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OXANA MANITA

POSITIVITY OF TRANSITION PROBABILITIES OF

INFINITE-DIMENSIONAL DIFFUSION PROCESSES ON ELLIPSOIDS

We consider diffusion processes in Hilbert spaces with constant non-degenerate dif-

fusion operators and show that, under broad assumptions on the drift, the transition

probabilities of the process are positive on ellipsoids associated with the diffusion
operator. This is an infinite-dimensional analogue of positivity of densities of transi-

tion probabilities. Our results apply to diffusions corresponding to stochastic partial

differential equations.

1. Introduction

Let us consider the stochastic differential equation (SDE)

(1) dXt = dWt + (AXt + F (Xt)dt), X0 = η

in a Hilbert space H, where Wt is an H-valued Wiener process with covariance op-
erator Q, having eigenvectors {ei}i∈N and eigenvalues {qi}i∈N, and the corresponding
Kolmogorov equation

(2) ∂tµt =
1

2
qi∂

2
eieiµt − ∂ei(b

i(x)µt), µ0 = Law(η)

for the distributions µt of the diffusion process Xt. Here bi = 〈A + F, ei〉, A is a linear
(possibly unbounded) operator and F is some function on H. Equations of such a form
correspond to stochastic partial differential equations (SPDEs). In typical cases A is an
elliptic differential operator.

It is well-known that if the coefficients of the equation are regular enough and the dif-
fusion matrix is non-degenerate, then the transition probabilities of the finite-dimensional
diffusion process have strictly positive densities with respect to Lebesgue measure (see
[6]). In the non-degenerate case this property is usually derived from the Harnack in-
equality or from the Girsanov theorem. Another powerful approach is provided by the
seminal result of Strook and Varadhan [21]. In the finite-dimensional case they give a
full description of the support of the distribution of the diffusion process

dXt = σ(Xt) ◦ dWt + F (Xt)dt, X0 = x,

where the SDE is written in the form of Stratonovich. Namely, they showed that the
support of the distribution of Xt coincides with the closure in the space of continuous
functions of the set of solutions to the appropriate control problem: the Wiener process
is replaced by a smooth path – control – and the SDE turns into an ODE in the Hilbert
space). More precisely, they showed that supp Law(Xt) = St, where

(3) St =
{
yt : u is piecewise constant and ẏ = σ(ys)u+ F (ys), y0 = x

}
.

We emphasize that this results doesn’t require non-degeneracy of the diffusion (and is
interesting mostly in the degenerate case).
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However, in the infinite-dimensional case the situation is different. First of all, in
the infinite-dimensional case there is no Lebesgue measure. Therefore, we consider the
following property: the measure of every open set is strictly positive. In the finite-
dimensional case this holds in case of existence of a strictly positive density with respect to
Lebesgue measure. Even for the best studied class of measures in the infinite-dimensional
spaces – Gaussian measures – this property is not quite trivial (see [7, Theorem 3.5.1]).
Positivity on open sets is sometimes called irreducibility of the semigroup corresponding
to the diffusion process (irreducibility of the generator of the process). Next, there is
no exact analogue of Harnack’s inequality in Hilbert spaces (for upper bounds see [8]);
the Girsanov theorem is applicable only in very special cases where drifts take values in
the Cameron–Martin spaces of the corresponding Wiener processes. Moreover, there are
no full analogues of the result of Strook and Varadhan. Hence the following question
arises: is the distribution of a non-degenerate diffusion process in a Hilbert space at time
t positive on all open sets (at least for processes with bounded drifts)? The answer is
positive for linear SDEs of the form

dXt = dWt +AXtdt, X0 = x.

This equation admits an explicit solution that is a Gaussian process. However, in the
general case the solution to (1) is not a Gaussian process. It needs not be even absolutely
continuous with respect to a Gaussian process.

Despite the fact that this question is of considerable interest for SPDEs, only a few
results in this direction are known. For some special equations (such as the stochastic
Navier–Stokes equation) this question was studied by diverse methods (see [1, 17] and
[18]). We also mention the paper [2], where strict positivity in the above sense was
established for the invariant measure of the stochastic porous medium equation.

The problem in the general setting was considered in the book [10] for Lipschitz
continuous perturbations F . The positive result for non-degenerate constant diffusion
operators is obtained in [10, Theorem 7.4.2] by methods of the control theory, inspired
by the ideas of Strook and Varadhan [21]. However, in this approach it is impossible to
drop the assumption of the Lipschitz continuity of F .

In this paper we study the question of positivity of the distribution of non-degenerate
diffusion processes on open sets with purely probabilistic methods. We consider con-
stant non-degenerate diffusion operators and drifts that are bounded perturbations of
linear operators and prove that at every positive time the distribution of such a process
is positive on every ellipsoid whose axis are given by the eigenvectors of the diffusion
operator. This means that the distribution has full topological support in the weaker
topology in which these ellipsoids are balls. The main difference of this result from the
above mentioned result in [10] is that we don’t assume that the nonlinear term F is
Lipschitz continuous. Instead of this, we assume that the SDE and the corresponding
Kolmogorov equation have unique solutions. This is a much milder assumption since typ-
ically SDEs with non-degenerate diffusions are more regular than ODEs. Moreover, due
to the fast development of the field and new results on well-posedness, this assumption
is less and less restrictive. The second difference consists in using purely probabilistic
methods without references to the control theory.

Let us proceed to exact statements.
Let H be a separable real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. Fix a

positive self-adjoint operator Q : H → H with finite trace and eigenvalues {qj}j∈N. Set

trQ :=

∞∑
j=0

qj <∞.
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We assume that

(4) 1 = q1 ≥ q2 ≥ · · · > 0.

We assume that we are given an H-valued Wiener process
(
Wt, t ∈ R+

)
on some prob-

ability space
(
Ω,F ,P

)
with covariance operator Q, i.e.

E〈Wt, u〉〈Ws, v〉 = min{t, s} · 〈Qu, v〉.

Let
(
Ft, t ≥ 0

)
be the filtration generated by this Wiener process. There exist an

orthonormal system {ej}j∈N in H (see [9, Proposition 4.3]) and a countable set of in-

dependent one-dimensional standard Wiener processes (βjt , t ∈ R+), j ∈ N on
(
Ω,F ,P

)
that are

(
Ft, t ≥ 0

)
-adapted such that

(5) Wt =

∞∑
j=1

√
qjβ

j
t ej ,

where the series converges in L2. Define a weighted norm on H by

‖x‖Q := 〈Qx, x〉1/2 =
( ∞∑
j=1

qjx
2
j

)1/2
, xj := 〈x, ej〉

and observe that ‖x‖Q ≤ ‖x‖ for each x ∈ H due to (4). Given a ∈ H and R ∈ R+, set

KR(a) : = {x ∈ H : ‖x− a‖Q ≤ R}, UR(a) := {x ∈ H : ‖x− a‖ ≤ R};
KR(0) =: KR, UR(0) =: UR.

The sets KR(a) will be called ellipsoids and the sets UR(a) will be called balls. The

ellipsoid KR(a) contains UR(a), but is not contained in any ball UR′ (a
′
) (contrary to the

finite-dimensional case).
Let B(H) denote the σ-field of all Borel sets in H. Let P∞(H) denote the set of all

probability measures on (H,B(H)) with finite moments of all orders. Let V∞(H) denote
the set of all H-valued random variables with finite moments of all orders. Finally, let
FC∞0 (H) denote the class of all functions of the form φ(x) = φ0(x1, . . . , xm) with some
m ∈ N, where φ0 is an infinitely smooth function with compact support in Rm.

2. SDE with a bounded drift

First we consider the case of a bounded drift. This case is not only interesting in itself,
but is also a basis for further consideration.

Suppose that an H-valued random variable η and a function F : H → H are given.
On the probability space

(
Ω,F ,P

)
consider the following SDE:

(6) dXt = dWt + F (Xt)dt, X0 = η.

An Ft-adapted H-valued process
(
Xt, t ∈ R+

)
is said to be a strong solution to (6) if

P-a.s. for all t ≥ 0

(7) Xt = η +Wt +

∫ t

0

F (Xs)ds,

where the last integral is a Bochner integral. In the sequel we shall consider the distri-
butions (µt)t≥0 of the process

(
Xt, t ∈ R+

)
, defined by

µt(C) = P(Xt ∈ C), C ∈ B(H).

To the diffusion process (6) we associate the Cauchy problem for its distributions

(8) ∂tµt =
1

2
qi∂

2
eieiµt − ∂ei(b

i(x)µt), µ0 = ν = Law(η),
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where bi = 〈F, ei〉. Throughout the paper we assume that summation over all repeated
indices is taken. A family of probability measures (µt)t≥0 is said to be a solution to (8)
if the identity ∫

φ(x)dµt −
∫
φ(x)dν =

∫ t

0

∫
Lφ(x)dµsds,

where

Lφ =

∞∑
i=0

1

2
qi∂

2
eieiφ+

∞∑
i=0

bi∂eiφ,

holds for all t ≥ 0 and all test functions φ ∈ FC∞0 (H).
Further we assume that
(i) η is independent of

(
Wt, t ∈ R+

)
and η ∈ V∞

(
H
)
;

(ii) the function F is bounded, i.e.

sup
x∈H
‖F (x)‖ = F∗ < +∞.

(iii) The equation (6) has a strong solution Xt, t ≥ 0 and Xt ∈ V∞(H) for each t ≥ 0.
The problem (8) has a unique probability solution.

Under assumption (iii) the distributions of the process Xt solve the Cauchy problem
(8) (see [9, Section 14.2.2]). This one-to-one correspondence between equations enables
us to switch between probability representations and measures whenever it is convenient.

Theorem 2.1. Assume (i), (ii) and (iii) hold. Then, for any initial condition η ∈ V∞(H)
and for every T > 0, the solution to (8) is strictly positive on every ellipsoid KR(a):

µT (KR(a)) > 0, or, equivalently, P(XT ∈ KR(a)) > 0.

Remark 2.1. Equation (8) is meaningful for any nonnegative finite Borel initial measure
ν, and then the solution is a finite nonnegative Borel measure and preserves the total
mass ν(H) of the space. Hence the result of Theorem 2.1 is valid for the Cauchy problem
(8) with any finite nonnegative Borel initial measure ν.

Remark 2.2. As it can be seen from the proof, in (iii) instead of existence of a strong so-
lution it sufficies to assume only existence of a weak solution which possesses the Markov
property. In regular finite-dimensional cases existence of a weak solution, together with
uniqueness of distribution, ensures [15] that it is a Markov process on its probability
basis. Morever, existence of weak solution is closely related to the solvability of the cor-
responding martingale problem, which, in it’s turn, is connected to the well-posedness
of the Kolmogorov equation. However, the author doesn’t know any precise analogues
of these results in the infinite-dimensional setting. To the author’s knowledge, similar
results are proved under additional assumptions like m-dissipativity of the drift or for
equations with initial data from a particular class (for example, see [3]).

Proof. We split the proof into several steps.
1. We prove that for each ellipsoid KR(a), each initial distribution ν ∈ P∞(H) and

each T > 0, there exists a time t0 ∈ (0, T ] such that at t0 the solution to the Cauchy
problem (8) is strictly positive on KR(a):

(9) µt0(KR(a)) = P(Xt0 ∈ KR(a)) > 0.

2. We prove that, for each ellipsoid KR(a), there exists τ = τ(R) > 0 such that for
any initial distribution ν ∈ P∞

(
H
)

one has

µt(KR(a)) = P(Xt ∈ KR(a)) > 0 ∀t ∈ (0, τ ].

3. We prove the assertion of the theorem, i.e., that

µt(KR(a)) = P(Xt ∈ KR(a)) > 0 ∀t > 0.
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Step 1. First, let us show that for each initial measure ν ∈ P∞
(
H
)

that is not Dirac’s
measure at zero and for each T > 0, there exists t0 ∈ (0, T ] such that µt0(KR) > 0.
It suffices to prove this assertion for initial measures with supp ν ⊂ UN\Kδ for some
N > δ > 0. Indeed, assume that (9) holds for every initial measure supported in UN\Kδ.
The continuity of ν at zero yields that there is δ > 0 such that ν(H\Kδ) > 0. Since

UN ⊂ UN+1 and

∞⋃
N=1

UN = H,

there is an index N0 such that ν(UN0
\Kδ) > 0. Define measures ν0 and ν⊥ by

ν0(E) = ν(E ∩ (UN0
\Kδ)), ν⊥(E) = ν(E\(UN0

\Kδ)).

Then ν = ν0 + ν⊥. Observe that equation (8) is linear in measure, hence µt = µ0
t + µ⊥t ,

where µ0
t , µ

⊥
t are solutions to (8) with initial measures ν0 and ν⊥, respectively. By

Remark 2.1, (9) holds for the family (µ0
t )t≥0 with some t0 ∈ (0, T ], thus

µt0(KR) = µ0
t0(KR) + µ⊥t0(KR) ≥ µ0

t0(KR) > 0.

Hence we can assume from the very beginning that the initial measure ν satisfies the
condition

supp ν ⊂ UN\Kδ for some N > δ > 0.

In particular, ν can be an atomic measure outside zero. Fix KR = KR(0) and T > 0. Let
η be an H-valued random variable independent of

(
Wt, t ∈ R+

)
such that Law(η) = ν.

Let us show that there exists t0 ∈ (0, T ] such that µt0(KR) > 0. We argue by
contradiction. Suppose that this is false and µt(KR) = 0 for all t ∈ (0, T ]. Without loss
of generality we can assume that R < δ and µt(KR) = 0 for all t ∈ [0, T ]. In particular,
this means that P-a.s. ‖Xt‖ ≥ ‖Xt‖Q ≥ R for all t ∈ [0, T ].

Consider the one-dimensional stochastic process ζt = ‖Xt‖2. It is a smooth function of
the diffusion process (7) and its Itô’s differential can be computed by using Itô’s formula
for H-valued processes (see [9, Theorem 4.32]):

dζt = 2〈Xt, dWt〉+ (2〈Xt, F (Xt)〉+ trQ)dt, ζ0 = ‖η‖2.
In order to simplify the first term in the differential, we observe that the one-dimensional
stochastic process w = (wt, t ≥ 0) given by

wt =

∫ t

0

〈Xs, dWs〉
‖Xs‖Q

is a continuous square-integrable Ft-martingale and (see [9, Theorem 4.27]) its quadratic
variation equals

� wt �=

∫ t

0

Φs ds,

where

Φs =
( Xs

‖Xs‖Q
Q1/2

)( Xs

‖Xs‖Q
Q1/2

)∗
=

1

‖Xs‖2Q
·
(
XsQ

1/2
)(
XsQ

1/2
)∗

=
‖Xs‖2Q
‖Xs‖2Q

= 1.

Hence � wt �= t. Lévy’s characterization of the Brownian motion (see [13, Chapter 3,
Theorem 3.16]) yields that w is an Ft-adapted Wiener process. Thus,

ζt = ζ0 +

∫ t

0

v(ω, s)dws +

∫ t

0

c(ω, s)ds,

v(ω, t) := 2‖Xt‖Q, c(ω, t) := 2〈Xt, F (Xt)〉+ trQ.(10)

Observe that v(ω, t) is also a progressively measurable (Ft-adapted) process. Since

c(ω, t) ≤ trQ+ ζt + ‖F‖2∞ =: λ+ ζt,
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by the assumption ζ0 ≤ N2 we have

(11) ζt ≤ ζ0 +

∫ t

0

v(ω, s)dws +

∫ t

0

(λ+ ζs)ds ≤ (N2 + Tλ) +

∫ t

0

v(ω, s)dws +

∫ t

0

ζsds.

Letting

Ψt := (N2 + Tλ) +

∫ t

0

v(ω, s)dws,

we obtain

(12) ζt ≤ Ψt +

∫ t

0

ζsds.

Multiplying by e−t, we obtain

d

dt

(
e−t ·

∫ t

0

ζsds

)
≤ e−tΨt, hence

∫ t

0

ζsds ≤
∫ t

0

et−sΨsds.

Plugging this estimate into (11), we arrive at

(13) 0 ≤ ζt ≤ Ψt+

∫ t

0

et−sΨsds ≤ C(N,T )+

∫ t

0

v(ω, s)dws+

∫ t

0

et−s
∫ s

0

v(ω, r)dwrds,

where C(N,T ) := (N2 + Tλ)(1 + TeT ) > 0. Next, by the integration by parts formula
(see [19, Ex. 4.3]), we have∫ t

0

et−s
∫ s

0

v(ω, r)dwrds = et
(
−e−t

∫ t

0

v(ω, r)dwr

)
+ et

∫ t

0

e−sd

∫ s

0

v(ω, r)dwr

= −
∫ t

0

v(ω, r)dwr + et
∫ t

0

e−sv(ω, s)dws,

hence (13) implies that for t ∈ [0, T ]

(14)

∫ t

0

e−sv(ω, s)dws ≥ −C(N,T ) · e−t ≥ −C(N,T ).

By our assumption v ≥ 2R. Fix an arbitrary t∗ ∈ (0, t). Define a random change of time

(15) zt :=

∫ t

0

e−2sv2(ω, s)ds ≥ t · (2R)2e−2T .

For each γ ≥ 0, set τγ := inf{s ≥ 0 : zs = γ}. The paths of the process zt are continuous
and the process is bounded from below according to (15), hence τγ is a stopping time
with respect to the filtration (Ft, t ≥ 0). Moreover, P(τγ < +∞) = 1 and τγ < t∗ for
each γ < t∗ · (2R)2e−2T with P-probability 1. The change of time theorem ([12, Chapter
1, Par. 4, Theorem 3]) implies that the stochastic process y = (yγ , γ ≥ 0) given by

yγ :=

∫ τγ

0

e−sv(ω, s)dws

is a Wiener process with respect to the filtration (Fτγ , γ ≥ 0). In particular, the random
variable yγ has a strictly positive distribution density on the real line. On the other hand,∫ t
0
e−sv(ω, s)dws is an Ft-martingale. It is well-known (see, for example, [22, Paragraph

7.2, Microtheorem 3]) that the martingale property holds not only for deterministic times,
but also for bounded stopping times: P-a.s. one has

yγ =

∫ τγ

0

e−svsdws =

∫ τγ∧t

0

e−svsdws = E
(∫ t

0

e−svsdws| Fτγ
)
≥ −C(N,T ),

since τγ < t∗ < t. This contradiction means that there exists t0 ∈ (0, T ] such that
µt0(KR) > 0.
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Let us now proceed to non-centered ellipsoids. Fix KR(a) with a center a ∈ H. Let
us show that there is t0 ∈ (0, T ] such that the solution to (8) is positive on KR(a) for
very initial measure ν 6= δa. Fix ν 6= δa.

Consider the shift La : H → H defined by

Lax = x+ a.

We recall that the image of a measure ρ under the mapping La is the measure La∗ρ
defined by La∗ρ(E) = ρ(La(E))) for each measurable set E ⊂ H. Then it follows from
the definition that La(KR) = KR(a) and the measures σt = La∗µt satisfy the equation

∂tσt =
1

2
qi∂

2
eieiσt − ∂ei(b

i(x− a)σt), σ0 = La∗ν 6= δ0,

where bi(· − a) = 〈F (· − a), ei〉. The drift term F (· − a). Therefore, by the assertion for
centered balls proved above in the case σ0 6= δ0, there exists t0 ∈ (0, T ] such that

µt0(KR(a)) = µt0(La(KR))
def
= La∗µt0(KR) > 0.

To complete the proof of this step, we consider KR(a) and ν = δa. Note that for ε > 0
small enough

KR/2(a+ ε̄) ⊂ KR(a), ε̄ = ε · e1 ∈ H.
Indeed, if (x1 − a1 − ε)2 +

∑∞
j=2 qj(xj − aj)2 ≤ R2/4, then

∞∑
j=1

qj(xj − aj)2 ≤ 2(x1 − a1 − ε)2 + 2ε2 +

∞∑
j=2

qj(xj − aj)2 ≤ R2/2 + 2ε2 ≤ R2

for ε2 ≤ R2/4. But (9) has already been proved for KR/2(a + ε̄) and ν = δa, i.e.

µt0(KR/2(a+ε)) > 0 for some t0 ∈ (0, T ]. By additivity µt0(KR(a)) ≥ µt0(KR/2(a+ε̄)) >
0.

Step 2. Let us prove that for every ellipsoid KR(a), there exists τ = τ(R) > 0,
depending only on R and sup-norm of F , such that for any initial distribution ν ∈ P∞(H)
one has

P(Xt ∈ KR) > 0 for all t ∈ (0, τ(R)],

where Xt solves (6).
The idea of the proof is quite simple: if the process with any initial distribution at some

time t0 hits a small ellipsoid with positive probability, then with positive probability it
stays in a larger ellipsoid during some time, and this time is determined by the parameters
of the ellipsoid. But it has already been proven that during every small interval of time
the process Xt hits every fixed ellipsoid (with positive probability) at least once. The
combination of these facts yields the assertion of Step 2. Let us proceed to rigorous
proofs.

Fix X0 ∈ V∞
(
H
)

and KR(a). Set

τ(R) := R ·
(

6 · (1 + sup
x∈H
‖F (x)‖Q)

)−1
.

Lemma 2.1. Assume that supp ν ⊂ KR/2(a). Then

(16) P(Xt ∈ KR(a)) > 0 for all t ∈ (0, τ(R)].

Proof of Lemma 2.1. Recall that

Xt = X0 +Wt +

∫ t

0

F (Xs)ds.

Obviously, it suffices to show that for all t ∈ (0, τ(R)]

P
(
‖Xt −X0‖Q > R/2

)
< 1.
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This follows from the properties of H-valued Wiener processes and the definition of τ(R).
Indeed,

(17) P
(∥∥∥Xt −X0

∥∥∥
Q
>
R

2

)
= P

(∥∥∥Wt +

∫ t

0

F (Xs)ds
∥∥∥
Q
>
R

2

)
≤ P

(
‖Wt‖Q >

R

4

)
+ P

(∥∥∥∫ t

0

F (Xs)ds
∥∥∥
Q
>
R

4

)
.

By the properties of the Bochner integral and the definition of τ(R) we have∥∥∥∫ t

0

F (Xs)ds
∥∥∥
Q
≤
∫ t

0

‖F (Xs)‖Qds ≤ τ(R) · sup
x∈H
‖F (x)‖Q ≤

R

6
<
R

4
,

i.e. the second probability on the right-hand side of (17) equals zero. Hence

P(‖Xt −X0‖Q >
R

2
) ≤ P(‖Wt‖Q >

R

4
) ≤ P(‖Wt‖ >

R

4
).

The distribution of Wt at time t is a centered H-valued Gaussian random variable with
variance t · Q. By [7, Theorem 3.5.1] the probability on the right-hand side of the last
inequality is strictly less than 1. This completes the proof of Lemma 2.1. �

Let us return to the proof of Step 2. Fix δ ∈ (0, τ(R)). According to Step 1 there
exists a time t0 ∈ (0, δ) such that µt0(KR/2(a)) > 0. By the Markov property

Xt = Xt0 +W 1
t +

∫ t

t0

F (Xs)ds, t ≥ t0

where W 1 = (Wt −Wt0 , t ≥ t0) is also a Q-Wiener process. By our choice of t0 we have

P(Xt0 ∈ KR/2(a)) = µt0(KR/2(a)) > 0.

Arguing similarly to Step 1 and applying Lemma 2.1, we obtain

P(Xt ∈ KR(a)) = µt(KR(a)) > 0 ∀t ∈ [t0, t0 + τ(R)].

In particular, this holds for all t ∈ [δ, τ(R)], but δ is an arbitrary number in (0, τ(R)],
hence

(18) P(Xt ∈ KR(a)) = µt(KR(a)) > 0 for all t ∈ (0, τ(R)].

Step 3. Fix an arbitrary time M . Split the interval [0,M ] into n := [M/τ(R)] parts,
where τ(R) is defined by (16):

[0,M ] =

n−1⋃
i=0

[si, si+1], sj = j · τ(R), j = 0, . . . , n− 1, sn = M.

By the previous step, for any initial data η ∈ V∞
(
H
)
, the assertion of Theorem 2.1 holds

on [0, τ(R)] ≡ [s0, s1], i.e. (18). Similarly to the Step 2, we have

Xt = Xs1 +W 2
t +

∫ t

s1

F (Xs)ds, t ≥ s1.

Application of the result of Step 2 gives that P(Xt ∈ KR(a)) = µt(KR(a)) > 0 for
t ∈ (s1, s2]. By induction we get

µt(KR(a)) > 0 for all t ∈ (0,M ].

This completes the proof of Theorem 2.1. �
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Remark 2.3. If u(ω, t) = e−tv(ω, t) is not separated from zero, then, generally speaking,
(14) does not yield a contradiction. This can be shown by a simple example (suggested
by A.A. Novikov). Consider u(ω, t) = exp{wt − t/2} > 0 P-a.s., where wt is a standard
Wiener process on the real line. Obviously, there is no positive R such that P-a.s.
u(ω, s) ≥ R. Itô’s formula implies

u(ω, t) = 1 +

∫ t

0

u(ω, s)dws > 0, hence

∫ t

0

u(ω, s)dws > −1 P− a.s.

Remark 2.4. The assumption (iii) is fulfilled, for example, if F is Lipschitz continuous.
Equation (6) has a unique strong solution Xt, t ≥ 0 due to [9, Theorem 7.2] and Xt ∈
V∞(H) for each t ≥ 0. The problem (8) has a unique probability solution by virtue of [5,
Theorem 1] and [4, Theorem 2.1]. However, Theorem 2.1 is in a sense stronger than [10,
Theorem 7.4.2], mentioned in the Introduction, where irreducibility of the corresponding
semigroup is demonstrated, because it does not require any continuity of the nonlinear
perturbation.

3. SDE with unbounded drift

We now proceed to the general case – SDE (1) with an unbounded self-adjoint negative
linear operator A:

(19) dXt = dWt + (AXt + F (Xt))dt, X0 = η.

Here, as above,
(
Wt, t ∈ R+

)
is a Q-Wiener process on

(
Ω,F ,P

)
with the natural

filtration (Ft, t ≥ 0). Set B(x) = Ax+ F (x).
Let us now recall the concept of variational solution (see [20]).
Consider the Banach space V := D((−A)1/2) equipped with the graph norm of

(−A)1/2 and its dual space V ∗. Then (V,H, V ∗) is a Gelfand triple, i.e. V ⊂ H ⊂ V ∗ and
the embeddings are continuous and dense. Let us consider the Friedrichs extension A1

of A. Then A1 : V → V ∗ and A1 is also a densely defined negative self-adjoint operator
(see, for example, [14, Theorem 2.23]). Set B1(·) := A1 +F (·) : V → V ∗. For notational
simplicity, further we omit indices, and A will denote not only the operator, but also its
Friedrichs extension, and also B(·) = A+ F (·).

A continuous H-valued Ft-adapted process X =
(
Xt, t ∈ [0, T ]

)
is called a variational

solution to (19) if for its dt × P-equivalence class X̂ with some α ≥ 1 we have X̂ ∈
Lα([0, T ]× Ω, dt× P;V ) ∩ L2([0, T ]× Ω, dt× P;H) and P-a.s.

(20) Xt = η +Wt +

∫ t

0

B(X̄s)ds, t ∈ [0, T ],

where X̄ is any Ft-adapted V -valued dt×P-version of X̂. Moreover, the integrand in (20)
is automatically H-valued (see, for example, [20, Remark 4.2.2]). Below we set α = 2.

Along with assumptions (i) and (ii) from the previous section, we shall need the
following assumptions:

(iii’) The problem (8) has a unique probability solution. The equation (19) has a
variational solution (see [16]) and

(21) E sup
t∈[0,T ]

‖Xt‖2 < +∞.

(iv) The domain D(A) ⊂ H of the linear operator A is dense in H and A is self-adjoint
and negative (i.e. 〈Ax, x〉 ≤ −ε‖x2‖ for some ε > 0 and all x ∈ H).

The Hille–Yosida theorem (see, for example, [11, Theorem 2.6]) states that any linear
operator A with properties (iv) generates a contracting strongly continuous semigroup
St, t ∈ R+ of linear transformations of H.
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A continuous Ft-adapted H-valued process X =
(
Xt, t ∈ [0, T ]

)
is said to be a mild

solution to (19) (see, for example, [9, 20]) if P-a.s. for all t ∈ [0, T ] one has

(22) Xt = Stη +

∫ t

0

St−sI dWs +

∫ t

0

St−sF (Xs)ds.

Here I is the identity operator on H; the last integration is in Bochner’s sense.
The distributions of the process Xt solve (8) with bi = 〈B, ei〉 (see [9, Section 14.2.2]).

As above, this one-to-one correspondence enables us to consider measures in placed of
processes and vice versa, whenever this is convenient.

The main result of this section is the following theorem.

Theorem 3.1. Assume that (i), (ii), (iii′) and (iv) hold. Then, for any initial condition
η ∈ V∞(H) and for every t ∈ (0, T ], the solution to (8) is strictly positive on each
ellipsoid KR(a):

µt(KR(a)) > 0, or, equivalently, P(Xt ∈ KR(a)) > 0.

Proof. The proof mainly repeats the proof of Theorem 2.1. We consider only the steps
affected by the addition of the linear term.

Arguing similarly to Step 1 of the proof of Theorem 2.1 and applying Itô’s formula
for variational solutions (see [20, Theorem 4.2.5]), we obtain the following expression for
the process ζt = ‖Xt‖2:

ζt = ζ0 +

∫ t

0

2‖Xs‖Qdws +

∫ t

0

(2〈Xs, F (Xs)〉+ trQ+ 2〈AXt, Xt〉)ds

≤ ζ0 +

∫ t

0

2‖Xs‖Qdws +

∫ t

0

(2〈Xs, F (Xs)〉+ trQ)ds.

where we used the estimate 〈Ax, x〉 ≤ 0. Similarly to the derivation of the bound (14),
we obtain ∫ t

0

e−sv(ω, s)dws ≥ −C, v(ω, s) := 2‖Xs‖Q.

Step 1 is completed in exactly the same way as in proof of Theorem 2.1. Next, we
observe that the structure of the drift term in the proof of Theorem 2.1 has only been
used in Lemma 2.1. Therefore, to complete the proof of Theorem 3.1 it suffices to prove
an analogue of Lemma 2.1 in the case A 6= 0. Fix X0 ∈ V∞

(
H
)

and KR(a). Let
ν = Law(X0). Set

τ(R) := R · (6 · (1 + sup
x∈H
‖F (x)‖))−1.

Lemma 3.1. Suppose that X0 is independent of
(
Wt, t ∈ R+

)
and supp ν ⊂ KR/2(a).

Then

(23) P
(
Xt ∈ KR(a)

)
> 0 for all t ∈ (0, τ(R)].

Proof of Lemma 3.1. Note that the variational solution Xt is also a mild solution
to (1) (see [20, F.0.5, F.0.6]), i.e.

Xt = StX0 +

∫ t

0

St−sI dWs +

∫ t

0

St−sF (Xs)ds.

Clearly, it suffices to prove that for all t ∈ (0, τ(R)]

P(‖Xt −X0‖Q > R/2) < 1, if Law(X0) = ν.
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We have

(24) P
(
‖Xt −X0‖Q >

R

2

)
≤ P

(∥∥∥(St − I)X0 +

∫ t

0

St−sI dWs

∥∥∥
Q
>
R

4

)
+ P

(∥∥∥∫ t

0

St−sF (Xs)ds
∥∥∥
Q
>
R

4

)
.

Since the semigroup St is contracting,∥∥∥∫ t

0

St−sF (Xs)ds
∥∥∥
Q
≤
∥∥∥∫ t

0

St−sF (Xs)ds
∥∥∥

≤
∫ t

0

‖St−sF (Xs)‖ds ≤ τ(R) · sup
x∈H
‖F (x)‖ < R

4
,

i.e. the second probability on the right-hand side of (24) is zero. Thus,

(25) P
(
‖Xt −X0‖Q >

R

2

)
≤ P

(∥∥∥(St − I)X0 +

∫ t

0

St−sI dWs

∥∥∥
Q
>
R

4

)
≤ P

(
‖(St − I)X0 +

∫ t

0

St−sI dWs‖ >
R

4

)
.

The process WA = (WA(t), t ≥ 0) given by WA(t) :=
∫ t
0
St−sI dWs is called a stochastic

convolution. Since ∫ T

0

trS(r)QS∗(r)dr = tr

∫ T

0

‖S(r)‖2Qdr <∞,

WA is an Ft-adapted Gaussian random variable, continuous in mean square, with the

non-degenerate covariance operator

∫ t

0

‖S(r)‖2Qdr (see [9, Theorem 5.2]). It can be easily

seen that (St − I)X0 and WA(t) are independent random variables. By the convolution
formula

(26) P(‖(St − I)X0 +

∫ t

0

St−sI dWs‖ ≤
R

4
) =

∫
H

ρt(UR/4(0)− w)σt(dw),

where σt = Law(St − I)X0 and ρt = Law(WA(t)). But the integrand is strictly positive
by the properties of the Gaussian random variable ρt (see [7, Theorem 3.5.1]), and σt is a
probability measure, hence (26) is a strictly positive quantity. Therefore, the right-hand
side of (25) is strictly less than 1. This completes the proof of Lemma 3.1 and Theorem
3.1. � �
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