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O. O. SYNYAVSKA

INTERVAL ESTIMATION OF THE FRACTIONAL BROWNIAN

MOTION PARAMETER IN A MODEL WITH MEASUREMENT

ERROR

In this article we show how to use Baxter statistics for the construction of the non–

asymptotic confidence intervals for the Hurst index associated with a fractional Brow-

nian motion within one errors–in–variables model.

1. Introduction

Let ξ = {ξ(t), t ∈ R} be a fractional Brownian motion with the Hurst index H ∈ (0, 1).
This means that ξ is a centered Gaussian random process with a covariance function

(1) r(t, s) =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
.

The fractional Brownian motion is widely used in such diverse areas as hydrology, geo-
physics, medicine, genetics, meteorology, financial mathematics. The estimation problem
for the Hurst parameter of a fractional Brownian motion, which sometimes is also called
self-similarity index, was studied by T. Higuchi [1], J.–M. Poggi and M.–C. Viano [2],
J.–F. Coeurjolly [3], B. L. S. Prakasa Rao [4] and others.

It is known that

Sn(w) =

2n∑
k=1

(
w

(
k

2n

)
− w

(
k − 1

2n

))2

→ 1, n ≥ 1

with probability one as n → ∞, where {w(t), t ∈ R} is a standard Brownian motion.
This result was discovered by the famous French mathematician P. Levy [5]. Later on,
H. Baxter [6] generalized this result for a particular class of Gaussian stochastic processes.
The sums Sn(ξ), where {ξ(t), t ∈ [0, 1]} is a random process, are named as the Baxter
sums.

The Baxter sums method allows us to build the strongly consistent estimators for
the Hurst parameter of the fractional Brownian motion. The Baxter type theorems
are often used for the parameter estimation of the covariance function of stochastic
processes. In particular, J.-M. Bardet [7] used the Baxter approach in order to estimate
the Hurst parameter for a fractional Brownian motion. In 2002 O.O. Kurchenko [8]
used the Baxter type theorem to construct one strongly consistent estimator for Hurst
parameter of a fractional Brownian motion. J.–C. Breton, I. Nourdin and G. Peccati
[9] had constructed the confidence intervals for the Hurst index of the one–dimensional
fractional Brownian motion using the Baxter statistics and applying the concentration
inequality.

Recently, in many papers on statistics of stochastic processes, the various models with
measurement errors were used. Such books as G. Shneyevays and G. Mittag [10], R.
J. Caroll et al. [11] are devoted to the studying of the linear and nonlinear regression
models, K.-L. Cheng and J. Van Ness [12] investigate the linear and polynomial models,
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etc. The monograph by S.V. Masuk, A.G. Kukush et al. [13] describes the statistical
methods for the risk estimation at the presence of errors in a regressor.

2. Problem Statement

Consider the following model with errors–in–variables. Suppose that we observe the
values X(0), X

(
1
n

)
, . . . , X(1), which differ from the true values of the fractional Brow-

nian motion {ξ(t), t ∈ [0, 1]} at the points{
k

n

∣∣∣∣0 ≤ k ≤ n, n ≥ 1

}
.

These differences are the measurement errors {δk,n
∣∣0 ≤ k ≤ n}, which do not depend on

the fractional Brownian motion values {ξ
(
k
n

) ∣∣0 ≤ k ≤ n}. More exactly

(2) X

(
k

n

)
= ξ

(
k

n

)
+ δk,n.

Suppose that δk,n are i.i.d. Gaussian random variables such that δk,n ' N(0, σ2) and
σ2 is fixed.

Observing the stochastic process {X
(
k
n

) ∣∣0 ≤ k ≤ n} in model (2), we need to con-
struct non–asymptotic confidence intervals for the unknown Hurst parameter H ∈ (0, H∗]
with known H∗ < 1.

3. Main results

Let us introduce the following notations:

∆ξk,n = ξ

(
k + 1

n

)
− ξ

(
k

n

)
, ∆δk,n = δk+1,n − δk,n,

∆Xk,n = X

(
k + 1

n

)
−X

(
k

n

)
, 0 ≤ k ≤ n− 1.

Consider the sequences of related Baxter sums:

Sn(X) =

n−1∑
k=0

(∆Xk,n)
2 − 2nσ2, Ŝn(X) = n2H−1Sn(X), n ≥ 1.

It can be shown (see [8]) that for the fractional Brownian motion {ξ(t), t ∈ [0, 1]} as
n→∞ and for all H ∈ (0, 1), the convergence in the square mean takes place

n2H−1
n−1∑
k=0

(∆ξk,n)
2 → 1.

Lemma 3.1. Let H ∈ (0, H∗] ⊂ (0, 1). Then:

(3) sup
H∈(0,H∗]

V arŜn(X) ≤ D (H∗, n) ,

where

D(H∗, n) =
10

n
+ 8n2H

∗−1σ2 + 8n4H
∗−1

(
1− 1

n

)
σ4 +

+


2
n ζ(4− 4H∗), H∗ ∈ (0, 34 );
2
n (1 + lnn), H∗ = 3

4 ;
2
n

(
1 + n4H∗−3

4H∗−3

)
, H∗ ∈

(
3
4 , 1
)
,

(4)

ζ(s) =
∑∞

n=1
1
ns , s > 1.
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Proof. Let us calculate the mean and variance of random variable Ŝn(X), n ≥ 1. Since
the fractional Brownian motion {ξ(t), t ∈ [0, 1]} under the model (2) is a stochastic
process with zero mean, covariance function (1) and homogeneous increments, we get for

the expectation of Ŝn(X):

EŜn(X) = n2H−1ESn(X) = n2H−1E

(
n−1∑
k=0

(∆Xk,n)
2 − 2nσ2

)
=

= n2H−1

(
n−1∑
k=0

E

(
X2

(
k + 1

n

)
− 2X

(
k + 1

n

)
X

(
k

n

)
+

+X2

(
k

n

))
− 2nσ2

)
.

Using that {δk,n
∣∣0 ≤ k ≤ n} and variables {ξ

(
k
n

)
, δk,n

∣∣0 ≤ k ≤ n} are stochastically
independent and taking into account the covariance function form (1) from the previous
equality, we can conclude that

EŜn(X) = n2H−1

(
n−1∑
k=0

(
Eξ2

(
1

n

)
+ Eδ2k+1,n + Eδ2k,n − 2Eδk,nδk+1,n

)
− 2nσ2

)
=

= n2H−1

(
n−1∑
k=0

(
1

n2H
+ 2σ2

)
− 2nσ2

)
= 1.

Note that for the Gaussian random variables η1, η2, η3, η4 with zero mean the Isserlis
formula can be applied [14, p. 29] as follows:

(5) E (η1η2η3η4) = Eη1η2Eη3η4 + Eη1η3Eη2η4 + Eη1η4Eη2η3.

Then the formula (5) and the variance properties imply:

V arŜn(X) = n4H−2V arSn(X) =

= n4H−2E

(
n−1∑
k=0

(∆Xk,n)
2 −

n−1∑
k=0

E (∆Xk,n)
2

)2

=

= 2n4H−2
n−1∑
k,j=0

(E∆Xk,n∆Xj,n)
2

= 2n4H−2
n−1∑
k=0

(
E (∆Xk,n)

2
)2

+

(6) +4n4H−2
n−1∑

k,j=0,
j<k

(E (∆ξk,n + ∆δk,n) (∆ξj,n + ∆δj,n))
2
.

Since {ξ(t), t ∈ [0, 1]} is the fractional Brownian motion by definition, we obtain:

E (∆Xk,n)
2

= E

(
X2

(
k + 1

n

)
− 2X

(
k + 1

n

)
X

(
k

n

)
+X2

(
k

n

))
=

= Eξ2
(
k + 1

n

)
+ Eδ2k+1,n + Eξ2

(
k

n

)
+ Eδ2k,n−

(7) −2E

(
ξ

(
k + 1

n

)
+ δk+1,n

)(
ξ

(
k

n

)
+ δk,n

)
= n−2H + 2σ2.

It follows from the stochastic independency of random variables ∆ξk,n and ∆δk,n, 0 ≤
k ≤ n that



INTERVAL ESTIMATION OF THE HURST PARAMETER 87

E (∆ξk,n + ∆δk,n) (∆ξj,n + ∆δj,n) = E∆ξk,n∆ξj,n + E∆δk,n∆δj,n, k 6= j.

Further, from formula (1) we have

E∆ξk,n∆ξj,n =

(
ξ

(
k + 1

n

)
− ξ

(
k

n

))(
ξ

(
j + 1

n

)
− ξ

(
j

n

))
=

(8) =
1

2

∣∣∣∣ (k − j) + 1

n

∣∣∣∣2H − ∣∣∣∣k − jn
∣∣∣∣2H +

1

2

∣∣∣∣ (k − j)− 1

n

∣∣∣∣2H .

Then from the equality (8) we get:

E∆Xk,n∆Xj,n =
1

2
n−2Hvk−j + E∆δk,n∆δj,n,

where

vk−j = |(k − j) + 1|2H − 2|k − j|2H + |(k − j)− 1|2H , 1 ≤ k, j ≤ n− 1.

Let us calculate the expectation of the product of variables ∆δk,n and ∆δj,n

E∆δk,n∆δj,n = E
(
δk+1,nδj+1,n − δk+1,nδj,n − δk,nδj+1,n+

(9) +δk,nδj,n

)
=


2σ2, if k = j;

−σ2, if k = j − 1;

0, if |j − k| > 1.

Thus, based on the relations (7) – (9), the inequality (a+ b)
2 ≤ 2

(
a2 + b2

)
, a, b ∈ R and

the equality (6) we receive that:

V arŜn(X) = 2n4H−2

(
n−1∑
k=0

(
n−2H + 2σ2

)2
+ 2

n−1∑
k,j=0,
j<k

(1

2
n−2Hvk−j+

+E∆δk,n∆δj,n

)2)
≤ 2n4H−2

(
n−1∑
k=0

(
n−4H + 4n−2Hσ2 + 4σ4

)
+

+4

n−1∑
k,j=0,
j<k

(1

4
n−4Hv2k−j +

(
E∆δk,n∆δj,n

)2))
=

2

n
+ 8n2H−1σ2 + 8n4H−1σ4+

+8n4H−2
n−1∑

k−j=1

(
1

4
n−4Hv2k−j + σ4

)
+ 8n4H−2

n−1∑
k−j>1

(
1

4
n−4Hv2k−j

)
=

=
2

n
+ 8n2H−1σ2 + 8n4H−1σ4 + 8n4H−2(n− 1)σ2 +

4

n2

n−1∑
k−j>1

v2k−j .

Denote k − j = l, j < k and let:

vl = (l + 1)2H − 2l2H + (l − 1)2H , 1 ≤ l ≤ n− 1.

Then from the previous inequality we obtain:

V arŜn(X) ≤ 2

n
+ 8n2H−1σ2 + 8n4H−1

(
1− 1

n

)
σ4+

+
2

n2

n−1∑
l=1

(n− l)v2l ≤
2

n
+ 8n2H−1σ2 + 8n4H−1

(
1− 1

n

)
σ4 +

2

n

n−1∑
l=1

v2l .
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Since v21 =
(
22H − 2

)2 ≤ 4 for H ∈ (0, 1), we have

V arŜn(X) ≤ 2

n
+ 8n2H−1σ2 + 8n4H−1

(
1− 1

n

)
σ4 +

2

n

(
4 +

n−1∑
l=2

v2l

)
.

The variable vl is an increment of the second order of the function f(x) = x2H , x ≥ 1,
H ∈ (0, H∗], H∗ < 1, corresponding to the interval [l−1, l+1]. Thus, the representation
obtained in [15, p. 244] for the increments of an arbitrary order implies that for n = 2

vl = f ′′(θl) · 12 = 2H(2H − 1)θ2H−2l , θl ∈ (l − 1, l + 1).

Note that

sup
H∈(0,1)

|2H(2H − 1)| = 2, l − 1 < θl, l ≥ 2.

So, the following inequality takes place

v2l ≤
4

(l − 1)4−4H
, l ≥ 2.

Hence, for the variance of the random variable Ŝn(X) we get the following upper
estimate:

sup
H∈(0,H∗]

V arŜn(X) ≤ 10

n
+ 8n2H

∗−1σ2+

(10) +8n4H
∗−1

(
1− 1

n

)
σ4 +

2

n

n−1∑
l=2

1

(l − 1)4−4H∗ .

For H∗ ∈ (0, 34 ) we get

n−1∑
l=1

1

l4−4H∗ ≤ ζ(4− 4H∗).

At H∗ = 3
4 we obtain

n−1∑
l=1

1

l
≤ 1 +

∫ n

1

dx

x
= 1 + lnn,

and for H∗ ∈
(
3
4 , 1
)
:

n−1∑
l=1

1

l4−4H∗ ≤ 1 +

∫ n

1

dx

x4−4H∗ = 1 +
n4H

∗−3

4H∗ − 3
.

Therefore, the latter considerations and inequality (10), for all H ∈ (0, H∗], H∗ < 1
imply the inequality

sup
H∈(0,H∗]

V arŜn(X) ≤ D(H∗, n),

where D(H∗, n) is determined by (4). The Lemma is proved. �
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4. Confidence intervals

Let us proceed to the confidence intervals construction.
Let 1− p ∈ (0, 1) be a given confidence level and the inequality

|Ŝn(X)− 1| = |n2H−1Sn(X)− 1| < ε

be true with high probability ε > 0. This implies that

(11) P
{
|Ŝn(X)− 1| > ε

}
≤ p

with a low probability p ∈ (0, 1).
Under our assumptions and inequality (11) we have the following double inequality:

1− ε < n2H−1Sn(X) < 1 + ε.

Solving this inequality with regard to the unknown parameter H ∈ (0, H∗], we obtain an
estimate for it, i.e. we find an interval containing the unknown parameter:

(12)
1

2

(
1 +

ln(1− ε)− lnSn(X)

lnn

)
< H <

1

2

(
1 +

ln(1 + ε)− lnSn(X)

lnn

)
.

Let us find an estimate for the value ε. Using Chebyshev inequality, from (12) we
obtain the estimates:

(13) P
{
|Ŝn(X)− 1| > ε

}
≤
E
(
Ŝn(X)− 1

)2
ε2

≤ p.

Further, let us apply the upper estimate for a random variable V arŜn(X), obtained in
Lemma 3.1. Then, from the relations (3), (4) and inequality (13) we have

P
{
|Ŝn(X)− 1| > ε

}
≤
E
(
Ŝn(X)− 1

)2
ε2

≤ D(H∗, n)

ε2
≤ p.

The inequality above implies that

(14) ε ≥

√
D(H∗, n)

p
.

For the corresponding values of H∗ ⊂ (0, 1), σ and n, the number of observations, we
obtain the optimal value of variance D(H∗, n). Then from the inequality (14) we find an
estimate for variable ε. Using the above reasoning again we construct the non–asymptotic
confidence intervals for Hurst parameter H of a fractional Brownian motion.

Thus, the following theorem is true.

Theorem 4.1. Let H ∈ (0, H∗], where H∗ < 1 is known. Then the interval (Il(n), Ir(n))∩
(0, 1) is a confidence interval for the Hurst parameter H of a fractional Brownian motion
{ξ(t), t ∈ [0, 1]} with the confidence probability 1− p ∈ (0, 1), where

Il(n) =
1

2

(
1 +

ln(1− ε)− lnSn(X)

lnn

)
, Ir(n) =

1

2

(
1 +

ln(1 + ε)− lnSn(X)

lnn

)
,

where ε satisfies (14) and D(H∗, n) is determined by the equality (4).

Example 4.1. Consider the given observation model with measurement error of the
fractional Brownian motion values {ξ(t), t ∈ [0, 1]} in the form of (2).

Let 1− p = 0.9 be a given confidence level.
Table 1 shows the length of the confidence intervals ∆I(n) := Ir(n) − Il(n) for the

Hurst parameter H at the corresponding values of parameter H∗ ⊂ (0, 1), variables σ
and ε using Theorem 4.1.
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σ H∗ = 0.5 H∗ = 0.7 H∗ = 0.8
ε ∆I(n) ε ∆I(n) ε ∆I(n)

10−2.5 n = 128900 n = 4008 n = 1727
0.053 0.0045 0.315 0.0395 0.707 0.118

Table 1. Lengths of the confidence intervals (Il(n), Ir(n)) .

5. Conclusion

In this article we obtained the non–asymptotic confidence intervals for Hurst para-
meter H of the fractional Brownian motion in one measurement error model using the
Baxter statistics.

References

1. T. Higuchi, Approach to an irregular time series on the basis of fractal theory, Physica D. 31

(1940), 277–283.
2. J.-M. Poggi and M.-C. Viano, An estimate of the fractal index using multi-scale aggregates, J.

Time Series Anal. 19 (1998), 221–233.

3. J.-F. Coeurjolly, Estimating the parameters of a fractional Brownian motion by discrete vari-
ations of this sample paths , Stat. Inference for Stoch. Process. 4 (2001), 199–207.

4. B. L. S. Prakasa Rao, Statistical Inference for Fractional Diffusion Processes, Chichester: John

Wiley Sons, 2010.
5. P. Levy, Le mouvement Brownian plan, Amer J. Math. 62 (1940), 487–550.

6. G. Baxter, A strong limit theorem for Gaussian processes, Proc. Amer. Math. Soc. 7 (1956),

no. 3, 522–527.
7. J. M. Bardet, Un test d’auto–similarite hour les processus gaussiences a accroissements sta-

tionares, C. R. Acad. Sci. Paric. 328 (1999), 521–526.

8. O. O. Kurchenko, A strongly consistent estimate for the Hurst parameter of fractional Brownian
motion, Teor. Imovir. Mat. Stat. 67 (2002), 45–54.

9. J–C. Breton, I. Nourdin and G. Peccati, Exact confidence intervals for the Hurst parameter of
a fractional Brownian motion, Electronic J. Statist. 3 (2009), 416–425.

10. H. Schneeweiss and H. J. Mittag, Lineare Modelle mit fehlerbehafteten Daten, Heidelberg :

Physica-Verlag, 1986.
11. R. J. Carroll, D. Ruppert and L. A. Stefanski, Measurement Error in Nonlinear Models, Chap-

man and Hall, London, 1995.

12. C.–L. Cheng and J. W. Van Ness, Statistical Regression with Measurement Error, Arnold,
London, 1999.

13. A. Kukush, S. Shklyar, S. Masiuk, M. Chepurny and I. Likhtarov, Regression model with

measurement errors and their application for estimation of radiation risk, Kyiv, 2015. (in
Ukrainian)

14. I. A. Ibragimov and Y. A. Rozanov, Gaussian random processes, ”Nauka”, Moscow, 1970. (in

Russian)
15. G. M. Fikhtengolts, A Course of Differential and Integral Calculus, vol. 1, ”Nauka”, Moscow,

1969. (in Russian)

Uzhhorod National University, Department of Probability Theory and Mathematical Ana-
lysis, 14 Universytetska Street, Uzhhorod, Ukraine.

E-mail address: olja sunjavska@ukr.net


