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V. A. KUZNETSOV

ON THE LARGE-DEVIATION PRINCIPLE FOR THE WINDING

ANGLE OF A BROWNIAN TRAJECTORY AROUND THE ORIGIN

In this article we analyse the possibility of obtaining the large-deviation principle for

the winding angle of a Brownian motion trajectory around the origin. We prove the
weak large-deviation principle and show that the full large-deviation principle cannot

hold with any rate function.

1. Introduction

The study of the winding angle of a planar Brownian motion has a long history.

F. Spitzer in 1958 proved [1] that 2Φ(t)
ln t

d−−−→
t→∞

ξ. Here Φ(t) is the angle that the 2-

dimensional Brownian motion started from non-zero point wound around the origin up
to time t, ξ is a random variable with the standard Cauchy distribution, that is, a
random variable with the distribution density p(x) = 1

π(1+x2) . More subtle asymptotics

describing the behaviour of the winding angle were obtained in works of Zhan Shi [2],
J. Bertoin and W. Werner [3]. For example, one of the results of [2] is that

lim
t→∞

ln ln ln t

ln t
sup

0≤u≤t
|Φ(u)| = π

4
a.s.

The asymptotical behaviour of mutual winding angles of several two-dimensional
Brownian motions is studied in [4] in connection with the behaviour of solar flames. This
problem was solved in the article [5]. In this article the following result was obtained.

Theorem 1.1 ( [5]). Let w1, . . . .wn be independent two-dimentional standard Brownian
motions starting from pairwise distinct points of a plane. Then for the winding angles
Φij(t) of the Brownian motion wi around the Brownian motion wj the following asymp-
totical relaton holds:(

2

ln t
Φij(t), 1 ≤ i < j ≤ n

)
d−−−→

t→∞
(Cij , 1 ≤ i < j ≤ n) .

Here Cij , 1 ≤ i < j ≤ n, are independent random variables with the standard Cauchy
distribution.

All the cited results deal with the asymptotics of winding angles as t → ∞. In this
article we study the asymptotical distribution of the winding angle process as t→ 0. We
consider the possibility of obtaining the large-deviation principle for the winding angle
of the Brownian motion. Let us remind the formulation of the large-deviation principle
(LDP).

Definition 1.1. Let X be a metric space, (ξε)ε>0 be a family of random elements in X,
I : X → [0,∞] be some lower semicontinuous function. For any subset A ⊆ X we denote
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I(A) = inf
x∈A

I(x). We say that the large-deviation principle (LDP) with rate function I

holds for the family (ξε)ε>0 if for any Borel set A ⊆ X the following inequalities hold:

−I(A◦) ≤ lim
ε→0

ε lnP (ξε ∈ A) ≤ lim
ε→0

ε lnP (ξε ∈ A) ≤ −I(A).

Here we denote by A◦ the interior of a set A and by A the closure of A.

Definition 1.2. Let X, (ξε)ε>0, I be as in Definition 1.1. We say that the weak large-
deviation principle (weak LDP) with rate function I holds for the family (ξε)ε>0 if for
any open set G ⊆ X and compact set K ⊆ X the following inequalities hold:

−I(G) ≤ lim
ε→0

ε lnP (ξε ∈ G),

lim
ε→0

ε lnP (ξε ∈ K) ≤ −I(K).

In the article we consider the asymptotics of the same expressions in the following
situation. Let X = C([0, 1]) with the uniform norm. Let us now define random elements
Φε with values in X.

To any continuous function f : [0, 1] → R2, 0 ≤ t ≤ 1 with f(0) =

(
1
0

)
, f(t) 6=

(
0
0

)
for all t ∈ [0, 1], we can put in correspondence a function Φ(f) ∈ C([0, 1]), that is a
continuous version of the winding angle of f around zero. So, we introduced a mapping

Φ:

{
f ∈ C([0, 1],R2) | f(0) =

(
1
0

)
,∀t ∈ [0, 1] f(t) 6=

(
0
0

)}
→ C([0, 1]).

Let w be a two-dimensional Wiener process starting from the point

(
1
0

)
. Denote by wε

the process of the form wε(t) = w(εt), t ∈ [0, 1] for ε > 0. Now we can consider the family
of the random elements Φε = Φ(wε) with values in C([0, 1]). Note that these random
elements are defined with probability 1, as for any ε the probability that wε hits the
origin is 0.

In this article we consider the following question: can we find such a function J that
for the family of random elements (Φε) the weak LDP or LDP with rate function J holds?
In Section 2 we show that the weak LDP holds for (Φε). In Section 3 we show that the
estimates of the LDP hold for the class of cylinder sets in C([0, 1]). However, the full
LDP for (Φε) does not hold, as we show in Section 4. In Section 5 we apply the method
used in the proof of mixed LDP [6] to obtaining the lower estimate on lim

ε→0
ε lnP (Φε ∈ G)

and upper estimate on lim
ε→0

ε lnP (Φε ∈ F ) for open sets G and closed sets F . The use

of this method is possible due to the representation of the two-dimensional Brownian
moton in a skew-product form [7]. That is, a two-dimensional Brownian motion w(t) can
be represented in the form w(t) = R(t)eiθ(t), where R(t) = ‖w(t)‖ is a Bessel process,

θ(t) is a Brownian motion with changed argument: θ(t) = β(Ut), where Ut =
t∫

0

ds
R2
s
, β is

a one-dimensional Brownian motion. Here the processes Rt and βt are independent.
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2. Weak LDP for the winding anglle

Denote by I(x) the rate function for two-dimensional Brownian motion starting from

the point

(
1
0

)
, that is,

I(x) =


1
2

1∫
0

‖x′(s)‖2ds, x(0) =

(
1

0

)
,

∞, x(0) 6=

(
1

0

)
.

We adopt the agreement that
1∫
0

‖x′(s)‖2ds = ∞, if x is not absolutely continuous. In

this section we prove the following theorem.

Theorem 2.1. For the random elements Φε ∈ C([0, 1]), the weak LDP with the rate

function J(φ) = I(Φ−1(φ)) holds.

Remark 2.1. Here and in what follows, we denote by Φ−1(A) the closure in C([0, 1],R2)

of the set Φ−1(A) = {x ∈ C([0, 1],R2) : x(0) =

(
1
0

)
,∀t ∈ [0, 1] ‖x(t)‖ > 0,Φ(x) ∈ A}.

We write Φ−1(φ) for Φ−1({φ}).

Note that while investigating the question of whether the LDP is valid for the fam-
ily (Φε), it would be natural to try to show that the LDP does hold with the help of
contraction principle [8]. Indeed, the random elements Φε are obtained from the ran-
dom elements wε with the help of the mapping Φ. But this mapping is not continuous
on C([0, 1],R2). Nevertheless, for some non-continuous mappings the LDP can be ob-
tained [8], [9]. For example, in the article [10] the LDP for the stopped Wiener process
was proved. More precisely, the random elements w(εt ∧ τ) are considered. Here w is
a d-dimensional Wiener process, τ = inf{t : w(t) ∈ B} ∧ 1, B ⊂ Rd is some closed set.
These random elements are obtained from the random elements wε with the help of the
mapping Ψ, where for f ∈ C([0, 1],Rd)

τ(f) = inf{t : f(t) ∈ B} ∧ 1; Ψ(f)(t) = f(t ∧ τ(f)), t ∈ [0, 1].

The proof of the upper estimate in [10] is based on the relation

I(Ψ−1(F )) = I(Ψ−1(F ))

for closed sets F . But in our case the analogous equality I(Φ−1(F )) = J(F ) is valid
not for all closed sets F . However, it holds for compact sets F ⊆ C([0, 1]), and this fact
allows to obtain a weak LDP for (Φε).

First we show that the function J is lower semicontinuous. We need the following
lemma.

Lemma 2.1. For any compact set K ⊆ C([0, 1]) we have

Φ−1(K) = {r(t)eiφ(t), 0 ≤ t ≤ 1 | φ ∈ K,φ(0) = 0, r ∈ C([0, 1]), r(0) = 1}.
That is, the closure of Φ−1(K) contains only functions of the form r(t)eiφ(t) with some
φ ∈ K.

Remark 2.2. This property does not hold for non-compact sets. For example, if

A = {φ ∈ C([0, 1]) : φ(0) = 0, φ(1) ≥ 1},
then it can be easily seen that the closure of Φ−1(A) contains the function z(t) = 1− t,
0 ≤ t ≤ 1, which does not have the form r(t)eiφ(t) for any φ ∈ A.
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Proof. Let x ∈ Φ−1(K). Then there exists a sequence xn → x0, xn ∈ Φ−1(K). Let
φn = Φ(xn). For any n, φn ∈ K. As K is compact, there exists a convergent subsequence
{φnk} with φnk → φ0 for some φ0 ∈ K. Let rn(t) = ‖xn(t)‖, r0(t) = ‖x0(t)‖. We have

rn → r0 in C([0, 1]). Thus, xnk(t) = rnk(t)eiφnk (t) −−−−→
k→∞

r0(t)eiφ0(t) for any t ∈ [0, 1]. As

the limit is unique, we get

∀ t ∈ [0, 1]x(t) = r0(t)eiφ0(t).

This proves the inclusion

Φ−1(K) ⊆ {r(t)eiφ(t), 0 ≤ t ≤ 1 | φ ∈ K,φ(0) = 0, r ∈ C([0, 1]), r(0) = 1}.
The inclusion

{r(t)eiφ(t), 0 ≤ t ≤ 1 | φ ∈ K,φ(0) = 0, r ∈ C([0, 1]), r(0) = 1} ⊆ Φ−1(K)

is obvious. �

Lemma 2.2. The function J(φ) = I(Φ−1(φ)) is lower semicontinuous on C([0, 1]).

Proof. We show that for any C the set {φ ∈ C([0, 1]) : J(φ) ≤ C} is closed.
Let φn ∈ C([0, 1]) be such that φn → φ0, and J(φn) ≤ C for all n ≥ 1. We prove that

J(φ0) ≤ C as well. Choose xn ∈ Φ−1(φn) with I(xn) ≤ J(φn) + 1
n . As I(xn) ≤ C + 1

for every n and the level sets of I are compact, we obtain that all xn belong to the
same compact K = {x : I(x) ≤ C + 1}. Thus, there exists a subsequence {xnk} with
xnk → x0 ∈ K. We have I(x0) ≤ lim

k→∞
I(xnk) ≤ C.

For each n ≥ 1 we have xn ∈ Φ−1(φn). Thus, by Lemma 2.1 applied to compact sets
{φn} we obtain xn(t) = ‖xn(t)‖eiφn(t) for all n. As xnk → x0 and φnk → φ0, we get

‖xnk(t)‖eiφnk (t) → ‖x0(t)‖eiφ0(t)(k →∞).

On the other hand,

‖xnk(t)‖eiφnk (t) = xnk(t)→ x0(t)(k →∞).

As the limit is unique, we get x0(t) = ‖x0(t)‖eiφ0(t) for any t ∈ [0, 1]. Thus, x0 ∈ Φ−1(φ0),
and J(φ0) ≤ I(x0) ≤ C. �

Now we prove the upper estimate in the weak LDP for Φε.

Proposition 2.1. For any compact set K ⊆ C([0, 1]) the following holds:

lim
ε→0

ε lnP (Φε ∈ K) ≤ −J(K).

Proof. We have from the LDP for Brownian motion:

lim
ε→0

ε lnP (Φε ∈ K) = lim
ε→0

ε lnP (wε ∈ Φ−1(K)) ≤ −I(Φ−1(K)).

By Lemma 2.1, we have

Φ−1(K) =
⋃
φ∈K

Φ−1(φ).

Thus, I(Φ−1(K)) = inf
φ∈K

I(Φ−1(φ)) = inf
φ∈K

J(φ) = J(K). So, we get

lim
ε→0

ε lnP (Φε ∈ K) ≤ −I(Φ−1(K)) = −J(K).

�

We proceed to the proof of the lower estimate in LDP. We need the following lemma.

Lemma 2.3. For any open set G ⊆ C([0, 1]) we have

J(G) = I(Φ−1(G)).
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Proof. It is clear that J(G) = inf
φ∈G

I(Φ−1(φ)) ≤ inf
φ∈G

I(Φ−1(φ)) = I(Φ−1(G)). Let us

prove the opposite inequality, that is,

I(Φ−1(G)) ≤ J(G) = I

(⋃
φ∈G

Φ−1(φ)

)
.

Take any x0 ∈ Φ−1(φ0) for some φ0 ∈ G. We need to prove that I(Φ−1(G)) ≤ I(x0).
First, consider the case when x0 does not pass through the origin:

∀t ∈ [0, 1] ‖x0(t)‖ 6= 0.

We show that in this case x0 ∈ Φ−1(G), and so the desired inequality holds. Indeed, by
Lemma 2.1 applied to the compact set {φ0}, x0 has the form x0(t) = ‖x0(t)‖eiφ0(t). As
x0 does not pass through the origin, we get Φ(x0) = φ0. Thus, x0 ∈ Φ−1(φ) ⊆ Φ−1(G).

Now, consider the case x0(t0) =

(
0
0

)
for some t0 ∈ [0, 1]. Denote

τ = inf{t ∈ [0, 1] : ‖x0(t)‖ = 0}, τδ = inf{t ∈ [0, 1] : ‖x0(t)‖ = δ}, δ ∈ (0, 1).

Fix ε > 0 with Bε(φ0) ⊆ G. Choose any function ψ ∈ Bε/2(φ0) with the property

1∫
0

ψ′(s)2ds < +∞.

Define for all δ > 0 functions xδ ∈ C([0, 1],R2) in such a way:

xδ(t) =


x0(t), 0 ≤ t ≤ τδ,
x0(τδ), τδ ≤ t ≤ τ,
δei(ψ(t)−ψ(τ)+φ0(τδ)), t ≥ τ.

It is easily seen that xδ ∈ Φ−1(G) for all δ small enough, and

I(xδ) =
1

2

τδ∫
0

‖x′0(s)‖2ds+
δ2

2

1∫
τ

ψ′(s)2ds.

Thus, as
1∫
0

ψ′(s)2ds < +∞, we get lim
δ→0

δ2
1∫
τ

ψ′(s)2ds = 0. We also have

I(x0) ≥ 1

2

τδ∫
0

‖x′0(s)‖2ds

for all δ > 0. Therefore, I(Φ−1(G)) ≤ lim
δ→0

I(xδ) ≤ I(x0). �

Now we are ready to prove the lower estimate.

Proposition 2.2. For any open set G ⊆ C([0, 1]) the following holds:

lim
ε→0

ε lnP (Φε ∈ G) ≥ −J(G).

Proof. Denote for any a ∈ R2, x ∈ C([0, 1],R2)

(Tax)(t) = x(t) + a, t ∈ [0, 1].

Then Tax ∈ C([0, 1],R2). Set for A ⊆ C([0, 1],R2)

Ta(A) = {Tax | x ∈ A}, T (A) =
⋃
a∈R2

Ta(A).
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For any open G ⊆ C([0, 1]) the set T (Φ−1(G)) is open in C([0, 1],R2), and

I(Φ−1(G)) = I(T (Φ−1(G))).

(Note that Φ−1(G) is not open in C([0, 1],R2), as x(0) =

(
1
0

)
for any x ∈ Φ−1(G)).

Thus, we have by the LDP for Wiener process and Lemma 2.3:

lim
ε→0

ε lnP (Φε ∈ G) = lim
ε→0

ε lnP (wε ∈ Φ−1(G)) =

= lim
ε→0

ε lnP (wε ∈ T (Φ−1(G))) ≥ −I(T (Φ−1(G))) = −I(Φ−1(G)) = −J(G).

�

From Propositions 2.1 and 2.2 we obtain Theorem 2.1.

3. LDP for cylinder sets

In this section we prove the upper estimate of the LDP for cylinder sets in C([0, 1]).
As we will see in Section 4, the full LDP does not hold for (Φε).

Theorem 3.1. Let B ⊆ Rm be a closed set, 0 < t1 < . . . < tm ≤ 1,

A = {φ ∈ C([0, 1]) : (φ(t1), . . . , φ(tm)) ∈ B}.
Then the following estimation holds:

lim
ε→0

ε lnP (Φε ∈ A) ≤ −J(A).

Remark 3.1. The lower estimate of the LDP for all open sets G ⊂ C([0, 1]) was obtained
in Section 2.

For the proof we need several lemmas.

Lemma 3.1. Let A ⊆ C([0, 1]) be closed, x0 ∈ Φ−1(A). If ‖x0(t)‖ > 0 for any t ∈ [0, 1]
(that is, if x0 does not pass through the origin), then x0 ∈ Φ−1(A).

Proof. Choose xn ∈ Φ−1(A) with xn → x0. As Φ is continuous at x0, we have

Φ(xn)→ Φ(x0).

As A is closed, we get Φ(x0) ∈ A, and thus x0 ∈ Φ−1(A). �

Lemma 3.2. Let A ⊆ C([0, 1]), x0 ∈ Φ−1(A). Let τ = inf{t ∈ [0, 1] : ‖x0(t)‖ = 0} ∧ 1,

y0(t) = x0(t ∧ τ). Then y0 ∈ Φ−1(A).

Proof. It is sufficient to consider only the case when x0 passes through the origin. Choose
xn ∈ Φ−1(A) with xn → x0. Set τδ = inf{t : ‖x0(t)‖ = δ} for 0 < δ < 1. Let

ynδ (t) =

{
xn(t), t ≤ τδ,
‖xn(τδ)‖
‖xn(t)‖ xn(t), t ≥ τδ.

Then Φ(ynδ ) = Φ(xn) ∈ A, yn1/n → y0 (n→∞) in C([0, 1],R2). Thus, y0 ∈ Φ−1(A). �

Lemma 3.3. Let t1 < t2 be real numbers, φ : [t1, t2] → R be a continuous function

with
t2∫
t1

φ′(s)2ds < +∞, h : [t1, t2] → R be a positive continuous function, {αn}∞n=1 and

{βn}∞n=1 be two sequences of real numbers with αn → 0, βn → 0. Then there exists a

sequence of functions ψn ∈ C([t1, t2]) with
t2∫
t1

ψ′n(s)2ds < +∞ that satisfies the following

conditions:

• ψn(t1) = φ(t1) + αn for every n;
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• ψn(t2) = φ(t2) + βn for every n;

•
t2∫
t1

h(s)ψ′n(s)2ds→
t2∫
t1

h(s)φ′(s)2ds.

Proof. Set ln(t) = αn + βn−αn
t2−t1 (t− t1), ψn(t) = φ(t) + ln(t). We have

t2∫
t1

h(s)ψ′n(s)2ds−
t2∫
t1

h(s)φ′(s)2ds =

t2∫
t1

h(s)l′n(s)2ds+ 2

t2∫
t1

h(s)φ′(s)l′n(s)ds =

=

(
βn − αn
t2 − t1

)2
t2∫
t1

h(s)ds+ 2

(
βn − αn
t2 − t1

) t2∫
t1

h(s)φ′(s)ds→ 0 (n→∞).

�

Lemma 3.4. Let B ⊆ Rm be a closed set, 0 < t1 < . . . < tm ≤ 1,

A = {φ ∈ C([0, 1]) : φ(0) = 0, (φ(t1), . . . , φ(tm)) ∈ B}.
Then

I(Φ−1(A)) = I(Φ−1(A)) = J(A).

Proof. As I(Φ−1(A)) ≤ J(A) ≤ I(Φ−1(A)), we need to prove only

I(Φ−1(A)) ≤ I(Φ−1(A)).

Take any x0 ∈ Φ−1(A). We will show that I(Φ−1(A)) ≤ I(x0).
Without loss of generality, we consider tm = 1 everywhere in the proof. First consider

the case when x0 does not pass through the origin. By Lemma 3.1, we get x0 ∈ Φ−1(A),
and thus I(Φ−1(A)) ≤ I(x0).

Now, we assume that x0 passes through the origin. Denote

τ = inf{t ∈ [0, 1] : ‖x(t)‖ = 0}.

By Lemma 3.2, we may consider x0(t) =

(
0
0

)
for t ≥ τ. Set t0 = 0. Let k, 1 ≤ k ≤ m be

such that τ ∈ (tk−1, tk]. We have then

x0(t0) =

(
1
0

)
6=
(

0
0

)
, x0(t1) 6=

(
0
0

)
, . . . , x0(tk−1) 6=

(
0
0

)
, x0(tk) =

(
0
0

)
.

Choose a sequence xn → x0 with xn ∈ Φ−1(A) for each n. Denote φn = Φ(xn). Let
φ(t) be a winding angle of x0(t) defined on [0, τ). We have φn(ti) → φ(ti), n → ∞ for
i = 1, . . . , k − 1.

Fix any α > 1. Choose functions ψn,i : [ti−1, ti] → R for i = 1, . . . , k − 1 with the
properties

• ψn,i(ti−1) = φn(ti−1);
• ψn,i(ti) = φn(ti);

•
ti∫

ti−1

‖x0(s)‖2ψ′n,i(s)2ds→
ti∫

ti−1

‖x0(s)‖2φ′(s)2ds (n→∞).

Such functions exist by Lemma 3.3.
We put

ψn(t) =


ψn,i(t), ti−1 ≤ t ≤ ti, i = 1, . . . , k − 1,

φn(tk−1), tk−1 ≤ t ≤ tk−1 + tk−tk−1

α ,

φn(ti), i = k, k + 1, . . . ,m,

linear on each closed interval [tk−1 + tk−tk−1

α , tk], [tk, tk+1], . . . , [tm−1, tm].
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As ψn is piecewise linear on [tk−1 + tk−tk−1

α , 1], we can choose δn > 0 with

δ2
n

1∫
tk−1+

tk−tk−1
α

ψ′n(s)2ds <
1

2n

and

τn = inf{t : ‖x0(t)‖ = δn} > tk−1.

Let

ρn(t) =


‖x0(t)‖, 0 ≤ t ≤ tk−1,

‖x0(tk−1 + α(t− tk−1))‖, 0 ≤ t ≤ tk−1 + τn−tk−1

α ,

δn, t ≥ tk−1 + τn−tk−1

α .

Set yn(t) = ρn(t)eiψn(t), t ∈ [0, 1]. We get

2I(yn) =

k−1∑
i=1

 ti∫
ti−1

(
d

ds
‖x0(s)‖

)2

ds+

ti∫
ti−1

‖x0(s)‖2ψ′n,i(s)2ds

+

+ α2

τn∫
tk−1

(
d

ds
‖x0(s)‖

)2

ds+ δ2
n

1∫
tk−1+

tk−tk−1
α

ψ′n(s)2ds ≤

≤
k−1∑
i=1

 ti∫
ti−1

(
d

ds
‖x0(s)‖

)2

ds+

ti∫
ti−1

‖x0(s)‖2ψ′n,i(s)2ds

+

+ α2

1∫
tk−1

‖x′0(s)‖2ds+
1

2n
−−−−→
n→∞

−−−−→
n→∞

k−1∑
i=1

 ti∫
ti−1

(
d

ds
‖x0(s)‖

)2

ds+

ti∫
ti−1

‖x0(s)‖2φ′(s)2ds

+ α2

1∫
tk−1

‖x′0(s)‖2ds ≤

≤ α2

1∫
0

‖x′0(s)‖2ds = 2α2I(x0).

We obtain therefore

lim
n→∞

I(yn) ≤ α2I(x0).

As Φ(yn) ∈ A for each n, we get I(Φ−1(A)) ≤ lim
n→∞

I(yn), and thus

I(Φ−1(A)) ≤ α2I(x0).

As α > 1 is arbitrary, we get

I(Φ−1(A)) ≤ I(x0).

�

Now we prove Theorem 3.1.

Proof. From the LDP for Brownian motion we have

lim
ε→0

ε lnP (Φε ∈ A) ≤ −I(Φ−1(A)).
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By Lemma 3.4 we have J(A) = I(Φ−1(A)). Thus,

lim
ε→0

ε lnP (Φε ∈ A) ≤ −J(A).

�

4. The abscence of the large-deviation principle for the family (Φε)

Let us show that the LDP for the family (Φε)ε>0 cannot hold. First we prove that
the LDP with the rate function J(φ) = inf

x∈Φ−1(φ)
I(x), where

I(x) =


1
2

1∫
0

‖x′(s)‖2ds, x(0) =

(
1

0

)
,

∞, x(0) 6=

(
1

0

)
,

is not satisfied.

Proposition 4.1. There exists such a closed set A ⊆ C([0, 1]) that the following condi-
tions hold:

• lim
ε→0

ε lnP (Φε ∈ A) ≥ − 1
2 ;

• for some C > 1
2 : I(Φ−1(A)) ≥ C, and for any φ ∈ A

I(Φ−1(φ)) ≥ C.

The proof of this propositon is based on the following lemma.

Lemma 4.1. For any α > π
2 , with probability 1 the following relation holds:

lim
ε→0

ε lnP (Φε(1) ≥ α) = −1

2
.

Proof. We fix some α > π
2 . We have to prove the following:

−1

2
≤ lim
ε→0

ε lnP (Φε(1) ≥ α) ≤ lim
ε→0

ε lnP (Φε(1) ≥ α) ≤ −1

2
.

First we make the estimate from above. We have{
x =

(
x(1)

x(2)

)
∈ C([0, 1],R2) : x(0) =

(
1
0

)
,Φ(x)(1) ≥ α

}
⊆

⊆
{
x : Φ(x)(1) ≥ π

2

}
⊆ {x : x(1)(1) ≤ 0}.

So,

lim
ε→0

ε lnP (Φε(1) ≥ α) ≤ lim
ε→0

ε lnP (w(1)
ε (1) ≤ 0) = −1

2
.

Here w =

(
w(1)

w(2)

)
is a two-dimensional Wiener process starting from the point

(
1
0

)
,

w
(1)
ε (t) = w(1)(εt), t ∈ [0, 1]. Now we make the lower estimate. For any δ ∈ (0, 1) we

denote βδ = 2α
δ and consider the trajectory

(
xδ(t)
yδ(t)

)
∈ C([0, 1],R2), defined by relations

xδ(t) + iyδ(t) = zδ(t), zδ(t) =

{
1− t, 0 ≤ t ≤ 1− δ;
δeiβδ(t−(1−δ)), 1− δ ≤ t ≤ 1.

It can be easily seen that

I(zδ) =
1

2
(1− δ + β2

δ δ
3) =

1

2
(1− δ + 4α2δ)→ 1

2
(δ → 0).
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LetG =

{
x ∈ C([0, 1],R2) : x(0) =

(
1
0

)
,∀t ∈ [0, t] ‖x(t)‖ > 0,Φ(x)(1) > α

}
.We have

then zδ ∈ G, and

lim
ε→0

ε lnP (Φε(1) ≥ α) ≥ lim
ε→0

ε lnP (w ∈ G) ≥ −I(G) ≥ −I(zδ).

Using I(zδ)→ 1
2 (δ → 0), we get lim

ε→0
ε lnP (Φε(1) ≥ α) ≥ − 1

2 . �

Now we prove the Proposition 4.1.

Proof. We divide our proof into 3 parts. In the first part we construct the set A. In the
second part we prove that the set A is closed. In the third part we find such C > 1

2 that
the second condition of the proposition is satisfied.

(1) Let a ∈ (0, π2 ) be some positive number such that sin x
x > 3

4 for 0 < x < a. We
fix an increasing sequence αk → ∞ (k → ∞), such that αk >

π
2 for any k, and

a decreasing sequence εk → 0 (k → ∞). We also need a decreasing sequence

tk → 0 (k → ∞) with 0 < tk <
a2

2 for each k, which will be built later. Set

A =
∞⋃
k=1

Ak, where Ak are defined as

Ak =

{
φ ∈ C([0, 1]) : φ(0) = 0, φ(1) ≥ αk, sup

t∈[tk,tk−1]

φ(t)√
2t
≥ 1

}
.

Now we specify the sequence tk. We choose tk inductively in the following way.

Set t0 = a2

4 . Having constructed tk−1 for some k ≥ 1, choose n = n(k) ≥ k such
that

εn lnP (Φεn(1) ≥ αk) > −1

2
− 1

2k
.

This choice is possible due to Lemma 4.1. Now find tk, 0 < tk < tk−1, in such a
way that

P (Φεn ∈ Ak) >
1

2
P (Φεn(1) ≥ αk).

This can be done, as

lim
u→0

P

(
sup

t∈[u,tk−1]

Φεn(t)√
2t
≥ 1

)
= 1,

which follows easily from the law of the iterated logarithm.
So, we provided an algorithm to construct sets Ak. Now we have

εn(k) lnP (Φεn(k)
∈ A) ≥ εn(k) lnP

(
Φεn(k)

∈ Ak
)
≥

≥εn(k) ln

(
1

2
P (Φεn(k)

(1) ≥ αk)

)
> −εn(k) ln 2− 1

2
− 1

2k
.

From here we get lim
k→∞

εn(k) lnP (Φεn(k)
∈ A) ≥ − 1

2 .

(2) We show that the set A is closed. Let the sequence {φn}∞n=1 be such that for
any n: φn ∈ A, and φn → φ(n → ∞). Let us show that φ ∈ A as well. As

A =
∞⋃
k=1

Ak, then for any n there exists a number k(n) such that φn ∈ Ak(n). As

φn(1) → φ(1)(n → ∞), then the sequence {φn(1)} is bounded, and so the set
{k(n)} is bounded. Therefore, there exists k0 such that φn ∈ Ak0 for infinitely
many indices n. It can be easily seen that all sets Ak are closed, and thus
φ ∈ Ak0 ⊆ A.
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(3) Now we check the second condition of the proposition. Let us estimate I(Φ−1(φ))

for any φ ∈ A. Choose any z ∈ Φ−1(φ). Since sup
t∈[tk,tk−1]

φ(t)√
2t
≥ 1 for some k, there

exists h ∈ [tk, tk−1] such that φ(h) ≥
√

2h. Thus, the trajectory z has to cross

the line l defined by the equation y = x tan
√

2h before the moment h, and the
same property obviously holds for any z ∈ Φ−1(φ). As the distance from the

point z(0) =

(
1
0

)
to the line l is equal to sin

√
2h, and h < a2

2 , then

I(x) ≥ 1

2

h∫
0

|x′(u)|2du ≥ (sin
√

2h)2

2h
=

(
sin
√

2h√
2h

)2

>

(
3

4

)2

=
9

16
.

Thus, for any φ ∈ A I(Φ−1(φ)) ≥ 9
16 . The same considerations show that

I(Φ−1(A)) ≥ 9
16 . So, the second condition of the proposition is satisfied with

C = 9
16 .

�

Now we show that the family of random elements (Φε) can not satisfy LDP with any

rate function Ĩ. For this we need several lemmas. We denote

I(x) =
1

2

1∫
0

‖x′(u)‖2du.

Lemma 4.2. For any φ ∈ C([0, 1]) the following equality holds:⋂
δ>0

Φ−1(Bδ(φ)) = Φ−1(φ).

Proof. If x ∈ Φ−1(Bδ(φ)) for all δ > 0, then Φ(x) ∈ Bδ(φ) for any δ > 0. This means
that Φ(x) = φ. �

Lemma 4.3. For any φ ∈ C([0, 1]) such that φ(0) = 0 the following holds:⋂
δ>0

Φ−1(Bδ(φ)) = Φ−1(φ).

Proof. Let x0 ∈
⋂
δ>0

Φ−1(Bδ(φ)). Then for any δ > 0 there exists xδ ∈ Φ−1(Bδ(φ)) such

that ‖xδ − x0‖ < δ. Therefore, xδ −−−→
δ→0

x0.

Now we choose yδ in such a way that yδ ∈ Φ−1(φ) and yδ → x0 (δ → 0).
Let xδ(t) = rδ(t)e

iφδ(t). Set yδ(t) = rδ(t)e
iφ(t). We show that ‖yδ − xδ‖ → 0 (δ → 0).

For any t ∈ [0, 1]:

‖yδ(t)− xδ(t)‖ = rδ(t)|eiφ(t) − eiφδ(t)| ≤ rδ(t)|φ(t)− φδ(t)|.
Thus, ‖yδ − xδ‖ ≤ |rδ| · ‖φ − φδ‖ → 0 (δ → 0). Now we have xδ → x0, ‖yδ − xδ‖ → 0.

Therefore, yδ → x0(δ → 0). As Φ(yδ) = φ, then yδ ∈ Φ−1(φ). So, x0 ∈ Φ−1(φ). �

Lemma 4.4. If I(Φ−1(φ)) < +∞, then I(Φ−1(Bδ(φ))) −−−→
δ→0

I(Φ−1(φ)).

Proof. We show that for any sequence δn → 0, δn > 0 the following holds:

I(Φ−1(Bδn(φ)) −−−−→
n→∞

I(Φ−1(φ)).

As I(Φ−1(Bδn(φ)) ≤ I(Φ−1(φ)), then all we need to show is that for any ε > 0 the
inequality

I(Φ−1(Bδn(φ))) ≤ I(Φ−1(φ))− 2ε
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can not hold for all n.
Suppose the opposite, that for some ε > 0 we have for all n:

I(Φ−1(Bδn(φ))) ≤ I(Φ−1(φ))− 2ε.

Then for any n we can find xn ∈ Φ−1(Bδn(φ)) such that I(xn) ≤ I(Φ−1(φ))− ε.
But I(Φ−1(φ)) < +∞ by the condition of lemma. Thus, I(xn) ≤ I(Φ−1(φ))−ε < +∞

for all n.
The set K = {x : I(x) ≤ I(Φ−1(φ)) − ε} is compact. Therefore, all xn are in one

compact K. Thus, there exists a convergent subsequence {xnk}∞k=1 of the sequence {xn}.
Let xnk → x0(k → ∞). As x0 is in the same compact K, then I(x0) ≤ I(Φ−1(φ)) − ε.
On the other hand, x0 ∈

⋂
k

Φ−1(Bδnk (φ)) = Φ−1(φ).

So, x0 ∈ Φ−1(φ) and I(x0) ≤ I(Φ−1(φ))− ε. We got a contradiction. �

Lemma 4.5. If I(Φ−1(φ)) = +∞, then I(Φ−1(Bδ(φ))) −−−→
δ→0

+∞.

Proof. It is clear that I(Φ−1(Bδ(φ))) does not decrease as δ → 0. Therefore, there exists

a finite or infinite limit lim
δ→0

I(Φ−1(Bδ(φ))). Suppose that this limit is finite:

lim
δ→0

I(Φ−1(Bδ(φ))) = A < +∞.

Then for any sufficiently small δ > 0 there exists xδ ∈ Φ−1(Bδ(φ)) with I(xδ) ≤ A+1.
As the level sets of I are compact, we get, as in proof of Lemma 4.4, that xδn → x0 for
some sequence {δn}∞n=1, δn → 0 (n→∞). Therefore, we have

• I(x0) ≤ A+ 1;

• x0 ∈
⋂
n

Φ−1(Bδn(φ)) = Φ−1(φ).

Thus, I(Φ−1(φ)) ≤ I(x0) ≤ A+ 1 < +∞. This is a contradiction. �

Lemma 4.6. For any φ ∈ C([0, 1]) the following convergence holds:

I(Φ−1(Bδ(φ))) −−−→
δ→0

I(Φ−1(φ)).

This lemma is a consequence of Lemmas 4.4 and 4.5.

Lemma 4.7. If for the random elements (Φε) the large-deviation principle with a rate

function Ĩ holds, then for any φ ∈ C([0, 1]), φ(0) = 0, the following inequality holds:

Ĩ(φ) ≥ I(Φ−1(φ)) = inf
x∈Φ−1(φ)

1

2

1∫
0

‖x′(u)‖2du.

Proof. With the help of the supposed LDP for (Φε) and LDP for (wε) we have:

− Ĩ(Bδ(φ)) ≤ lim
ε→0

ε lnP (Φε ∈ Bδ(φ)) = lim
ε→0

ε lnP (Φ(wε) ∈ Bδ(φ)) =

= lim
ε→0

ε lnP (wε ∈ Φ−1(Bδ(φ))) ≤ −I(Φ−1(Bδ(φ))).

From here we get I(Φ−1(Bδ(φ))) ≤ Ĩ(Bδ(φ)). But Ĩ(Bδ(φ)) ≤ Ĩ(φ). So, we get

I(Φ−1(Bδ(φ))) ≤ Ĩ(φ).

Tending δ → 0 and using Lemma 4.6, we get I(Φ−1(φ)) ≤ Ĩ(φ). �

Theorem 4.1. The large-deviation principle with any rate function Ĩ cannot hold for
the family (Φε).
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Proof. We consider the set A =
∞⋃
k=1

Ak from Proposition 4.1. By Lemma 4.7, we get

∀φ ∈ A Ĩ(φ) ≥ I(Φ−1(φ)).

On the other hand, by Proposition 4.1, for any φ ∈ A

I(Φ−1(φ)) ≥ C.

Thus, Ĩ(A) ≥ C > 1
2 . But this contradicts the inequality

lim
ε→0

ε lnP (Φε ∈ A) ≥ −1

2
.

�

5. Exponential estimates on winding angles

Despite of the abscence of the LDP for the family of random elements (Φε), the
exponential estimates on the behaviour of the probabilities P (Φε ∈ A), while ε → 0,
still can be found. One of the methods to obtain such estimates is to apply the LDP
for the Wiener process to probabilities P (wε ∈ Φ−1(A)). Here we use another approach
based on the representation of the winding angle of the Wiener process w in the form

Φ(t) = β

(
t∫

0

ds
‖w(s)‖2

)
. This approach is analogous to the mixed large-deviation principle

from [6]. But in our case the estimates obtained in such a way coincide with the estimates
obtained with the help of the first approach.

In this section we use the following notation:

• w is a two-dimensional Wiener process, w(0) =

(
1
0

)
;

• wε(t) = w(εt), t ∈ [0, 1];
• β is an idependent from w one-dimensional Wiener process, β(0) = 0;
• βε(t) = β(εt), t ∈ [0,∞);

• B =

{
x ∈ C([0, 1],R2) : x(0) =

(
1
0

)
,∀t ∈ [0, 1] ‖x(t)‖ > 0

}
;

• D = {r ∈ C([0, 1]) : r(0) = 1,∀t ∈ [0, 1] r(t) > 0}.

From the relation Φε
d
= βε

( ·∫
0

ds
‖wε(s)‖2

)
it follows that the study of the asympotical

behaviour of the distributions of the random elements Φε is equivalent to the study of

random elements βε

( ·∫
0

ds
‖wε(s)‖2

)
.

We will need several technical lemmas.

Lemma 5.1. Let A ⊆ C([0, T ]) be a measurable set, x0 ∈ C([0, T ],R2) be some function

satisfying the conditions x0(0) =

(
1
0

)
, ‖x0(t)‖ > 0 for all t ∈ [0, 1]. Then the following

estimation takes place:

− 1

2
inf

φ∈A◦,φ(0)=0

T∫
0

‖x0(u)‖2φ′(u)2du ≤ lim
ε→0

ε lnP

βε
 ·∫

0

ds

‖x0(s)‖2

 ∈ A
 ≤

≤ lim
ε→0

ε lnP

βε
 ·∫

0

ds

‖x0(s)‖2

 ∈ A
 ≤ −1

2
inf

φ∈A,φ(0)=0

T∫
0

‖x0(u)‖2φ′(u)2du.
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Proof. Let h(t) =
t∫

0

ds
‖x0(s)‖2 , t ∈ [0, T ]; B = {φ ◦ h−1 | φ ∈ A}.

Then we have

P

βε
 ·∫

0

ds

‖x0(s)‖2

 ∈ A
 = P (βε(h(·)) ∈ A) = P (βε|[0,h(T )] ∈ B).

By the LDP for Wiener process, we get

− 1

2
inf

ψ∈B◦,ψ(0)=0

h(T )∫
0

ψ′(u)2du ≤ lim
ε→0

ε lnP (βε|[0,h(T )] ∈ B) ≤

≤ lim
ε→0

ε lnP (βε|[0,h(T )] ∈ B) ≤ −1

2
inf

ψ∈B,ψ(0)=0

h(T )∫
0

ψ′(u)2du.

Now the use of the change of variables formula gives the needed estimation. �

Lemma 5.2. Let x0 ∈ C([0, T0], R2) be a function such that

x0(0) =

(
1
0

)
, ∀t ∈ [0, T0] ‖x0(t)‖ > 0.

Then for any L > 0, µ > 0 there exists a neighborhood Uη(x0), η = η(L) > 0, such that

lim
ε→0

ε lnP

∃x ∈ Uη(x0)∃t ∈ [0, T0] :

∣∣∣∣∣∣βε
 t∫

0

ds

‖x(s)‖2

− βε
 t∫

0

ds

‖x0(s)‖2

∣∣∣∣∣∣ > µ

 < −L.

Proof. We choose h in such a way that µ2

2h > L. Find a neighbourhood Uη(x0) such that
the following condition holds:

∀x ∈ Uη(x0)∀t ∈ [0, T0]

∣∣∣∣∣∣
t∫

0

ds

‖x(s)‖2
−

t∫
0

ds

‖x0(s)‖2

∣∣∣∣∣∣ < h.

Let T = sup
x∈Uη(x0)

T0∫
0

ds
‖x(s)‖2 . Then

P

∃x ∈ Uη(x0)∃t ∈ [0, T0] :

∣∣∣∣∣∣βε
 t∫

0

ds

‖x(s)‖2

− βε
 t∫

0

ds

‖x0(s)‖2

∣∣∣∣∣∣ > µ

 ≤
≤ P (∃s1, s2 ∈ [0, T ] : |s1 − s2| ≤ h, |βε(s1)− βε(s2)| ≥ µ) .

Put

F = {φ ∈ C([0, T0]) | φ(0) = 0,∃ s, t ∈ [0, T ] : 0 < t− s ≤ h, |φ(t)− φ(s)| ≥ µ} .

It can be easily seen that the set F is closed. But for any function ψ ∈ F the following
holds:

T0∫
0

|ψ′(u)|2du ≥
t∫
s

|ψ′(u)|2du ≥ |ψ(t)− ψ(s)|2

t− s
≥ µ2

h
.
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Therefore, I(F ) ≥ µ2

2h . Thus,

lim
ε→0

ε lnP

∃x ∈ Uη(x0)∃t ∈ [0, T0] :

∣∣∣∣∣∣βε
 t∫

0

ds

‖x(s)‖2

− βε
 t∫

0

ds

‖x0(s)‖2

∣∣∣∣∣∣ > µ

 ≤
≤ lim
ε→0

ε lnP (βε ∈ F ) ≤ −µ
2

2h
< −L.

�

Let us now obtain the lower estimate on the probabilities for the random elements Φε
to lie in an open set G.

Theorem 5.1. Let G ⊆ C[0, 1] be an open set. Then

lim
ε→0

ε lnP (Φε ∈ G) ≥ −1

2
inf

x∈B,φ∈G,φ(0)=0

1∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du.

Proof. We will use the relation that follows from the mentioned in the end of Section 1
representation of the two-dimensional Brownian motion in a skew-product form:

Φε
d
= βε

(∫ ·
0

ds

‖wε(s)‖2

)
.

Consider any function x0 ∈ B. Choose any φ0 ∈ G and any open ball Uδ(φ0) ⊆ G.
Fix L > 0. Choose a neighbourhood Uη(x0) in such a way that

(1) lim
ε→0

ε lnP

 sup
t∈[0,1]

x∈Uη(x0)

∣∣∣∣∣∣βε
 t∫

0

ds

‖x(s)‖2

− βε
 t∫

0

ds

‖x0(s)‖2

∣∣∣∣∣∣ > δ

2

 < −L.

This can be done by Lemma 5.2. We have

(2) P

(
βε

(∫ ·
0

ds

‖wε(s)‖2

)
∈ G

)
≥

≥ P

βε
 ·∫

0

ds

‖x0(s)‖2

 ∈ U δ
2
(φ0),

sup
t∈[0,1]

x∈Uη(x0)

∣∣∣∣∣∣βε
 t∫

0

ds

‖x(s)‖2

− βε
 t∫

0

ds

‖x0(s)‖2

∣∣∣∣∣∣ < δ

2
, wε ∈ Uη(x0)

 ≥
≥ P

βε
 ·∫

0

ds

‖x0(s)‖2

 ∈ U δ
2
(φ0), wε ∈ Uη(x0)

−
− P

 sup
t∈[0,1]

x∈Uη(x0)

∣∣∣∣∣∣βε
 t∫

0

ds

‖x(s)‖2

− βε
 t∫

0

ds

‖x0(s)‖2

∣∣∣∣∣∣ > δ

2

 .

As βε and wε are independent, we get
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(3) lim
ε→0

ε lnP

βε
 t∫

0

ds

‖x0(s)‖2

 ∈ U δ
2
(φ0), wε ∈ Uη(x0)

 ≥
≥ lim
ε→0

ε lnP

βε
 t∫

0

ds

‖x0(s)‖2

 ∈ U δ
2
(φ0)

+ lim
ε→0

ε lnP (wε ∈ Uη(x0)).

By Lemma 5.1, we get
(4)

lim
ε→0

ε lnP

βε
 t∫

0

ds

‖x0(s)‖2

 ∈ U δ
2
(φ0)

 ≥ −1

2
inf

φ∈U δ
2

(φ0),φ(0)=0

1∫
0

‖x0(u)‖2φ′(u)2du.

By the LDP for Brownian motion, we have

(5) lim
ε→0

ε lnP (wε ∈ Uη(x0)) ≥ −I(Uη(x0)) ≥ −I(x0) = −1

2

1∫
0

‖x′0(u)‖2du.

Define the function αL by

αL(s) =

{
s, s > −L;

−∞, s ≤ −L.
From (1), (2), (3), (4) and (5) we get

lim
ε→0

ε lnP

(
βε

(∫ ·
0

ds

‖wε(s)‖2

)
∈ G

)
≥

≥ αL

−1

2
inf

φ∈U δ
2

(φ0),φ(0)=0

1∫
0

‖x0(u)‖2φ′(u)2du− 1

2

1∫
0

‖x′0(u)‖2du

 .

As x0 ∈ B and φ0 ∈ G are arbitrary, then

lim
ε→0

ε lnP

(
βε

(∫ ·
0

ds

‖wε(s)‖2

)
∈ G

)
≥

≥ αL

(
−1

2
inf

x∈B,φ∈G,φ(0)=0

( 1∫
0

‖x(u)‖2φ′(u)2du+

1∫
0

‖x′(u)‖2du
))

.

As L is arbitrary, then, taking the limit as L→∞, we get the needed estimate. �

Remark 5.1. In fact,

1

2
inf

x∈B,φ∈G,φ(0)=0

1∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du = I(Φ−1(G)).

Indeed, denote r(t) = ‖x(t)‖. It is easily seen that

1∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du ≥
1∫

0

(r′(u)2 + r(u)2φ′(u)2)du.

Therefore,

inf
x∈B,φ∈G,φ(0)=0

1∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du =
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= inf
r∈D,φ∈G,φ(0)=0

1∫
0

(r′(u)2 + r(u)2φ′(u)2)du.

For z(t) = r(t)eiφ(t), r(0) = 1, φ(0) = 0 we have

1

2

1∫
0

(r′(u)2 + r(u)2φ′(u)2)du = I(z).

Thus,

1

2
inf

x∈B,φ∈G,φ(0)=0

1∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du = I(Φ−1(G)).

Now we obtain the upper estimate on the probabilities for the random elements Φε to
lie in a closed set F ⊆ C([0, 1]). We will use the following notation:

• τδ(x) = inf{t : x(t) ∈ Bδ(0)} for x ∈ C([0, 1],R2);

• Fδ =

{
(x, φ) : x ∈ C([0, 1],R2), x(0) =

(
1
0

)
, φ ∈ C([0, τδ(x)]), φ(0) = 0,

φ ∈ F |[0,τδ(x)]

}
,

where by F |[0,τδ(x)] we mean the closure in C([0, τδ(x)]) of

F |[0,τδ(x)] = {φ ∈ C([0, τδ(x)]) | ∃ψ ∈ F : φ = ψ|[0,τδ(x)]};

• Fµ,δ =
{

(x, φ) : x ∈ C([0, 1],R2), x(0) =

(
1
0

)
,

φ ∈ C([0, τδ(x)]), φ(0) = 0, φ ∈
(
F |[0,τδ(x)]

)µ}
,

where(
F |[0,τδ(x)]

)µ
=

{
φ ∈ C([0, τδ(x)]) | ∃ψ ∈ F |[0,τδ(x)] : sup

s∈[0,τδ(x)]

|φ(s)− ψ(s)| < µ

}
;

• Fµ,δ,x0 =
(
F |[0,τδ(x0)]

)µ
.

Theorem 5.2. Let F ⊆ C([0, 1]) be a closed set. Then for any δ > 0:

(6) lim
ε→0

ε lnP

βε
 ·∫

0

ds

‖wε(s)‖2

 ∈ F
 ≤

≤ −1

2
inf

(x,φ)∈Fδ

τδ(x)∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du.

Proof. Fix some constant numbers L, µ, χ, δ > 0. Choose h > 0 such that µ2

2h > L.
Consider the compact

KL =

 x ∈ C([0, 1],R2) : x(0) =

(
1
0

)
,

1

2

1∫
0

‖x′(u)‖2du ≤ L

 .

Let us build a covering of the set KL by open sets. Take any point x0 ∈ KL. Let
τδ(x0) = inf{t : x0(t) ∈ Bδ(0)}. We cover x0 by a neighbourhood

Uη(x0) =
{
x ∈ C([0, 1],R2) : ∀t ∈ [0, τδ(x0)] ‖x(t)− x0(t)‖ < η

}
.
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Here η > 0 is chosen in such a way that the following conditions hold:

(7) ∀x ∈ Uη(x0)∀t ∈ [0, τδ(x0)]x(t) 6=
(

0
0

)
;

(8) ∀x ∈ Uη(x0)∀t ∈ [0, τδ(x0)]

∣∣∣∣∣∣
t∫

0

ds

‖x(s)‖2
−

t∫
0

ds

‖x0(s)‖2

∣∣∣∣∣∣ < h;

(9) I(Uη(x0)) ≥ I(x0|[0,τδ(x0)])− χ.

Choosing for any x0 ∈ KL the neighbourhood Uη(x0) that covers x0, we get an open
covering of the compact KL. Now choose its finite subcovering.

For any neighbourhood Uη(x0) from our finite covering we estimate the probability

P
(
wε ∈ Uη(x0), βε

(∫ ·
0

ds
‖wε(s)‖2

)
∈ F |[0,τδ(x0)]

)
. We have

P

(
wε ∈ Uη(x0), βε

(∫ ·
0

ds

‖wε(s)‖2

)
∈ F |[0,τδ(x0)]

)
≤

≤ P
(
wε ∈ Uη(x0), βε

(∫ ·
0

ds

‖x0(s)‖2

)
∈ (F |[0,τδ(x0)])

µ

)
+

+ P

∃x ∈ Uη(x0)∃t ∈ [0, τδ(x0)] :

∣∣∣∣∣∣βε
 t∫

0

ds

‖x(s)‖2

− βε
 t∫

0

ds

‖x0(s)‖2

∣∣∣∣∣∣ > µ

 .

We estimate the first summand in our sum. We have

lim
ε→0

ε lnP

(
wε ∈ Uη(x0), βε

(∫ ·
0

ds

‖x0(s)‖2

)
∈
(
F |[0,τδ(x0)]

)µ)
≤

≤ lim
ε→0

ε lnP (wε ∈ Uη(x0)) + lim
ε→0

ε lnP

(
βε

(∫ ·
0

ds

‖x0(s)‖2

)
∈
(
F |[0,τδ(x0)]

)µ)
.

By the LDP for Brownian motion, with the help of (9) we get:

lim
ε→0

ε lnP (wε ∈ Uη(x0)) ≤ −I(Uη(x0)) ≤ −I(x0|[0,τδ(x0)]) + χ.

By Lemma 5.1, we have

lim
ε→0

ε lnP

(
βε

(∫ ·
0

ds

‖x0(s)‖2

)
∈
(
F |[0,τδ(x0)]

)µ)
≤

≤ −1

2
inf

φ∈Fµ,δ,x0 ,φ(0)=0

τδ(x0)∫
0

‖x0(u)‖2φ′(u)2du.

Now estimate the second summand. By Lemma 5.2, we have

lim
ε→0

ε lnP

∃x ∈ Uη(x0)∃t ∈ [0, τδ(x0)] :

∣∣∣∣∣∣βε
 t∫

0

ds

‖x(s)‖2

− βε
 t∫

0

ds

‖x0(s)‖2

∣∣∣∣∣∣ > µ

 < −L.

We finally get

lim
ε→0

ε lnP

(
wε ∈ Uη(x0), βε

(∫ ·
0

ds

‖wε(s)‖2

)
∈ F

)
≤
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≤

−I(Uη(x0))− 1

2
inf

φ∈Fµ,δ,x0 ,φ(0)=0

τδ(x0)∫
0

‖x0(u)‖2φ′(u)2du

 ∨ (−L) ≤

≤

−1

2

τδ(x0)∫
0

‖x′0(u)‖2du− 1

2
inf

φ∈Fµ,δ,x0 ,φ(0)=0

τδ(x0)∫
0

‖x0(u)‖2φ′(u)2du+ χ

 ∨ (−L).

Putting together such estimates for all neighbourhoods from our finite covering, we obtain

lim
ε→0

ε lnP

(
βε

(∫ ·
0

ds

‖wε(s)‖2

)
∈ F

)
≤

≤

−1

2
inf

(x,φ)∈Fµ,δ

τδ(x)∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du+ χ

 ∨ (−L).

We sequentially take the limits as L→∞, χ→ 0 and get

lim
ε→0

ε lnP

βε
 ·∫

0

ds

‖wε(s)‖2

 ∈ F
 ≤
≤ −1

2
inf

(x,φ)∈Fµ,δ

τδ(x)∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du.

Taking the limit as µ→ 0, due to the function j(φ) =
τδ(x)∫

0

‖x(u)‖2φ′(u)2du being lower

semicontinuous and its level sets being compact, we get

lim
ε→0

ε lnP

βε
 ·∫

0

ds

‖wε(s)‖2

 ∈ F
 ≤
≤ −1

2
inf

(x,φ)∈Fδ

τδ(x)∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du.

�

It remains to take the limit in (6) as δ → 0. This is what we do now.

Lemma 5.3. Let F ⊆ C([0, 1]) be a closed set. If 0 < t1 < t2 ≤ 1, φ ∈ F |[0,t2], then

φ|[0,t1] ∈ F |[0,t1].

Proof. As φ ∈ F |[0,t2], then there exists a sequence φn → φ, φn ∈ F |[0,t2] . It is clear that

the restriction to [0, t1] conserves this convergence:

φn|[0,t1] → φ|[0,t1] .

But φn|[0,t1] ∈ F |[0,t1] , and thus φ|[0,t1] ∈ F |[0,t1]. �

Lemma 5.4. Under the conditions of Theorem 5.2, there exists the limit

lim
δ→0

inf
(x,φ)∈Fδ

τδ(x)∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du.
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Proof. We say that the pair (x, φ), where x ∈ C([0, 1],R2), φ ∈ C([0, τδ(x)]), is suitable
for δ if

φ ∈ F |[0,τδ(x)].

By Lemma 5.3, we obtain that if a pair (x, φ) is suitable for δ1, then for δ2 > δ1 the pair
(x, φ|[0,τδ2 (x)]) is also suitable. So,

inf
(x,φ)∈Fδ

τδ(x)∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du

does not increase on δ. �

Theorem 5.3. Under the conditions of Theorem 5.2, the following relation holds:

lim
δ→0

inf
(x,φ)∈Fδ

τδ(x)∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du = inf
y∈Φ−1(F )

1∫
0

‖y′(u)‖2du.

To prove this theorem we will need the following lemma.

Lemma 5.5. If y(t) = r(t)eiφ(t), y ∈ Φ−1(F ), then for τδ = inf{t : |r(t)| ≤ δ} the

following inclusion holds: φ|[0,τδ] ∈ F |[0,τδ] for any δ > 0.

Proof. If y ∈ Φ−1(F ), then there exists a sequence {yn} ⊆ Φ−1(F ) such that yn → y.
But as yn → y, then yn|[0,τδ] → y|[0,τδ] as well. As y|[0,τδ] does not pass through zero,

then the mapping Φ is continuous at y|[0,τδ]. Therefore, we obtain that

Φ(yn|[0,τδ])→ Φ(y|[0,τδ]).

But Φ(yn|[0,τδ]) ∈ F |[0,τδ] for any n. On the other hand, Φ(y|[0,τδ]) = φ|[0,τδ] . So, we get

φ|[0,τδ] ∈ F |[0,τδ]. �

Now we return to the proof of Theorem 5.3. With the help of Lemma 5.5 we get:

(10) lim
δ→0

inf
(x,φ)∈Fδ

τδ(x)∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2) du ≤ inf
y∈Φ−1(F )

1∫
0

‖y′(u)‖2du.

Let us show that the opposite inequality also holds, that is,

(11) lim
δ→0

inf
(x,φ)∈Fδ

τδ(x)∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du ≥ inf
y∈Φ−1(F )

1∫
0

‖y′(u)‖2du.

If

lim
δ→0

inf
(x,φ)∈Fδ

τδ(x)∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du =∞,

then we have nothing to prove. So, we suppose that

lim
δ→0

inf
(x,φ)∈Fδ

τδ(x)∫
0

(‖x′(u)‖2 + ‖x(u)‖2φ′(u)2)du = 2α <∞.
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In this case there exists a subsequence (xn, δn, φn) such that δn → 0, φn ∈ F |[0,τδn (xn)],

φn(0) = 0, and

lim
n→∞

τδn (xn)∫
0

(‖x′n(u)‖2 + ‖xn(u)‖2φ′n(u)2)du = 2α.

We consider yn defined in the following way:

yn(t) =

{
‖xn(t)‖eiφn(t), t ≤ τδn(xn);

δne
iφn(τδn (xn)), τδn(xn) ≤ t ≤ 1.

It is clear that lim
n→∞

I(yn) ≤ α. Therefore, we can select a subsequence from {yn} that

belongs to the compact {y ∈ C([0, 1],R2) : I(y) ≤ α + 1}. So, we can select even a
convergent subsequence. Let us consider {yn} to be convergent itself.

Put y = lim
n→∞

yn. We will show that y ∈ Φ−1(F ). To do this, we build a sequence

from Φ−1(F ) that converges to y. As φn ∈ F |[0,τδn (xn)], then for any µ > 0 there exists

ψn ∈ F such that ρ
(
φn, ψn|[0,τδn (xn)]

)
< µ. Let us choose these ψn in such a way that

sup
t∈[0,τδn (xn)]

∣∣∣‖xn(t)‖eiφn(t) − ‖xn(t)‖eiψn(t)
∣∣∣→ 0 (n→∞).

Define zn in the following way:

zn(t) =

{
‖xn(t)‖eiψn(t), t ≤ τδn(xn);

δne
iψn(t), τδn(xn) ≤ t ≤ 1.

It is clear that zn → y (n → ∞). But it is also clear that zn ∈ Φ−1(F ) for any n.

Therefore, y ∈ Φ−1(F ). Further, yn → y, and so I(y) ≤ lim I(yn) ≤ α. This finishes the
proof of the inequality (11). Theorem 5.3 is also proved.

So, from Theorems 5.2 and 5.3 we obtain for closed sets F ⊆ C([0, 1]):

lim
ε→0

ε lnP (Φε ∈ F ) ≤ 1

2
inf

y∈Φ−1(F )

1∫
0

‖y′(u)‖2du = I(Φ−1(F )).
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