l22−l.

Hence, for each ω,

hnl(ω)(·, ω)→ Aω(g(·, ω)), νω − a.s.

and the function

h̃(y, ω) =

{
liml→∞ hnl(ω)(y, ω), the limit exists

0, otherwise

is a mesurable realization of {Aω(g(·, ω))}ω∈Ω. �
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