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I. A. KORENOVSKA

RANDOM MAPS AND KOLMOGOROV WIDTHS

In this paper we consider strong random operators. We present the sufficient condi-
tions on a compact set in a Hilbert space under which its image under a Gaussian

strong random operator is well-defined and compact. In addition, we investigate the
behavior of Kolmogorov widths of some compacts under a Gaussian strong random

operator.

1. Introduction

Let H be a real separable Hilbert space with inner product (·, ·) and norm ‖ · ‖H ,
(Ω,F , P ) be a probability space, and L0(Ω, P,H) be a space of random elements in H.

Definition 1 ([1]). An operator A : H → L0(Ω, P,H) is said to be a strong random
operator (SRO) if the following conditions hold

1) for any α, β ∈ R and f, g ∈ H

P{A(αf + βg) = αAf + βAg} = 1;

2) for any ε > 0

lim
fn→f

P{‖Afn −Af‖H > ε} = 0.

The main feature of an SRO is that it can be unbounded for any ω ∈ Ω.

Example 1. Let {en}∞n=1 be an orthonormal basis in H, ξ1, ξ2, . . . be independent stan-
dard normal variables. Define the SRO A as follows

Af =

∞∑
n=1

ξn(f, en)en, f ∈ H.

The operator A is unbounded almost surely because supn |ξn| = +∞ a.s.
This example shows that for any f ∈ H Af is defined on the set Ωf of a full measure

that, generally speaking, depends on f. So the images of uncountable sets under operator
A may be undefined.

Example 2. Let the SRO A be the same as in the Example 1. The set K ⊂ H is defined
as the image of the closed unit ball with center 0 in H under the compact operator S

Sg =

∞∑
n=1

1
4
√

ln(n+ 2)
(g, en)en, g ∈ H.

Since P
{

lim
n

ξ2n√
ln(n+2)

< +∞
}

= 0, then

P{for any f ∈ K
∞∑
n=1

ξn(f, en)en converges in H} = 0.
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The operator A from the previous two examples has a following property. For every
h ∈ H Ah is a Gaussian random element in H. This naturally leads to the following
definition.

Definition 2 ([2]). An SRO A is said to be a Gaussian SRO (GSRO) if for any f ∈ H
the distribution of Af is the Gaussian one.

As was shown before, the image of a compact set under a GSRO in general is not
defined. The aim of this paper is to present sufficient conditions on a compact K ⊂ H
and a GSRO A under which A(K) is a random compact. Also, we study the width of
A(K). These questions are inspired by the studying of stochastic flows. To explain our
motivation more precisely consider the Harris flow [3] (its particular case is the Arratia
flow [4]), which consists of Brownian particles with spatial correlation that depends on the
difference between the positions of the particles. Such flows can lose the homeomorphic
property. Thus, for the investigation of their geometry we can not apply the tools from
differential geometry. In [5] it was proposed to study the geometry of random operators
describing shifts of functions along a flow (in case of the Harris flow they are SROs).
In addition, it was noticed that the geometry of semigroup of such operators can be
characterized in terms of widths of compact sets with respect to it. Consequently, we
need to know when the image of a compact set under the SRO that is generated by the
Harris flow exists. In this paper we study the case of GSRO which seems to be simpler
than the case of operators generated by the Harris flow.

2. The existence of the images of compact sets in Hilbert space under
Gaussian strong random operators

Let NK(u) denote the smallest number of the closed balls with radii u that cover a
compact K. Note that for GSRO A one can define its expectation EA as a bounded
linear operator acting as

(EA)h := E(Ah), h ∈ H.
In what follows we will consider the centered GSRO A, i.e. such that EA = 0.

Theorem 1. Let A be a centered GSRO and K be a compact set such that

(1)

∫
NK(u)>1

(lnNK(u))1/2du < +∞.

Then with probability 1 A(K) is well-defined and is a compact set.

Proof. Let us consider a Hilbert-valued Gaussian random process {Af, f ∈ K}. By The-
orem 1.4.11 [6], for continuous modification of considered process to exist it is sufficient
that there exist a constant α ∈ (0; 1] and a convex, even, continuous function ϕ such that

lim
x→∞

ϕ(x)

x
=∞, lim

x→0

ϕ(x)

x
= 0

for which the following relations hold:

(2) Eϕ
(‖Af −Ag‖αH
‖f − g‖H

)
≤ 1;

(3)

∫
NK(u)>1

ϕ−1(NK(u))du < +∞.

Let us check that for GSRO A there exists a constant a > 0 for which relation (2) holds

with the function ϕ(x) = eax
2 − 1 and α = 1. Since A is a linear operator it is sufficient

to show that there exists a constant a > 0 such that for any h ∈ H with ‖h‖ = 1

Eea‖Ah‖
2
H ≤ 2. By [2] there exists a constant c > 0 such that for any f ∈ H E‖Af‖2H ≤
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c‖f‖2H . Take a > 0 for which e2ac ≤ 2. Fix arbitrary h ∈ H with ‖h‖H = 1. Denote by
{λk}∞k=1 the eigenvalues of the correlation operator Sh (Sh is a nuclear operator) of Ah
[7]. Then

Eea‖Ah‖
2
H =

∞∏
k=1

1√
1− 2aλk

= e
− 1

2

∞∑
k=1

ln(1−2aλk)
.

Since
∑∞
k=1 λk = E‖Ah‖2H ≤ c then for any k ≥ 1 2aλk ≤ 2ac < 1

2 . Consequently, for
any k ≥ 1 − ln(1− 2aλk) ≤ 4aλk and

Eea‖Ah‖
2
H ≤ e

2a
∞∑
k=1

λk
= e2aE‖Ah‖

2
H ≤ e2ac ≤ 2.

Thus, for GSRO A relation (2) is true with α = 1 and ϕ(x) = eax
2 − 1. Consequently,

GSRO A has continuous modification on K and the image A(K) is defined and is a
compact set. �

Example 3. Let us consider the set K = {f ∈ C[0; 2π] : f(0) = 0 and for any t1, t2 ∈
[0; 2π] |f(t1) − f(t2)| ≤ |t1 − t2|}. K is a compact set in C[0; 2π] with uniform metric
and, consequently, in L2[0; 2π]. As a u-net of K we can consider the set of polygonal

lines that take value 0 at the origin, have vertexes at points { 2πku , k = 1, [ 2πu ]}, and have
one-sided derivatives at these points ±1. The number of elements of this u-net equals
2[

2π
u ]. Thus, for the set K ∫

NK(u)>1

(lnNK(u))1/2du < +∞.

The investigation of SROs was originated from work of A.V.Skorokhod [1], where he
introduced the following GSRO A

Af(t) =

∫ t

0

f(s)dw(s), f ∈ L2[0; 2π].

For considered compact K ⊂ L2[0; 2π] relation (1) holds. Consequently, A(K) is a

compact set. Thus, for f, fn ∈ K such that fn
L2−→

n→∞
f∫ 2π

0

fn(s)dw(s) −→
n→∞

∫ 2π

0

f(s)dw(s) a.s.

and supf∈K
∫ 2π

0
f(s)dw(s) < +∞.

3. The Kolmogorov widths of compact sets and their image under GSRO

Let C ⊆ H be a subset of Hilbert space H,L ⊆ H be a subspace of H.

Definition 3 ([8]). The Kolmogorov n-width of a set C in the space H is given by

dn(C) := inf
dimL≤n

sup
f∈C

inf
g∈L
‖f − g‖H .

For the compact set from the Example 3 and the GSRO A

Af =

∞∑
k=1

ξk(f, ek)ek, f ∈ L2[0; 2π],

where ξ1, ξ2, . . . are independent standard normal variables, {ek}∞k=1 = { 1√
2π
, 1√

π
cos kt,

1√
π

sin kt}∞k=1 is an orthonormal basis in L2[0; 2π], the following statement holds.

Proposition 1. A.s. dn(A(K)) = O(
(
1
n

) 1
2−ε), n→∞ for any ε > 0.
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Proof. Let Ln be a space of polygonal lines that take value 0 at the origin, have vertexes

at points { 2πkn , k = 1, [ 2πn ]} and have one-sided derivatives at these point ±1.
Then, for fixed n ∈ N

dn(A(K))2 ≤ sup
f∈A(K)

inf
g∈Ln

‖f − g‖2L2[0;2π]
≤

≤ sup
f∈A(K)

n∑
k=1

2π

n

(
sup

t1,t2∈[ 2π(k−1)
n ; 2πkn ]

|f(t1)− f(t2)|
)2
.

Let us consider a new stochastic process ϕ̃(t) = {Aϕ(t), ϕ ∈ K}, where t ∈ [0; 2π] is
fixed. Since A is a continuous operator on K ϕ̃(t) is a continuous stochastic process on
K. Consequently,

sup
f∈A(K)

n∑
k=1

2π

n

(
sup

t1,t2∈[ 2π(k−1)
n ; 2πkn ]

|f(t1)− f(t2)|
)2
≤

≤
n∑
k=1

2π

n

(
sup

t1,t2∈[ 2π(k−1)
n ; 2πkn ]

‖ϕ̃(t1)− ϕ̃(t2)‖C(K)

)2
.

To get upper estimation for sup
t1,t2∈[ 2π(k−1)

n ; 2πkn ]
‖ϕ̃(t1)− ϕ̃(t2)‖C(K) let us consider the

stochastic process ϕ̃ = {ϕ̃(t), t ≥ 0} with values in C(K). Use the Kolmogorov theorem
about the sufficient condition for existence of Hölder continuous modification.

Lemma 1. For any m ∈ N there exists a constant cm > 0 such that

E‖ϕ̃(t1)− ϕ̃(t2)‖2mC(K) ≤ cm|t1 − t2|
m.

Proof. Let m = 1. Since K = {f ∈ L2[0; 2π] : f(0) = 0 and for any t1, t2 ∈ [0; 2π]

|f(t1)− f(t2)| ≤ |t1 − t2|}

then there exists a constant c > 0 such that for any f ∈ K
∞∑
k=1

(f, ek)2k2 ≤ c.

Thus,

‖ϕ̃(t1)− ϕ̃(t2)‖2C(K) ≤
(

sup
a:
∑∞
k=1 a

2
kk

2≤c

∞∑
k=1

ξk
k
akk(ek(t1)− ek(t2))

)2
≤

≤ c ·
∞∑
k=1

ξ2k
k2

(ek(t1)− ek(t2))2.

Since {ek}∞k=1 = { 1√
2π
, 1√

π
cos kt, 1√

π
sin kt}∞k=1 is an orthonormal basis in L2[0; 2π] there

exists a constant c1 > 0 for which

E‖ϕ̃(t1)− ϕ̃(t2)‖2C(K) ≤ c1|t1 − t2|.

By Corollary 3.2 [9], for any m > 1 there exists constant cm,2 > 0 such that

(E‖ϕ̃(t1)− ϕ̃(t2)‖2mC(K))
1

2m ≤ cm,2(E‖ϕ̃(t1)− ϕ̃(t2)‖2C(K))
1
2 .

Consequently, for any m > 1

E‖ϕ̃(t1)− ϕ̃(t2)‖2mC(K) ≤ cm|t1 − t2|
m

with some constant cm > 0. �
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Thus, by Lemma 1 and the Kolmogorov theorem, for any r ∈ (0;m − 1) there exists
γ > 0 for which

sup
t1,t2∈[ 2π(k−1)

n ; 2πkn ]

‖ϕ̃(t1)− ϕ̃(t2)‖C(K) ≤ γ|t1 − t2|
r

2m a.s.

By the latter inequality for any ε > 0

dn(A(K)) ≤ c̃
( 1

n

) 1
2−ε

a.s.

�

There exist compact sets such that behavior of their Kolmogorov widths under the
GSRO from Example 1 when n tends to infinity doesn’t change.

For the compact set K = {f ∈ H : (f, en)2 ≤ 1
n2 , n ≥ 1} the following statement

holds.

Lemma 2. Let A be the GSRO from Example 1. Then

dn(K) =
( +∞∑
k=n+1

1

k2

)1/2
and dn(A(K)) � 1√

n
a.s..

Proof. Let Ln := span{ek, k = 1, n}. Then one has

dn(K) ≤ sup
f∈K

inf
g∈Ln

‖f − g‖H =
( +∞∑
k=n+1

1

k2

)1/2
.

Assume that K1 = K and σ is a distribution of (η1, η2, . . .), where η1, η2, . . . are inde-
pendent random variables such that

ηn =

{
1
n ,

1
2

− 1
n ,

1
2

, n ≥ 1.

Then, by Theorem 1 from [10] one has

dn(K) ≥
( +∞∑
k=n+1

1

k2

)1/2
.

To get upper estimation for dn(A(K)) let us consider the set C0 that is countable and
dense in A(K)

C0 = ∪m≥1
{

(ξ1r1, . . . , ξmrm, 0, 0, . . .), rk ∈ Q, |rk| ≤
1

k2
}
.

Then

dn(A(K)) = dn(C0) ≤
( +∞∑
k=n+1

ξ2k
k2

)1/2
.

Since
∑+∞
k=n+1

ξ2k−1
k2 −→

n→∞
0 a.s. then there exists constant c1 > 0 for which

dn(A(K)) ≤ c1
1√
n

a.s.

To get lower estimation for dn(A(K)) let us use the theorem about the width of unit ball
[8].

Show that with probability 1 A(K) contains an n-dimensional ball with radius 1
2
√
n
.

Consider τ = min{k ≥ 1 : |ξk| ≥
√
n, . . . , |ξk+n| ≥

√
n}. Then for any m ∈ N

pm := P{τ = m} =
(

1−
( 2√

2π

∫ +∞

√
n

e−
x2

2 dx
)n)m−1( 2√

2π

∫ +∞

√
n

e−
x2

2 dx
)n
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and with probability pm A(K) contains the set

C := 0× . . .× 0︸ ︷︷ ︸
m−1

×
[
−
√
n

m
;

√
n

m

]
×
[
−
√
n

m+ 1
;

√
n

m+ 1

]
×. . .×

[
−
√
n

m+ n
;

√
n

m+ n

]
×0×0×. . .

C contains n-dimensional ball with radius
√
n

m+n . Thus, with probability pm

dn−1(A(K)) ≥
√
n

m+ n
.

Consequently, with probability
n∑

m=1

P{τ = m} = 1−
(

1−
( 2√

2π

∫ +∞

√
n

e−
x2

2 dx
)n)n

the following relation holds

dn (A (K)) ≥ 1

2
√
n
.

Since
∑∞
n=1

(
1−

(
2√
2π

∫ +∞√
n
e−

x2

2 dx
)n)n

converges, the Borel–Cantelli lemma gives

dn−1(A(K)) ≥ c2
1√
n

a.s.

Taking into account the lower estimation for dn(A(K)) one has

dn(A(K)) � 1√
n

a.s.

Consequently, for considered compact set K and GSRO A the widths dn(A(K)) and
dn(K) behave identically when n→∞. �
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