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E. V. GLINYANAYA

KRYLOV–VERETENNIKOV REPRESENTATION FOR THE m-POINT

MOTION OF A DISCRETE-TIME FLOW

We consider a discrete-time stochastic flow which can be regarded as an approxima-
tion to a flow of Brownian particles with interaction. For the m-point motion of such

discrete-time flow we present a discrete analogue of Krylov-Veretennikov expansion.

1. Introduction

We are interested in Harris stochastic flows of Brownian particles on the line [1]. Let Γ
be a continuous real positive definite function on R such that Γ(0) = 1 and Γ is Lipschitz
outside any neighborhood of zero.

Definition 1.1. The Harris flow {x(u, ·), u ∈ R} with Γ being its local characteristic is
a family of Brownian martingales with respect to a joint filtration such that

(i) for every u1 ≤ u2 and t ≥ 0

x(u1, t) ≤ x(u2, t)

(ii) the joint characteristics are

d < x(u1, ·), x(u2, ·) > (t) = Γ(x(u1, t)− x(u2, t))dt.

One of the ways to study functionals of stochastic flows is to analyse its Itô–Wiener
expansion. In the case when Γ is smooth enough, the Harris flow can be obtained as a
flow of solutions to the following SDE [2]:

dx(u, t) =

∞∑
k=1

ak(x(u, t))dwk(t),

x(u, 0) = u,

(1.1)

where {wk}k≥1 is a sequence of standard Wiener processes and a = (ak)k≥1 is a Lipschitz
mapping from R to l2 such that

∞∑
k=1

a2
k = 1

and
∞∑
k=1

ak(u)ak(v) = Γ(u− v).

The Itô–Wiener expansion of the function from value of a solution to SDE was obtained
by Krylov and Veretennikov in [8]. The Harris flow could be coalescent [1] and, in this
case, there is no stochastic differential equation that generate the flow. One of the ways
to study such flow is to construct its approximation using flows with discrete time. Such
approach was used in [2]. A flow with discrete time can be defined as a family of random
walks with interaction on a line, which is driven by a sequence of independent stationary
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Gaussian processes {ξn(u), u ∈ R}n≥1. The random walks are defined via the following
recurrence equation:

xn+1(u) = xn(u) + ξn+1(xn(u)),

x0(u) = u, u ∈ R.
(1.2)

We assume that the Gaussian processes {ξn, n ≥ 1} have zero mean and the same con-
tinuous covariance function Γ,Γ(0) = 1.

The aim of our paper is to give a construction and an explicit form of the Itô–Wiener
expansion for the following random variables

ϕ(xn(u1), . . . , xn(um)),

where ϕ is some function Rm → R and {xn(u), u ∈ R} is a discrete-time flow (1.2).
Such expansion can be regarded as a discrete-time analogue of the Krylov–Veretennikov
expansion. Note that for 1-point motion it was obtained in [3]. The article is organized as
follows. In the next section we give some known facts related to the Itô–Wiener expansion
of Gaussian functionals and the Krylov–Veretennikov representation of a solution to
SDE. Also we describe a white noise related to the discrete-time stochastic flow (1.2)
and present an Itô–Wiener expansion for ϕ(xn(u1), . . . , xn(um)) in terms of multilinear
forms from this white noise. In the third section we rewrite the obtained expansion in
terms of Gaussian processes {ξn}n≥1, which produce the discrete-time flow. An example
of a stochastic flow of solutions to SDE and its discrete-time approximation will be given
in the last section.

2. An abstract form of a discrete analogue of the Krylov–Veretennikov
representation

Let us introduce some basic definitions and notations related to the Itô–Wiener ex-
pansion of Gaussian functionals [5, 6].

Let (Ω,F ,P) be a probability space and H be a separable Hilbert space with its inner
product denoted as (·, ·) and its norm denoted as ‖ · ‖. Let ζ, be a generalized Gaussian
random element in H which has zero mean and identity correlation operator, i.e. ζ is a
linear map from H to the set of Gaussian random variables such that

∀ ϕ ∈ H E(ζ, ϕ) = 0, E(ζ, ϕ)2 = ‖ϕ‖2.

We also call ζ a white noise in H.
Let Hk, k ≥ 1 be a space of k-linear symmetric Hilbert–Schmidt forms on H and define

an inner product in Hk by the rule

∀ Ak, Bk ∈ Hk (Ak, Bk) =

∞∑
i1,...,ik=1

Ak(ei1 , . . . , eik)Bk(ei1 , . . . , eik),

where {ej}∞j=1 is an orthonormal basis in H. For any Ak ∈ Hk we define the value of the
form Ak at a generalized random element ζ as follows:

Ak(ζ, . . . , ζ) :=

∞∑
i1,...,ik=1

Ak(ei1 , . . . , eik)(ζ, ei1) ∗ . . . ∗ (ζ, eik),

where ∗ denotes the Wick product [6]. Suppose that η ∈ L2(Ω,F ,P) and η is measurable
with respect to σ(ζ) = σ{(h, ζ), h ∈ H}. Then there exists a unique sequence of forms
Ak ∈ Hk ([5]) such that

(2.1) η =

∞∑
k=0

Ak(ζ, . . . , ζ),
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where the series converges in square mean. The representation (2.1) is called the Itô–
Wiener expansion.

We give an example of a Hilbert space, of a white noise on it and of a form of the
Itô–Wiener expansion for some random variable. Let {wt, t ∈ [0, 1]} be a one-dimensional
Wiener process, which is defined on a complete probability space (Ω,F ,P). Using this
Wiener process we can define a white noise ẇ on L2([0, 1]) as follows: for f ∈ L2([0, 1])

we put (ẇ, f) =
∫ 1

0
f(x)dw(x). For any Hilbert–Schmidt form Ak on L2([0, 1]) there

exists a unique function ak ∈ L2([0, 1]k) that is invariant under any permutation of the
arguments such that for any x1, . . . , xk ∈ L2([0, 1])

Ak(x1, . . . , xk) =

∫ 1

0

. . .

∫ 1

0

ak(t1, . . . , tk)x1(t1) . . . xk(tk)dt1 . . . dtk

and the value of the form Ak at ẇ has the form

Ak(ẇ, . . . , ẇ) =

∫ 1

0

. . .

∫ 1

0

ak(t1, . . . , tk)dw(t1) . . . dw(tk).

The Itô–Wiener expansion for a random variable f(x(t)), where {x(t), t ∈ [0, 1]} is a
solution to the following SDE

(2.2)

{
dx(t) = σ(x(t))dw(t) + b(x(t))dt,

x(0) = x0

was obtained by Krylov and Veretennikov in [8]. Suppose that σ(·), b(·) are Lipschitz
functions and

∃ µ > 0 ∀ x ∈ R : |σ(x)| ≥ µ.

It is known that under such conditions there exists a unique strong solution to the SDE
(2.2) and for any bounded Borel measurable function f the random variable f(x(t)) is
σ(ẇ)-measurable. The Krylov–Veretennikov representation can be written in terms of
the fundamental solution to a parabolic partial differential equation associated with the
SDE (2.2). Denote a(x) = 1

2σ
2(x) and for fixed t > 0 consider

(2.3)

{
∂
∂su(s, x) + a(x) ∂2

∂x2u(s, x) + b(x) ∂
∂xu(s, x) = 0, 0 < s < t,

u(t, x) = ϕ(x), ϕ ∈ C∞0 (R), t ∈ R.

Let {Tt−s, s < t} be a set of operators that define a solution to (2.3). It is known that
Ttϕ(x0) = Eϕ(x(t)), where x(t) is a solution to (2.2). Denote Rtϕ(x) = σ(x) ∂

∂xTtϕ(x).
Then the Itô–Wiener expansion has the form:

(2.4) ϕ(x(t)) = Ttϕ(x0) +

∞∑
i=1

∫
. . .

∫
0<ti<...<t1<t

TtiRti−1−ti . . . Rt−t1ϕ(x0)dwti . . . dwt1 .

Recall that our main object is a discrete-time flow {xn(u), u ∈ R}n≥1, which is defined
via the following recurrence equation

xn+1(u) = xn(u) + ξn+1(xn(u)),

x0(u) = u,

where {ξn(u), u ∈ R}n≥1 is a sequence of independent stationary Gaussian processes
with zero mean and a continuous covariance function Γ,Γ(0) = 1. Let us describe a
Hilbert space and a white noise ẇ on it, such that for any Borel measurable bounded
function ϕ : Rm → R and for every n ≥ 1 a random variable ϕ(xn(u1), . . . , xn(um)) is
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measurable with respect to σ(ẇ). Consider a Hilbert space HΓ with reproducing kernel
{Γ(u− v), u, v ∈ R}, [9] i.e.

HΓ = {
n∑
k=1

ckΓ(uk − ·), ck, uk ∈ R, n ≥ 1}‖·‖,

where the closure is taken with respect to a norm, which can be introduced as follows:

‖
n∑
k=1

ckΓ(uk − ·)‖2 =

n∑
k,j=1

ckcjΓ(uk − uj).

Then a white noise ẇi on HΓ can be defined by the rule: for f ∈ HΓ of the form
f =

∑n
k=1 ckΓ(uk − ·) we set

(ẇi, f) =

n∑
k=1

ckξi(uk).

One can see that this correspondence produces a white noise on HΓ. Further we consider
a Hilbert space

l2(HΓ) = {F = (f1, . . . , fk, . . .), fk ∈ HΓ,

∞∑
k=1

‖fk‖2 < +∞}

and define a white noise on l2(HΓ) :

(ẇ, F ) =

∞∑
i=1

(ẇi, fi).

In these terms, any element ξk from the sequence {ξn(u), u ∈ R}n≥1 can be obtained by
the action of the white noise ẇ on the function F = (0, . . . , 0︸ ︷︷ ︸

k−1

,Γ(u− ·), 0, . . . , 0) :

(ẇ, F ) = ξk(u).

Consider

B(Rm;R) = {f : Rm → R|f is Borel measurable, sup
~u∈Rm

|f(~u)| < +∞}

with topology induced by the norm ||f ||B = sup~u∈Rm |f(~u)|. For ~u ∈ Rm we write
ξ(~u) = (ξ(u1), . . . , ξ(um)).

For any ϕ ∈ B(Rm;R) we have ϕ(xn(~u)) ∈ L2(Ω,F ,P) and ϕ(xn(~u)) is measurable
with respect to the white noise ẇ in l2(HΓ).

We can construct an Itô–Wiener expansion for ϕ(xn(~u)) in terms of operators Qk,
which are defined via the Itô–Wiener expansion for ϕ(x1(~u)) :

(2.5) ϕ(u1 + ξ1(u1), . . . , um + ξ1(um)) =

∞∑
k=0

Qkϕ(~u; ẇ1, . . . , ẇ1).

Note that in this case the random variable ϕ(x1(~u)) is measurable with respect to
σ(ξ1(u1), . . . , ξ1(um)) so Qkϕ has the form:

Qkϕ(~u; ẇ1, . . . , ẇ1) =

m∑
i1,...,ik=1

ai1,...,ik(~u)ξ1(ui1) ∗ . . . ∗ ξ1(uik)

Lemma 2.1. (i) For any ~u ∈ Rm, the mapping

(2.6) B(Rm;R) 3 ϕ 7→ Qkϕ(~u; ·, . . . , ·) ∈ HΓ
k

is linear and continuous from B(Rm;R) to the space of k-linear Hilbert–Schmidt forms
on HΓ.
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(ii) For any ϕ ∈ B(Rm;R), the mapping

(2.7) Rm 3 ~u 7→ Qkϕ(~u; ·, . . . , ·) ∈ HΓ
k

is Borel measurable and bounded.

Proof. (i) The linearity of the mapping (2.6) is obvious. To prove its continuity we note
that

k!‖Qkϕ(~u; ·, . . . , ·)‖2k = EQkϕ(~u; ẇ1, . . . , ẇ1)2 ≤
≤ Eϕ(u1 + ξ1(u1), . . . , um + ξ1(um))2 ≤ sup

~u∈Rm
|ϕ(~u)|2.(2.8)

(ii) First of all, note that the mapping

L2(Ω, σ(ζ),P) 3 η 7→ Qk(·, . . . , ·) ∈ Hk

which puts any square integrable measurable with respect to the white noise ζ ran-
dom variable in correspondence with a Hilbert–Schmidt form of its Itô-Wiener expan-
sion, is continuous and thus is Borel measurable. The continuity of the covariance
function Γ implies the existence of a measurable modification of the random process
{ϕ(u1 + ξ1(u1), . . . , um + ξ1(um)), ~u ∈ Rm}. For any κ ∈ L2(Ω, σ(ξ1), P ), the function
{Eϕ(u1 + ξ1(u1), . . . , um + ξ1(um))κ, ~u ∈ Rm} is Borel measurable, since the function
under mathematical expectation is measurable as a function from (u, ω), and its mathe-
matical expectation is finite for all u. In other words, for any linear continuous functional
l on L2(Ω, σ(ξ1), P ) the mapping

Rm 3 ~u 7→ l(f(u1 + ξ1(u1), . . . , um + ξ1(um))) ∈ R

is Borel measurable. Since the Borel σ−algebra of Hilbert space L2(Ω, σ(ξ1), P ) is
induced by all linear continuous functionals, the mapping R 3 ~u 7→ f(~u + ξ1(~u)) ∈
L2(Ω, σ(ξ1), P ) is Borel measurable. Finally, the mapping (2.7) is Borel measurable as a
composition of two measurable mappings. The boundedness follows from the inequality
(2.8). The lemma is proved. �

To get the Itô–Wiener expansion for ϕ(xn(~u)) it is necessary to define such expansion
for multilinear form Qkϕ(~u + ξ1(~u); ·, . . . , ·). In view of this we extend the domain of
operators Qk to a set of functions with values in some Hilbert space.

Let H be a separable Hilbert space with an orthonormal basis {ej}∞j=1. Denote by

B(Rm;H) = {F : Rm → H|F is Borel measurable, sup
~u∈Rm

‖F (~u)‖ < +∞}.

Then F (~u) =
∑∞
j=1 fj(~u)ej , where fj ∈ B(Rm;R). We define an action of the operators

Qk on function F ∈ B(Rm;H) by the rule:

QkF (~u; ·, . . . , ·) =

∞∑
j=1

Qkfj(~u; ·, . . . , ·)ej ,

where Qkfj are defined in (2.5). QkF (~u; ·, . . . , ·) is an H-valued Hilbert–Schmidt form
on HΓ and, for any xi ∈ HΓ,

∞∑
j=1

Qkfj(~u;x1, . . . , xk)2 ≤ ‖x1‖2 . . . ‖xk‖2
∞∑
j=1

‖Qkfj(~u; ·, . . . , ·)‖2k ≤

≤ ‖x1‖2 . . . ‖xk‖2
∞∑
j=1

1

k!
Ef2

j (~u+ ξ1(~u)) ≤ const
1

k!
·

·E
∞∑
j=1

f2
j (~u+ ξ1(~u)) ≤ const sup

~u∈Rm
‖F (~u)‖2 < +∞.
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Therefore the action of the map Qk on the set B(Rm;H) is well defined. Denote by
(HΓ

k , H) the Hilbert space of a symmetric k-linear H-valued Hilbert–Schmidt forms on
HΓ. From the last estimations Qk : B(Rm, H)→ B(Rm, (HΓ

k , H)). In terms of these op-
erators the Itô–Wiener expansion of the value of a Hilbert-valued function F ∈ B(Rm;H)
at the point ~u+ ξ(~u) has the form:

F (~u+ ξ(~u)) =

∞∑
k=0

∞∑
j=1

Qkfj(~u; ẇ1, . . . , ẇ1)ej =

=

∞∑
k=0

QkF (~u; ẇ1, . . . , ẇ1),

where

QkF (~u; ẇ1, . . . , ẇ1) =

∞∑
j=1

Qkfj(~u; ẇ1, . . . , ẇ1)ej .

by definition.

Lemma 2.2. (i) For any ~u ∈ Rm the mapping

B(Rm;H) 3 ϕ 7→ Qkϕ(~u; ·, . . . , ·) ∈ B(Rm, (HΓ
k , H))

is linear and continuous as a mapping from B(Rm;R) to the space of k-linear Hilbert–
Schmidt forms on HΓ with values in Hilbert space H.

(ii) For any ϕ ∈ B(Rm;H) the mapping

Rm 3 ~u 7→ Qkϕ(~u; ·, . . . , ·) ∈ B(Rm, (HΓ
k , H))

is Borel measurable and bounded.

Proof. The proof is similar to the proof of the Lemma 2.1 and omitted. �

As example, we consider a Hilbert space of the k-linear Hilbert–Schmidt forms on HΓ

with an orthonormal basis {Eik(·, . . . , ·)}∞i=1. Then for Ak ∈ B(Rm;L2(Rk))

Ak(~u; ·, . . . , ·) =

∞∑
i=1

qi(~u)Eik(·, . . . , ·)

and

Ak(~u+ ξ1(~u); ·, . . . , ·) =

∞∑
j=0

QjAk(~u, ẇ1, . . . , ẇ1︸ ︷︷ ︸
j

; ·, . . . , ·︸ ︷︷ ︸
k

),

where

QjAk(~u, ẇ1, . . . , ẇ1; ·, . . . , ·) =

∞∑
i=1

Qjqi(~u, ẇ1, . . . , ẇ1)Eik(·, . . . , ·).

by definition.
Note thatQjAk(~u, ·, . . . , ·︸ ︷︷ ︸

j

; ·, . . . , ·︸ ︷︷ ︸
k

) is a j+k−linear Hilbert–Schmidt form which is sym-

metric with respect to the first j variables and the last k variables separately. Proceeding
recurrently, Qkj . . . Qk1Ak0(~u, ·, . . . , ·︸ ︷︷ ︸

k0

, ·, . . . , ·︸ ︷︷ ︸
k1

, . . . , ·, . . . , ·︸ ︷︷ ︸
kj

) is a k0 + k1 + . . . + kj−linear

Hilbert–Schmidt form which is symmetric with respect to the sets of variables of sizes
kl, (l = 0, . . . , j) separately.
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Theorem 2.1. Let {xn(u), u ∈ R}n≥1 be a discrete-time flow defined by (1.2). Then for
any ϕ ∈ B(Rm;R) the Itô–Wiener expansion of ϕ(xn(~u)) has the folllowing form:

(2.9) ϕ(xn(~u)) =

∞∑
k=0

∑
l1,...,ln≥0
l1+...+ln=k

QlnQln−1
. . . Ql1ϕ(~u; ẇn, . . . , ẇn︸ ︷︷ ︸

ln

, . . . , ẇ1, . . . , ẇ1︸ ︷︷ ︸
l1

).

Proof. Let us verify that the iterated action of the operators Qk in (2.9) is well defined.
From the definition of Qk we have:

ϕ(xn(~u)) = ϕ(xn−1(~u) + ξn(xn−1(~u))) =

=

∞∑
k1=0

Qk1ϕ(xn−1(~u); ẇn, . . . , ẇn).

The action of the operators Qk on the function {Qk1ϕ(~u; ·, . . . , ·), ~u ∈ Rm} with values
in a Hilbert space is well-defined in the case when ‖Qk1ϕ(~u; ·, . . . , ·)‖2k1 is a measurable
and bounded function in ~u ∈ Rm. The measurability follows from the statement (ii) of
the Lemma 2.1 and the boundedness follows from the inequality:

‖Qk1ϕ(~u; ·, . . . , ·)‖2k1 ≤
1

k1!
Eϕ2(~u+ ξ1(~u)) ≤ 1

k1!
sup
~u∈Rm

ϕ2(~u).

Therefore, Qk2Qk1ϕ is well defined and

Qk1ϕ(xn−2(~u) + ξn−1(xn−2(~u)); ·, . . . , ·) =

=

∞∑
k2=0

Qk2Qk1ϕ(xn−2(~u); ·, . . . , ·︸ ︷︷ ︸
k1

, ẇn−1, . . . , ẇn−1︸ ︷︷ ︸
k2

).

Further, the Hilbert spaceH = l2(L2(R)) can be conceived of as a direct sum of subspaces

Ln = {F ∈ H : F = (0, . . . , 0︸ ︷︷ ︸
n−1

, f, 0, . . .), f ∈ L2(R)}.

In these terms, the Hilbert–Schmidt form Qkϕ(xn−1(~u) + ξn(xn−1(~u)); ·, . . . , ·) is defined
on the subset Ln+1 and is measurable with respect to the white noise in

⊕n
k=1 Lk, so we

get
Qk1ϕ(xn−1(~u) + ξn(xn−1(~u)); ẇn+1, . . . , ẇn+1) =

=

∞∑
k2=0

Qk2Qk1ϕ(xn−2(~u); ẇn+1, . . . , ẇn+1︸ ︷︷ ︸
k1

, ẇn, . . . , ẇn︸ ︷︷ ︸
k2

).

Proceeding recurrently we prove the theorem. �

3. An explicit form of the discrete Krylov-Veretennikov expansion

Note that for any ϕ ∈ B(Rm;R) the random variable ϕ(xn(u1), . . . , xn(um)) is mea-
surable with respect to σ{ξ1, . . . , ξn} ≡ σ{ξ1(u), ξ2(u), . . . , ξn(u), u ∈ R}. So it is natu-
ral to present the Itô–Wiener expansion of this random variable in terms of processes
{ξk}k≥1. As it was mentioned in the previous section, an action of the operators Qk can
be expressed in terms of Wick product:

Qkϕ(~u; ẇ1, . . . , ẇ1) =

m∑
i1,...,ik=1

ai1,...,ik(~u) ξ1(ui1) ∗ . . . ∗ ξ1(uik).

To obtain the representation for the constants ai1...ik we consider the case, when the
covariance function Γ of processes {ξi(u), u ∈ R} is such that for any u1 < u2 < . . . < um
the random vector {ξi(u1), . . . , ξi(um)} has the density of its distribution. This condition
is satisfied, for example, when Γ has the following form: Γ(·) =

∫
R ψ(u− ·)ψ(u)du, ψ ∈
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L2(R), or the spectral measure of Γ has a density with respect to the Lebesgue measure.
Indeed, the covariation matrix of the vector {ξi(u1), . . . , ξi(um)} in the first case is(

Γ(ui − uj)
)m
i,j=1

=
(
(ψ(· − ui), ψ(· − uj))L2(R)

)m
i,j=1

and in the second case it is(
Γ(uj − uk)

)m
j,k=1

=
(∫

R
eiλ(uj−uk)ρ(λ)dλ

)m
i,j=1

,

where ρ is a spectral density of Γ. In the first case Gram determinant is greater then
zero if and only if the system of functions {ψ(· −u1), ψ(· −u2), . . . , ψ(· −um)} is linearly
independent in L2(R). It is known that for nonzero function f ∈ L2(R) and for all
distinct u1, . . . , uk ∈ R the system {f(· − u1), . . . , f(· − uk)} is linearly independent in
L2(R) [10]. The second case is similar to the first one.

Denote the Fourier transform for ϕ ∈ L1(Rm) by

ϕ̂(~α) =
1

(2π)
m
2

∫
Rm

ϕ(~x)ei(~α,~x)d~x.

Lemma 3.1. Let pΓ(·, ~u) be the density of distribution of the random vector (u1 +
ξ1(u1), . . . , um + ξ1(um)). Then for any ϕ ∈ B(Rm;R)

⋂
L1(Rm) and such that ϕ̂ ∈

L1(Rm)

Qkϕ(~u; ẇ1, . . . , ẇ1) =
1

k!

m∑
i1,...,ik

(−1)k
∫
Rm

∂k

∂αi1 . . . ∂αik
pΓ(~α; ~u)

ϕ(~α)d~α ξ1(ui1) ∗ ξ1(ui2) ∗ . . . ∗ ξ1(uik).

(3.1)

Proof. We obtain the proposition of the lemma using well-known expansion for the sto-
chastic exponent [9]: for ~α ∈ Cm

E(~α, ξ1(~u)) ≡ exp{
m∑
i=1

αiξ1(ui)−
1

2

m∑
i,j=1

αiαjΓ(ui − uj)} =

=

∞∑
k=0

1

k!

m∑
i1,...,ik=1

αi1 . . . αik ξ(ui1) ∗ . . . ∗ ξ(uik),

where the series converges in the square mean.
Using inverse Fourier transform, we have:

ϕ(~u+ ξ1(~u)) =
1

(2π)
m
2

∫
Rm

e−i(~u+ξ1(~u),~α)ϕ̂(~α)d~α =

=
1

(2π)
m
2

∫
Rm

e−i(~u,~α)− 1
2

∑m
l,j=1 αlαjΓ(ul−uj)E(−i~α, ξ1(~u))ϕ̂(~α)d~α =

=
1

(2π)
m
2

∫
Rm

p̂Γ(~α, ~u)ϕ̂(~α)E(−i~α, ξ1(~u))d~α.

For any ~α ∈ Rm E(−i~α, ξ1(~u)) ∈ L2(Ω, σ(ξ),P) and

||E(−i~α, ξ1(~u))||L2 = exp{1

2

m∑
l,m=1

αlαjΓ(ul − uj)}.

Since ϕ̂ ∈ L1(Rm), we get:∫
Rm
||E(−i~α, ξ1(~u))||L2

e−
1
2

∑m
l,j=1 αlαjΓ(ul−uj)|ϕ̂(~α)|d~α =

∫
Rm
|ϕ̂(~α)|d~α < +∞,
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so, the Bochner integral
∫
Rm exp{−i(~u, ~α)− 1

2

∑m
l,j=1 αlαjΓ(ul−uj)}E(−i~α, ξ1(~u))ϕ̂(~α)d~α

is well-defined [11]. Denote by Pk an operator which for any η ∈ L2(Ω, σ(ξ),P) assigns k-
th term of Itô-Wiener expansion of η. Since Bochner integral commutes with continuous
linear operators [11],

∫
Rm

p̂Γ(~α, ~u)ϕ̂(~α)E(−i~α, ξ1(~u))d~α =

∞∑
k=0

Pk

(∫
Rm

p̂Γ(~α, ~u)ϕ̂(~α)E(−i~α, ξ1(~u))d~α
)

=

=

∞∑
k=0

∫
Rm

p̂Γ(~α, ~u)ϕ̂(~α)Pk

(
E(−i~α, ξ1(~u))

)
d~α.

Finally, we have:

ϕ(~u+ ξ1(~u)) =

∞∑
k=0

(−i)k

k!

∫
Rm

m∑
i1,...,ik=1

αi1 . . . αik p̂Γ(~α, ~u)ϕ̂(~α)d~α ξ1(ui1) ∗ . . . ∗ ξ1(uik) =

=

∞∑
k=0

1

k!

∫
Rm

m∑
i1,...,ik=1

(−1)k
∂k

∂αi1 . . . ∂αik
pΓ(~α; ~u)ϕ(~α)d~α ξ1(ui1) ∗ ξ1(ui2) ∗ . . . ∗ ξ1(uik).

The lemma is proved. �

Note, that in the case when Γ(·) =
∫
R ψ(u − ·)ψ(u)du for some ψ ∈ L2(R), ψ(u) =

ψ(−u), ‖ψ‖ = 1, then for any i ≥ 1 there exists a Wiener process w̃i on an extended
probability space such that ξi(u) =

∫
R ψ(u − v)dw̃i(v) and {w̃}i≥1 are independent. In

this case the Wick product can be rewritten in terms of multiple Ito integrals [9]:

ξ1(ui1) ∗ ξ1(ui2) ∗ . . . ∗ ξ1(uik) =

∫
Rk
ψ(ui1 − v1) ? . . . ? ψ(uik − vk) dw̃1(v1) . . . dw̃1(vk),

where

ψ(ui1 − v1) ? . . . ? ψ(uik − vk) =
1

k!

∑
σ∈Sk

k∏
j=1

ψ(uij − vσ(j)),

and Sk is the symmetric group of all permutations of {1, . . . , k}. So we can rewrite (3.1)
in the following way:

Qkϕ(~u; w̃1, . . . , w̃1) =
1

k!

∫
Rm

m∑
i1,...,ik=1

(−1)k
∂k

∂αi1 . . . ∂αik
pΓ(~α; ~u)ϕ(~α)d~α·

·
∫
Rk
ψ(ui1 − v1) ? . . . ? ψ(uik − vk) dw̃1(v1) . . . dw̃1(vk) =

=
1

k!

m∑
i1,...,ik=1

(−1)k
∫
Rk

∫
Rm

∂k

∂αi1 . . . ∂αik
pΓ(~α; ~u)ϕ(~α)d~α ψ(ui1 − v1) ? . . . ?

?ψ(uik − vk) dw̃1(v1) . . . dw̃1(vk).

To write the Itô–Wiener expansion for ϕ(xn(~u)) we give some notations. For k ≥ 0 and
m ≥ 1 we denote by

J(k,m) = {r = (i1, . . . , ik), ij ∈ {1, . . . ,m}}
a set of multi-indexes. For a vector ~u ∈ Rm and some index r ∈ J(k;m) we write

~ur = (ui1 , . . . , uik) ∈ Rk

and

Drf(~x) =
∂k

∂xi1 . . . ∂xik
f(~x).
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Also we denote ξ~k(~ur) = ξ(ui1) ∗ . . . ∗ ξ(uik). Denote by S(Rn) the Schwartz space,
i.e. S(Rn) = {f ∈ C∞(Rn) : sup~u∈Rn |~uαDβf(~u)| ≤ +∞, α = (α1, . . . , αn), β =
(β1, . . . , βn), αi, βi ∈ N0, i = 1, . . . , n}

Theorem 3.1. Suppose that the covariance function Γ has the following form Γ(·) =∫
R ψ(u−·)ψ(u)du, where ψ ∈ S(R) and pΓ(·, ~u) is the density of distribution of the vector
{u1 + ξ1(u1), . . . , um + ξ1(um)}, u1 < . . . < um. Then for any ϕ ∈ S(Rm)

ϕ(xn(~u)) =

∞∑
k1,...,kn=0

1

k1! . . . kn!

∑
rn∈J(kn,m)

. . .
∑

r1∈J(k1,m)

(−1)k1+...+kn

∫
Rm

. . .

∫
Rm

DrnpΓ(~α(n), ~α(n−1))Drn−1pΓ(~α(n−1), ~α(n−2)) . . .

Dr1pΓ(~α(1), ~u)ϕ(~α(n))ξ~knn (~α(n−1)
rn )ξ

~kn−1

n−1 (~α(n−2)
rn−1

) · . . . · ξ~k11 (~ur1)d~α(n) . . . d~α(1),

where the series converges in the square mean.

Proof. The proposition of the theorem is obtained by the iteration of the expansion
formula (3.1) for ϕ(x1(~u)). Denote by

Ii1,...,ik(ϕ)(~u) =
1

k!

∫
Rm

ϕ(~y)
∂k

∂yi1 . . . ∂yik
pΓ(~y, ~u)d~y,

where ~u ∈ Rm such that uj 6= ui, j 6= i. Using inverse Fourier transform, we get another
representation for Ii1,...,ik(ϕ)(~u) :

Ii1,...,ik(ϕ)(~u) =
1

(2π)
m
2

∫
Rm

(−i)kϕ̂(~y)yi1 . . . yik exp{i(~u, ~y)− 1

2

m∑
l,j=1

Γ(ul − uj)ylyj}d~y.

From this formula, the function Ii1,...,ik(ϕ)(·) is well defined for all ~u ∈ Rm. We verify
that for ϕ ∈ S(Rm) the function Ii1,...,ik(ϕ)(·) ∈ S(Rm). For any multi-index α =
(α1, . . . , αm)∫

Rm
ϕ̂(~y)yi1 . . . yik

∂|α|

∂uα1
1 . . . ∂uαmm

exp{i(~u, ~y)− 1

2

m∑
l,j=1

Γ(ul − uj)ylyj}d~y =

=

∫
Rm

ϕ̂(~y)yi1 . . . yike
i(~u,~y)− 1

2

∑m
l,j=1 Γ(ul−uj)ylyjP(~y, ~u)d~y,

where P is a polynomial from the variables {y1, . . . , ym,Γ(ui − uj), . . . , Γ(|α|)(ui −
uj), i, j = 1, 2, . . . ,m}. Since ϕ ∈ S(Rm), the function ϕ̂ also belongs to S(Rm), and the
last integral locally in ~u uniformly converges and so Ii1,...,ik(ϕ)(·) is differentiable. Each

term of the polynomial P has the form C~yγ
∏K1

k=1 Γ(uik −ujk) . . .
∏K|α|
k=1 Γ(|α|)(uik −ujk),

where γ is some multi-index. Since ϕ ∈ S(Rm) {ϕ̂(~y)~yγ , ~y ∈ Rm} ∈ S(Rm), so it is
sufficient to prove that for any g ∈ S(Rm)

sup
~u∈Rm

|~uβ
K1∏
k=1

Γ(uik − ujk) . . .

K|α|∏
k=1

Γ(|α|)(uik − ujk)·

·
∫
Rm

ĝ(~y) exp{i(~u, ~y)−
m∑

l,j=1

Γ(ul − uj)ylyj}d~y|

is finite.
Since for every k ∈ N0, Γ(k) is bounded, we can estimate the last expression by

C sup
~u∈Rm

|~uβ
∫
Rm

g(~y)pΓ(~y, ~u)d~y| = sup
~u∈Rm

|~uβEg(~u+ ξ1(~u))|.
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Since g ∈ S(Rm), sup~u∈Rm |~uβg(~u)| < +∞ we obtain that Ii1,...,ik(ϕ)(·) ∈ S(Rm).
By (3.1)

ϕ(xn(~u)) = ϕ
(
xn−1(~u) + ξn

(
(xn−1(~u))

))
=

∞∑
kn=0

Qknϕ(xn−1(~u); ẇn, . . . , ẇn) =

=

∞∑
kn=0

(−1)kn

kn!

m∑
i1,...,ikn

Ii1,...,ikn (ϕ)(xn−1(~u))·ξn(v1)∗ξn(v2)∗. . .∗ξn(vkn))
∣∣
vj=xn−1(uij )

.

Under assumption Γ(·) =
∫
R ψ(u− ·)ψ(u)du, the Wick product has the form:

ξj(ui1) ∗ ξj(ui2) ∗ . . . ∗ ξj(uik) =

∫
Rk
ψ(ui1 − v1) ? . . . ? ψ(uik − vk)dw̃j(v1) . . . dw̃j(vk),

where {w̃j}j≥1 are independent Brownian motions on R.
Denote Ki1,...,ik(~u,~v) = ψ(ui1 − v1) ? . . . ? ψ(uik − vk), and in this terms the previous

expansion has the form

ϕ(xn(~u)) =

∞∑
kn=0

(−1)kn

kn!

m∑
i1,...,ikn

∫
Rk
Ii1,...,ikn (ϕ)(xn−1(~u))·

·Ki1,...,ikn
(xn−1(~u), ~v)dw̃n(v1) . . . dw̃n(vk)

Since ψ ∈ S(R), for fixed ~v ∈ Rm the function Ki1,...,ik(·, ~v) ∈ C∞(Rm) is bounded.
Also Ii1,...,ik(ϕ) ∈ S(Rm), so Ii1,...,ik(ϕ)(·)Ki1,...,ik(·, ~v) ∈ S(Rm) and we can apply the
formula (3.1):

ϕ(xn(~u)) =

∞∑
kn=0

(−1)kn

kn!

m∑
i1,...,ikn

∫
Rkn

∞∑
kn−1=0

(−1)kn−1

kn−1!
·

·
m∑

j1,...,jkn−1
=1

∫
Rkn−1

Ij1,...,jkn−1

(
Ii1,...,ikn (ϕ)(·)Ki1,...,ikn

(·, ~v(1))
)
(xn−2(~u))·

·Kj1,...,jkn−1
(xn−2(~u), ~v(2))dw̃n−1(~v(2))dw̃n(~v(1)).

Denote by

Akn−1
(~u,~v(1), ˙̃wn−1, . . . , ˙̃wn−1) =

(−1)kn−1

kn−1!

m∑
j1,...,jkn−1

=1∫
Rkn−1

Ij1,...,jkn−1

(
Ii1,...,ikn (ϕ)(·)Ki1,...,ikn

(·, ~v(1))
)
(~u)Kj1,...,jkn−1

(~u,~v(2))dw̃n−1(~v(2)).

We verify that∫
Rkn

∞∑
kn−1=0

Akn−1
(xn−2(~u), ~v(1), ˙̃wn−1, . . . , ˙̃wn−1)dw̃n(~v(1)) =

=

∞∑
kn−1=0

∫
Rkn

Akn−1
(xn−2(~u), ~v(1), ˙̃wn−1, . . . , ˙̃wn−1)dw̃n(~v(1)).

Note that Akn−1
(~u;~v(1); ·, . . . , ·) is kn−1−linear Hilbert–Schmidt form. For fixed N∫

Rkn

N∑
kn−1=0

Akn−1(xn−2(~u), ~v(1), ˙̃wn−1, . . . , ˙̃wn−1)dw̃n(~v(1)) =
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=

N∑
kn−1=0

∫
Rkn

Akn−1(xn−2(~u), ~v(1), ˙̃wn−1, . . . , ˙̃wn−1)dw̃n(~v(1)).

The series
∑∞
kn−1=0Akn−1

(xn−2(~u), ~v, ˙̃wn−1, . . . , ˙̃wn−1) converges in square mean to

Ii1,...,ikn (ϕ)(xn−1(~u))Ki1,...,ikn
(xn−1(~u), ~v). Since the Wiener processes w̃n−1 and w̃n are

independent, the random values {
∫
Rkn Aj(~u,~v

(1), ˙̃wn−1, . . . , ˙̃wn−1)dw̃n(~v(1))}j≥0 are or-
thogonal in L2(Ω).

The series
∑∞
kn−1=0

∫
Rkn Akn−1(xn−2(~u), ~v(1), ˙̃wn−1, . . . , ˙̃wn−1)dw̃n(~v(1)) converges in

the square mean since∑
j≥0

E
(∫

Rkn
Aj(xn−2(~u), ~v(1), ˙̃wn−1, . . . , ˙̃wn−1)dw̃n(~v(1))

)2

≤ Eϕ(xn(~u))2 < +∞.

Therefore we have∫
Rkn

∞∑
kn−1=0

Akn−1
(~u,~v(1), ˙̃wn−1, . . . , ˙̃wn−1)dw̃n(~v(1)) =

=

∞∑
kn−1=0

∫
Rkn

Akn−1
(~u,~v(1), ˙̃wn−1, . . . , ˙̃wn−1)dw̃n(~v(1)).

Finally,

ϕ(xn(~u)) =

∞∑
kn=0

∞∑
kn−1=0

m∑
i1,...,ikn=1

m∑
j1,...,jkn−1

=1

(−1)kn

kn!

(−1)kn−1

kn−1!

∫
Rkn

∫
Rkn−1

Ij1,...,jkn−1

(
Ii1,...,ikn (ϕ)(·)Ki1,...,ikn

(·, ~v(1))
)
(xn−2(~u))·

·Kj1,...,jkn−1
(xn−2(~u), ~v(2))dw̃n−1(~v(2))dw̃n(~v(1)).

(3.2)

By Fubini’s theorem for stochastic integrals ([12], Theorem IV.65) we can change the
order of integration in the expression∫

Rkn

∫
Rm

Ii1,...,ikn (ϕ)(~y)Ki1,...,ikn
(~y,~v(1))

∂kn−1

∂yj1 . . . ∂yjkn−1

pΓ(~y, ~u)d~ydw̃n(~v(1)) =

= (−1)kn−1

∫
Rkn

∫
Rm

∂kn−1

∂yj1 . . . ∂yjkn−1

(
Ii1,...,ikn (ϕ)(~y)Ki1,...,ikn

(~y,~v(1))
)
·

· pΓ(~y, ~u)d~ydw̃n(~v(1))

since ∂kn−1

∂yj1 ...∂yjkn−1

Ii1,...,ikn (ϕ)(~y)Ki1,...,ikn
(~y, ·) ∈ S(Rkn) and∫

Rkn

∫
Rm

( ∂kn−1

∂yj1 . . . ∂yjkn−1

Ii1,...,ikn (ϕ)(~y)Ki1,...,ikn
(~y,~v(1))

)2

pΓ(~y, ~u)d~yd~v(1) < +∞.

So we can rewrite (3.2) terms of the Wick product:

ϕ(xn(~u)) =

∞∑
kn=0

m∑
rn∈J(kn,m)

∞∑
kn−1=0

∑
rn−1∈J(kn−1,m)

(−1)kn

kn!

(−1)kn−1

kn−1!

∫
Rm
·

·
∫
Rm

DrnpΓ(~α(n); ~α(n−1))ξ~knn (~α(n−1)
rn )Drn−1pΓ(~α(n−1);xn−2(~u))d~α(n−1)

ξ
~kn−1

n−1 (~v)
∣∣∣
~v=xn−2(~urn )

ϕ(~α(n))d~α(n).

Proceeding recurrently we prove the theorem. �
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4. Example

In this section, we consider an example of a stochastic flow of solutions to SDE and a
discrete-time flow which approximates it. For such flows we compare the first terms of
their Krylov–Veretennikov representations.

Let us consider the following SDE with the space-time white noise W [7]:

(4.1) x(u, t) = u+

∫
R

∫ t

0

ψ(x(u, s)− v)W (dv, ds),

where ψ ∈ S(R),
∫
R ψ

2(u)du = 1, ψ(u) = ψ(−u) and W is a Wiener sheet on R×[0,+∞).
We build an approximation in the form of a discrete-time flow using the following

sequence of series of stationary Gaussian processes:

{ξnk (u) =

∫
R

∫ k+1
n

k
n

ψ(u− v)W (dv, ds), u ∈ R, k = 1, . . . , n}n≥1

via the recurrence equation:

xnk+1(u) = xnk (u) + ξnk+1(xnk (u)),

xn0 (u) = u.
(4.2)

We define a sequence of processes {xn(u, t), u ∈ R, t ∈ [0, 1]}n≥1 as a sequence of polyg-

onal lines on time interval [0, 1] with edges at the points
(
xnk (u), kn

)
. According to the

Theorem 4 in [2] there is an estimation on the rate of convergence of the approximation
scheme (4.2):

(4.3) E sup
u∈[0,1]

|xnn(u)− x(u, 1)| ≤ c√
n

So, for any continuous bounded function ϕ : Rm → R

ϕ
(
xn
(
~u, 1
)) L2→ ϕ(x(~u, 1)).

Therefore, the expansion terms of ϕ(xnn(~u)) converge.
We give an informal calculation of the explicit form of the first term of the Itô–Wiener

expansion for ϕ(x(~u, t)) and derive a representation for ϕ(xn[kt](~u)). Consider the following

Cauchy problem:

∂

∂s
U(s, ~u) +

1

2

m∑
i,j=1

Γ(ui − uj)
∂2

∂ui∂uj
U(s, ~u) = 0, s < t, ~u ∈ Rm,

U(t, ~u) = f(~u),

where Γ(·) =
∫
R ψ(u− ·)ψ(u)du.

Denote by {Tt}t≥0 the set of operators that define a solution to this boundary value

problem, i.e. Tt−sf(~u) = U(s, ~u) and define Rit−sf(~u, v) = ψ(ui− v) ∂
∂ui

Tt−sf(~u). By Itô

formula applied to the function {U(t, ~u), t ≥, ~u ∈ R} we have:

(4.4) f(x(~u, t)) = Ttf(~u) +

m∑
i=1

∫
R

∫ t

0

Rit−sf(x(~u, s), v)W (dv, ds).

Note, that from this expression it is follows that Ttf(~u) = Ef(x(~u, t)). Applying Itô
formula to the function Rit−sf(x(~u, t), v) and using (4.4) we get the first term of Krylov–
Veretennikov expansion:

(4.5) A1f :=

m∑
i=1

∫
R

∫ t

0

Tsψ(ui − v)
∂

∂ui
Tt−sf(~u)W (dv, ds).
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We can use the results of the previous section to write the first term of expansion for
f(xn[kt](~u)). Suppose that f ∈ S(Rm). Let us denote by {K k

n
}nk=1 the semigroup of

operators which are defined by the rule:

K 1
n
f(~u) = Ef(xn1 (~u)) =

∫
Rm

f(~x)pn(~x, ~u)d~x,

where pn(·, ~u) is the density of distribution of the random vector (u1 + ξn1 (u1), . . . , um +
ξn1 (um)). Then

K k
n

:= Kk
1
n
f(~u) = Ef(xnk (~u)).

Denote by Sinf(~u) =
∫
Rm f(~x) ∂

∂xi
pn(~x, ~u)d~x. The first term of the Itô–Wiener expansion

of ϕ(xnk (~u)) in terms of operators {Qk}k≥0, which were defined in Section 2, has the
form:

k−1∑
j=0

Qj0Q1Q
k−j−1
0 ϕ(~u; ẇj),

where

{wk(v) =

∫
R

∫ k+1
n

k
n

ψ(v − y)W (dy, ds), v ∈ R}

is a Wiener process.
Since Qk0f = K k

n
f and from the Lemma 3.1 for f ∈ S(Rm):

Q1f(~u) = −
m∑
i=1

∫
R

∫ 1
n

0

Sinf(~u)ψ(ui − v)W (dv, ds),

by the Theorem 3.1 the first term of Itô–Wiener expansion of f(xnk (~u)) has the form:

A1,nf := −
k−1∑
j=0

n∑
i=1

∫
R

∫ j+1
n

j
n

K j
n

(ψ(uj − v)SinK k−j−1
n

f(~u))W (dv, ds).

Note that the operator K j
n

can be exchanged with the integral with respect to Brow-

nian sheet if ([12], Theorem IV.65)∫
R

∫
Rm

(
ψ(yj − v)SinK k−j−1

n
f(~y)

)2

p(j)
n (~y, ~u)d~ydv < +∞,

where p
(j)
n (·, ~u) is the density of distribution of the random vector xnj (~u). By Fubini’s

theorem the last integral is equal to∫
Rm

∫
R
ψ2(yj − v)

(
SinK k−j−1

n
f(~y)

)2

p(j)
n (~y, ~u)dvd~y =

=

∫
Rm

(
SinK k−j−1

n
f(~y)

)2

p(j)
n (~y, ~u)d~y.

As is was proved in the previous section, for f ∈ S(Rm) K k−j−1
n

f ∈ S(Rm), and so

SinK k−j−1
n

f ∈ S(Rm), therefore the last integral is finite. Integrating by parts we obtain

for every j = 0, . . . , k − 1:

SinK k−j−1
n

f(·) = −
∫
Rm

pn(~x, ·) ∂

∂xi
K k−j−1

n
f(~x)d~x =

= −K 1
n

∂

∂xi
K k−j−1

n
f(·).
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Therefore, the first term has the form:

(4.6) A1,nf :=

m∑
i=1

k−1∑
j=0

∫
R

∫ j+1
n

j
n

K j
n

(ψ(ui − v)K 1
n

∂

∂ui
K k−j−1

n
f(~u))W (dv, ds).

As one can see, this formula is similar to the first term of Krylov–Veretennikov repre-
sentation for f(x(u, t)) (4.5).

From the estimation (4.3) we get the rate of convergence for the first term of expansion:

Proposition. Let ϕ ∈ Lip(Rm), then

E|A1ϕ(~u)−A1,nϕ(~u)| ≤ c1√
n
.

Proof. The proposition follows from the estimations:

E(A1ϕ(~u)−A1,nϕ(~u))2 ≤ E(ϕ(x(~u, 1))− ϕ(xnn(~u))2 ≤
≤ L2E‖x(~u, 1)− xnn(~u)‖2 ≤

≤ mL2E sup
u∈[0,1]

|x(u, 1)− xnn(u)|2 ≤ mL2c

n
.

�
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