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M. V. TANTSIURA

ON STRONG SOLUTIONS TO COUNTABLE SYSTEMS OF SDES

WITH INTERACTION AND NON-LIPSCHITZ DRIFT

A countable system of stochastic differential equations is considered. A theorem on
existence and uniqueness of a strong solution is proved if drift and diffusion coeffi-

cients satisfy finite interaction radius condition.

1. Introduction

Consider an infinite system of stochastic differential equations in R

(1)

 dXk(t) = a(Xk(t), µ(t))dt+ b(Xk(t), µ(t))dwk(t), k ∈ Z, t ∈ [0, T ],
µ(t) =

∑
k∈Z δXk(t),

Xk(0) = uk, k ∈ Z.

Equation (1) can be considered as an equation that describes motion of an infinite
system of interacting particles in a random medium. We can interpret Xk(t) as a position
of the k-th particle at a time instant t, the measure µ(t) as the distribution of all particles’
mass at a time instant t. The functions a and b are interaction functions, uk is an initial
position of the k-th particle. We will suppose that {uk|k ∈ Z} is a nondecreasing sequence
such that limk→+∞ uk = +∞, limk→−∞ uk = −∞.

The aim of this work is to prove the existence and uniqueness of a strong solution to
equation (1) with non-Lipschitz drift coefficient.

The existence and uniqueness of a strong solution of a stochastic differential equa-
tion is well studied in a finite-dimensional case. Zvonkin [11] proved the existence and
uniqueness of a strong solution of a one-dimensional stochastic differential equation with
non-Lipschitz coefficients. Veretennikov [10] proved the similar result for the multidi-
mensional case. For example, it follows from [10] that if a is a measurable function that
satisfies the linear growth condition, diffusion coefficient b is Lipschitz continuous and
uniformly elliptic, then there exists a unique strong solution of the equation

dX(t) = a(X(t))dt+ b(X(t))dw(t), X(0) = x0.

In [1] Veretennikov’s result is generalized for the infinite-dimensional case, but their
assumptions are not satisfied for equation (1).

The existence and uniqueness of a strong solution to equation (1) was proved in
[7] for a bounded measurable drift coefficient a(·, ·) that satisfies the finite interaction
radius condition and b(·, ·) ≡ 1. The main idea of the proof was to divide the system
of particles into a countable number of finite subsystems that do not interact. Then we
apply Veretennikov’s theorem with some additional argumentation because the division
into subsystems is anticipating. The idea to divide a system of particles into finite
clusters that do not interact was implemented in [8] to build Hamiltonian dynamics for
a countable systems of interacting particles. Also the similar idea was used in [5] for the
construction of a countable system of sticky Brownian particles. However, proofs of cited
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papers are unapplicable directly to equation (1). For instance, if b(·, ·) is not constant
then stochastic integrals ∫ t

0

b(Xk(s), µ(s))dwk(s), k ≥ 1,

are not independent. Thats why we need some additional argumentation.
In section 2 we formulate the main results of the paper. In section 3 we prove the

existence of a weak solution. In section 4 we prove the pathwise uniqueness of a solution
to (1). Then the existence and uniqueness of a strong solution follow from the Yamada-
Watanabe theorem.

2. Main results

Denote by M the space of all locally finite measures on R with a vague topology τ
defined by

νn
τ→ ν ⇔ ∀f ∈ Cc(R) :

∫
R
fdνn →

∫
R
fdν, n→∞,

where Cc(R) is the set of all continuous functions with compact support. Denote

(2) pw(t, x) = P ( sup
s∈[0,t]

w(s) ≥ x) = 2

∫ ∞
x∨0

1√
2πt

exp (−y2/2t)dy, x ∈ R,

where w is a Wiener process.
The following theorem is the main result of this paper.

Theorem 2.1. Suppose that:

1) function a is continuous and bounded:

‖a‖∞ := sup
x∈R

sup
ν∈M
|a(x, ν)| <∞;

2) function b is continuous, bounded and separated from zero:

‖b‖∞ := sup
x∈R

sup
ν∈M
|b(x, ν)| <∞, inf

x∈R
inf
ν∈M
|b(x, ν)| > 0;

3) for every n ∈ N there exists a constant Cb,n such that for every x, y, x1, ..., xn,
y1, ..., yn:

|b
(
x,

n∑
k=1

δxk

)
− b
(
y,

n∑
k=1

δyk
)
| ≤ Cb,n|x− y|+ Cb,n

n∑
k=1

|xk − yk|;

4) the functions a and b satisfy the finite interaction radius condition:

∃d > 0 ∀x ∈ R ∀ν ∈M : a(x, ν) = a(x, νI(x−d,x+d)), b(x, ν) = b(x, νI(x−d,x+d)),

where (νIB)(A) = ν(A ∩B), A,B ∈ B(R);
5) measure µ satisfies the following condition: there exists a deterministic increasing

sequence {zn|n ∈ Z} such that

lim
n→∞

zn = +∞, lim
n→−∞

zn = −∞

and

(3) ∃r > 0 ∀n ∈ Z :
∏
i∈Z

(
1− 2pw(T‖b‖2∞, |zn − ui| − ‖a‖∞T − d/2)

)
> r.

Then there exists a unique strong solution of equation (1).

Remark 2.1. Condition 4 means that if distance between two particles is greater then d,
then they do not interact.
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The interaction functions a and b can be the following

a(x, ν) = g

(∫
R
f(x− u)ν(du)

)
= g

(∑
k∈Z

f(x− uk)

)
,

where ν =
∑
k∈Z δuk

, function f is a continuous function such that suppf ⊂ (−d, d),
function g is a continuous bounded function.

Condition 5 in Theorem 2.1 is the hardest condition to check. Following examples
give a wide class of measures µ(0) that satisfy this condition.

Example 2.1. For a locally finite measure ν denote

Λ(ν) := lim sup
n→∞

ν([−n, n])

2n
.

If 2Λ(µ(0))d < 1, then measure µ(0) satisfies condition 5 of Theorem 2.1 (see [7]).

Example 2.2. Let m be a locally finite measure on R such that

∃Cm > 0 ∀[a, b] ⊂ R : m([a, b]) ≤ Cm(b− a+ 1),

µ(0) be a Poisson point measure with intensity m. Suppose that measure µ(0) and
{wk, k ∈ Z} are independent. Then measure µ(0) satisfies condition 5 of Theorem
2.1 almost surely (see [7]).

The idea of proof of Theorem 2.1 is to verify the existence of a weak solution and
pathwise uniqueness. Then the existence and uniqueness of a strong solution follow from
the Yamada-Watanabe theorem.

The existence of a weak solution is proved in section 3 for bounded continuous co-
efficients. The proof is rather standard. Weak compactness of a sequence of solution
approximations is proved and then Skorokhod’s representation theorem is used.

The pathwise uniqueness is proved in section 4 in the following way. Using assumption
5 of Theorem 2.1 we prove that for any two strong solutions (1) the system of particles
almost surely can be divided into a countable number of the same finite subsystems so
that distance between any two subsystems is greater than d for every t ∈ [0, T ]. Then
it follows from condition 4 that these subsystems do not interact. Hence the infinite
system of stochastic differential equations (1) can be divided into a countable number
of finite systems of stochastic differential equations. Generally speaking, the division
into subsystems is random and anticipating, so the pathwise uniqueness doesn’t follow
directly from Veretennikov’s theorem. The required argumentation can be done similarly
to the work [7].

The fact that R is linearly ordered is used in this paper to prove that the system of
particles can be divided into finite subsystems that do not interact. On the other side,
the idea to divide the system into a countable number of clusters that do not interact
may work also in Rd. But some other methods are needed to prove existence of such
clusters. The multidimensional case will be considered in future works.

3. Existence of the weak solution

Theorem 3.1. Suppose that a and b are bounded and continuous and there exists a
constant L > 0 such that

(4) lim sup
m→∞

µ(0, [−m,m])/mL <∞.

Then there exists a weak solution of equation(1).
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The idea of the proof is to approximate the countable system (1) by a sequence of
finite systems, select a convergent subsequence and pass to a limit.

For any segment [α, β] ⊂ R and number x ∈ R we will denote by d([α, β], x) the
Euclidian distance from the point x to the segment [α, β].

The following lemma gives an apriori estimate of the probability that {Xk(t), t ∈
[0, T ]} visits a fixed interval.

Lemma 3.1. If {Xk(·), k ∈ Z, µ(·)} is a solution of equation (1) then for every i ∈ Z
P (∃t ∈ [0, T ] : Xi(t) ∈ [α, β]) ≤ pw(T‖b‖2∞, d([α, β], ui)− ‖a‖∞T ).

Proof of Lemma 3.1. It follows from (1) that

Mi(t) := Xi(t)− ui −
∫ t

0

a(Xi(s), µ(s))ds =

∫ t

0

b(Xi(s), µ(s))dwi(s), t ∈ [0, T ],

is a continuous martingale. Therefore there exists a Wiener process Bi(·) such that

(5) ∀t ∈ [0, T ] Mi(t) = Bi(〈Mi〉(t)).
For every t ∈ [0, T ], ∣∣∣∣∫ t

0

a(Xi(s), µ(s))ds

∣∣∣∣ ≤ ‖a‖∞t ≤ ‖a‖∞T.
Hence

P (∃t ∈ [0, T ] : Xi(t) ∈ [α, β]) ≤ P ( sup
t∈[0,T‖b‖2∞]

Bi(t) ≥ d([α−‖a‖∞T, β+‖a‖∞T ], ui)) =

= pw(T‖b‖2∞, d([α, β], ui)− ‖a‖∞T ).

The lemma is proved.
For any n ≥ 1 consider an equation

(6)


dXn

k (t) = a(Xn
k (t), µn(t))dt+ b(Xn

k (t), µn(t))dwk(t), k = −n, n, t ∈ [0, T ],
µnt =

∑n
i=−n δXn

i (t),
Xn
k (0) = uk, k = −n, n,

Xn
k (t) = uk, |k| > n, t ∈ [0, T ].

For |k| ≤ n the system (6) is a usual finite system of stochastic differential equa-
tions. Expressions a(Xn

k (t),
∑n
i=−n δXn

i (t)) and b(Xn
k (t),

∑n
i=−n δXn

i (t)) are continuous
functions as functions of the vector

(Xn
−n(t), Xn

−n+1(t), ..., Xn
n−1(t), Xn

n (t)).

It follows from [9, section 3.3] that there exists a weak solution of equation (6) for |k| ≤ n.
So, there exists a weak solution of equation (6).

We need the following lemma about weak relative compactness.

Lemma 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied. Then for every
integer i the sequence of distributions of {Xn

i (·), n ≥ 1} is relatively compact as a sequence
of random elements in C([0, T ]).

Proof of Lemma 3.2. It is enough to verify (see [6, Theorem 1.4.7]) that there exists
a constant C > 0 such that:

(7) ∀n ≥ 1 ∀t0, t1 ∈ [0, T ] : E(Xn
i (t1)−Xn

i (t0))4 ≤ C|t1 − t0|3/2

and

(8) ∀n ≥ 1 ∀t ∈ [0, T ] : E(Xn
i (t))4 ≤ C.

These inequalities can be checked in a standard way because the coefficients a and b are
bounded.
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Lemma 3.3. Suppose that the assumptions of Theorem 3.1 are satisfied. Let f be a
continuously differentiable function with compact support. Then the sequence {〈f, µn(t)〉}
is weakly relatively compact as a sequence of random elements in C([0, T ]).

Proof of Lemma 3.3. It is enough to check two conditions:

(9) ∀ε > 0 ∃C > 0 ∀k ≥ 1 P (|〈f, µn(0)〉| > C) < ε,

(10) ∀ε > 0 ∃δ ∈ (0, 1) ∀k ≥ 1 P (ω〈f,µn(·)〉(δ) ≥ ε) ≤ ε,
where ωg(δ) = sup|s−t|<δ |g(t)− g(s)|.

The function f is a continuous function with compact support. So

〈f, µn(0)〉 =
∑
|i|≤n

f(Xn
i (0)) =

∑
|i|≤n

f(ui)→
∑
i∈Z

f(ui), n→∞.

Therefore the sequence {〈f, µn(0)〉, n ≥ 1} is bounded and the condition (9) is satisfied.
Let us check the condition (10). It is easy to see that for every M ∈ N

P (ω〈f,µn(·)〉(δ) ≥ ε) ≤ P (∃|i| > M ∃t ∈ [0, T ] : Xn
i (t) ∈ suppf)+

+
∑
|i|≤M

P

(
ωXi(δ) ≥

ε

‖f ′‖∞(2M + 1)

)
.

Let m be an integer such that supp f ⊂ [−m,m]. Then

P (∃|i| > M ∃t ∈ [0, T ] : Xn
i (t) ∈ [−m,m]) ≤

≤
∑
|i|>M

P (∃t ∈ [0, T ] : Xn
i (t) ∈ [−m,m]) ≤

≤
∑
i:i>M

pw(T‖b‖2∞, ui − ‖a‖∞T −m) +
∑

i:i<−M
pw(T‖b‖2∞,−m− ui − ‖a‖∞T ).

Here the last inequality follows from Lemma 3.1. Denote by SM the right hand side
of the last inequality. The inequality (4) implies that SM < ∞. It follows from Lemma
3.2 (see [3, Theorem 3.7.2]) that

∀ε > 0 ∃δ1 = δ1(ε) ∈ (0, 1) ∀n ≥ 1 : P (|ωXi
n
(δ1)| ≥ ε) ≤ ε.

Let ε > 0 be a fixed positive number. Let us choose M ∈ N such that SM < ε/2. Now
for δ = δ1(ε/(2M + 1)‖f ′‖∞) we have

P (ω〈f,µn(·)〉(δ) > ε) ≤ P (∃|i| ≥M ∃t ∈ [0, T ] : Xn
i (t) ∈ [−m,m])+

+
∑
|i|≤M

P (ωXn
i

(δ) > ε/(2M + 1)‖f ′‖∞) ≤ ε/2 + ε/2 = ε.

The lemma is proved.

Lemma 3.4. Suppose that the assumptions of Theorem 3.1 are satisfied. Then the
sequence of distributions of {µn(·), n ≥ 1} ⊂ C([0, T ],M) is relatively compact.

Proof of Lemma 3.4. Let {fn, n ∈ N} be a sequence of continuously differentiable
functions with compact support. If {fn, n ∈ N} is dense in Cc(R), then the topology in
M is induced by the metric

(11) ρ(µ, ν) =
∑
n∈N

1/2n
(∣∣∣∣∫

R
fndµ−

∫
R
fndν

∣∣∣∣ ∧ 1

)
and (M, ρ) is a complete separable metric space [2].
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Denote

M(Cm,m ≥ 1) = {µ | ∀m ≥ 1 µ((−m,m)) ≤ Cm}.
It is easy to prove that for every sequence {Cm,m ∈ N} the set M(Cm,m ≥ 1) is compact
in M. To prove the lemma it is enough to check two conditions [3, Theorem 3.7.2]:

1) for every ε > 0 and t ∈ [0, T ] ∩Q there exists a compact Γε,t ⊂M such that

sup
n
P (µn(t) ∈ Γε,t) ≥ 1− ε;

2) ∀ε > 0 ∃δ > 0 : supn P (ωµn(·)(δ) ≥ ε) ≤ ε.
Let us check condition 1. First note that

(12) E
∑
i∈Z

1I∃t∈[0,T ]:Xn
i (t)∈[−m,m] ≤ |{i : ui ∈ [−m− ‖a‖∞T,m+ ‖a‖∞T ]}|+

+
∑

i:ui<−m−‖a‖∞T

pw(T‖b‖2∞,−m− ‖a‖∞T − ui)+

+
∑

i:ui>m+‖a‖∞T

pw(T‖b‖2∞, ui −m− ‖a‖∞T ).

Denote by Cm the right hand side of the inequality (12). It follows from (4) that∑
i:ui>m+‖a‖∞T

pw(T‖b‖2∞, ui −m− ‖a‖∞T ) ≤

≤
∑

k≥m+‖a‖∞T

∣∣{i : |ui| < k}
∣∣pw(T‖b‖2∞, k −m− ‖a‖∞T ) <∞.

We can check similarly that the other sum in (12) is also finite. Hence, Cm <∞.
It follows from (12) and the Chebyshev inequality that

P (µn(t) /∈M(2mCm/ε,m ≥ 1)) ≤

≤
∑
m∈N

P (µn(t)([−m,m]) ≥ 2mCm/ε) ≤
∑
m∈N

ε/2m = ε.

Hence, condition 1 is satisfied. Let us check condition 2.

ρ(µn(t1), µn(t2)) =
∑
m∈N

1/2m (|〈fm, µn(t1)〉 − 〈fm, µn(t2)〉| ∧ 1) ≤

≤
∑
m∈N

1/2m(ω〈fm,µn(·)〉(|t1 − t2|) ∧ 1).

Now condition 2 follows from (10). The lemma is proved.
Combining Lemma 3.3, Lemma 3.4 and using Kantor’s diagonal method we can

prove that there exists a subsequence {nk, k ≥ 1} such that the sequence (Xnk
i (·), i ∈

Z, µnk(·)), k ≥ 1, is weakly convergent as a sequence of random elements in C([0, T ],R∞)×
C([0, T ],M). Therefore, Skorokhod’s representation theorem implies that there exists a

probability space (Ω̃, F̃ , P̃ ) and random processes {X̃nk
i (·), w̃nk

i (·), µ̃nk(·)}i∈Z, k≥1 and

X̃i(·), w̃i(·), i ∈ Z, µ̃(·) defined on this space such that X̃nk
i

a.s.→ X̃i, w̃
nk
i

a.s.→ w̃i as random
elements in C([0, T ]), and µ̃nk(·) → µ̃(·), k → ∞, as random elements in C([0, T ],M).
Moreover,

∀k ≥ 1 (X̃nk
i (·), w̃nk

i (·), µ̃nk(·))i∈Z
d
= (Xnk

i (·), wnk
i (·), µnk(·))i∈Z.

For simplicity of notation we will assume that

∀i Xn
i (·) a.s.→ Xi(·), wni (·) a.s.→ wi(·) and µn(·) a.s.→ µ(·) as n→∞.
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Lemma 3.5. Suppose that assumptions of Theorem 3.1 are satisfied. Then

∀f ∈ Cc(R) : E sup
t∈[0,T ]

∑
i∈Z
|f(Xn

i (t))− f(Xi(t))| → 0, n→∞.

Proof of Lemma 3.5. Consider any f ∈ Cc(R). Let l ∈ N be such that supp f ⊂
(−l, l).

Then

(13) E sup
t∈[0,T ]

∑
i∈Z
|f(Xn

i (t))− f(Xi(t))| ≤ E sup
t∈[0,T ]

∑
|i|≤N

|f(Xn
i (t))− f(Xi(t))|+

+ ‖f‖∞
∑
|i|>N

(P (∃t ∈ [0, T ] : Xn
i (t) ∈ (−l, l)) + P (∃t ∈ [0, T ] : Xi(t) ∈ (−l, l)))

Similarly to estimation of (12), we can prove that Lemma 3.1 (applied to Xn
i ) and

condition (4) imply the following

lim
N→∞

sup
n∈N

∑
|i|>N

P (∃t ∈ [0, T ] : Xn
i (t) ∈ (−l, l)) = 0.

Let ε > 0 be any fixed positive number. Select N ∈ N such that

sup
n∈N

∑
|i|>N

P (∃t ∈ [0, T ] : Xn
i (t) ∈ (−l, l)) < ε.

It follows from Fatou’s lemma that

limn→∞

∑
|i|>N

P (∃t ∈ [0, T ] : |Xn
i (t)| > l) ≥

∑
|i|>N

P (∃t ∈ [0, T ] : |Xi(t)| > l).

Thus, the right hand side of (13) is less than or equal to 3ε for all N ≥ N0. The lemma
is proved.

Lemma 3.5 implies that

∀j ∈ N sup
t∈[0,T ]

∑
i∈Z
|fj(Xn

i (t))− fj(Xi(t))|
P→ 0, n→∞,

where functions fj are from the definition of the metric (11). Therefore, µn(·) → µ(·)
in probability. Passing if necessary to a subsequence, without loss of generality we may
assume that µn(·)→ µ(·), n→∞ almost surely. Now passing to the limit as n→∞ in
the system

(14)


dXn

k (t) = a(Xn
k (t), µn(t))dt+ b(Xn

k (t), µn(t))dwnk (t), k ∈ Z, t ∈ [0, T ],
µn(t) =

∑n
i=−n δXn

i (t),
Xn
k (0) = uk, k ∈ Z,

we obtain that (Xi(·), i ∈ Z, µ(·)) is a weak solution of equation (1). The convergence
of Lebesgue integrals follows from Lebesgue’s dominated convergence theorem. The
convergence of stochastic integrals can be checked similarly to the proof of the Skorokhod
theorem on weak existence of a solution of a stochastic differential equation(see [9, section
3.3]). Theorem 3.1 is proved.

4. Proof of Theorem 2.1

It is enough to prove pathwise uniqueness of the solution of equation (1). Then
Theorem 2.1 will follow from Theorem 3.1 and the Yamada-Watanabe theorem (in our
case the theorem can be proved similarly to [4, paragraph 4.1]).
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Lemma 4.1. Suppose that (X1
k(t), µ1(t), k ∈ Z, t ∈ [0, T ]) and (X2

k(t), µ2(t), k ∈ Z, t ∈
[0, T ]) are solutions of equation (1). Then there exists an infinite number of p ∈ Z such
that

∀q ∈ {1, 2} ∀t ∈ [0, T ] ∀i < p ∀j ≥ p |Xq
i (t)−Xq

j (t)| ≥ d.

Lemma 4.1 and condition 5 of Theorem 2.1 imply that for any two strong solutions of
equation (1) the system of particles can be divided into the same finite subsystems that
do not interact. If we prove Lemma 4.1, then the pathwise uniqueness can be verified
similarly to the proof of Theorem 1.1 in [7] using the Veretennikov theorem.

For every k ∈ Z, q ∈ {1, 2} the function

Mq
k (t) =

∫ t

0

b(Xq
k(s), µq(s))dwk(s)

is a martingale. Moreover, for any k, l ∈ Z, k 6= l and q, r ∈ {1, 2} we have 〈Mq
k ,M

r
l 〉 = 0.

Hence there exists a sequence [4, Theorem 2.7.3] of independent pairs of Wiener processes
{B1

k(·), B2
k(·)|k ∈ Z} (inside the pair the processes B1

k, B
2
k might be dependent) such that

(15) ∀t ∈ [0, T ] ∀k ∈ Z ∀i ∈ {1, 2} : M i
k(t) = Bik(〈M i

k〉(t)).
Denote

(16) ξik = uk + ‖a‖∞T + sup
t∈[0,T‖b‖2∞]

Bik(t), ηik = uk − ‖a‖∞T + inf
t∈[0,T‖b‖2∞]

Bik(t),

(17) Ak = {∀q ∈ {0, 1} sup
i:ui<zk

ξqi ≤ zk − d/2− ‖a‖∞T, inf
i:ui>zk

ηqi ≥ zk + d/2 + ‖a‖∞T}.

Assume that Ak occurs, and ui < zk ≤ uj . Then

∀q ∈ {1, 2} ∀t ∈ [0, T ] |Xq
i (t)−Xq

j (t)| ≥ d,
where d is an interaction radius. So, the proof of Lemma 4.1 follows from the next lemma.

Lemma 4.2. Events {Ak, k ≥ 1} and events {Ak, k ≤ −1} occur infinitely often.

Remark 4.1. We will prove that the events {Ak, k ≥ 1} occur infinitely often. The fact
that the events {Ak, k ≤ −1} occur infinitely often can be proved similarly.

Remark 4.2. The events Ak are dependent, so the second Borel-Cantelli lemma can’t be
directly applied. The idea of the proof is to approximate events from some subsequence
Akn by independent events A′kn . The events A′kn will be defined in a similar way as Akn
but the supremum and the infimum are taken over a finite set of indices. If for different n
these sets of indices have an empty intersection, then the events A′kn will be independent.

Proof of Lemma 4.2. First let us prove that

(18) ∀k ≥ 1 P ( sup
i:ui<zk

ξik <∞) = 1.

Fix any k ≥ 1. Condition 5 of Theorem 2.1 implies that

(19)
∑

i:ui<zk

pw(T‖b‖2∞, |zk − ui| − ‖a‖∞T − d/2) < +∞.

The maximum of the random process (Xi
k(t), t ∈ [0, T ]) can be estimated by the maxi-

mum of the Wiener process (Bik(t), t ∈ [0, T‖b‖2∞]) similarly to the proof of Lemma 3.1
(see (5)). Hence for every i such that ui < zk we have an inequality

P
(
ξqi ≥ zk + ‖a‖∞T + d/2

)
≤ pw(T‖b‖2∞, |zk − ui| − ‖a‖∞T − d/2).

So, it follows from (3) that

(20) ∀q ∈ {1, 2}
∑

i:ui<zk

P
(
ξqi ≥ zk − ‖a‖∞T − d/2

)
< +∞.
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Now the Borel-Cantelli lemma implies that for every q ∈ {1, 2} there exists only a finite
number of integers i such that ui < zk and ξqi (t) ≥ zk − ‖a‖∞T − d/2. We have proved
(18).

For the same reason,

∀q ∈ {1, 2}∀k ≥ 1 P ( inf
i:ui>zk

ηqi > −∞) = 1.

Similarly to the proof of (18) we can check that for any integer k∣∣∣{i ∈ Z|ui > zk,∀q ∈ {1, 2} ηqi ≤ zk − ‖a‖∞T − d/2
}∣∣∣ <∞ a.s.

Hence,

∀q ∈ {1, 2} ηqn
a.s.→ +∞, n→ +∞,

and
∀q ∈ {1, 2} ξqn

a.s.→ +∞, n→ +∞.
Therefore, for any n ∈ Z and ε > 0 there exists l(n, ε) such that

(21)

∀l ≥ l(n, ε) : P
(
∀q ∈ {1, 2} sup

n<k≤n+l
ξqk 6= sup

k≤n+l
ξqk

)
< ε,

P
(
∀q ∈ {1, 2} inf

k>n
ηqk 6= inf

n+l≥k>n
ηqk

)
< ε.

Let {mk|k ∈ N} ⊂ Z be an increasing sequence. Denote

i(k) = max{i|ui ≤ zmk
}.

Let us construct a sequence {mk} such that

(22) ∀k ≥ 1 : i(k + 1)− i(k) ≥ max{l(i(k), 1/2k), 2}.
Then

(23) P
(
∀M ∃k > M ∀q ∈ {1, 2} sup

i≤i(k)
ξqi ≤ zmk

− d/2− ‖a‖∞T,

inf
i>i(k)

ηqi ≥ zmk
+ d/2 + ‖a‖∞T

)
≥

≥ P
(
∀M ∃k > M ∀q ∈ {1, 2} sup

i≤i(k)
ξqi = sup

i(k−1)<i≤i(k)
ξqi ,

inf
i>i(k)

ηqi = inf
i(k+1)≥i>i(k)

ηqi , sup
i(k−1)<i≤i(k)

ξqi ≤ zmk
− d/2− ‖a‖∞T,

inf
i(k+1)≥i>i(k)

ηqi ≥ zmk
+ d/2 + ‖a‖∞T

)
≥ P (B1 ∩B2),

where
(24)
B1 = {∃M ∀k > M ∀q ∈ {1, 2} sup

i≤i(k)
ξqi = sup

i(k−1)<i≤i(k)
ξqi , inf

i>i(k)
ηqi = inf

i(k+1)≥i>i(k)
ηqi },

(25) B2 = {∀M ∃k > M∀q ∈ {1, 2} sup
i(k−1)<i≤i(k)

ξqi ≤ zmk
− d/2− ‖a‖∞T,

inf
i(k+1)≥i>i(k)

ηqi ≥ zmk
+ d/2 + ‖a‖∞T}.

The event B1 means that all but a finite number of the events

{∀q ∈ {1, 2} sup
i≤i(k)

ξqi = sup
i(k−1)<i≤i(k)

ξqi , inf
i>i(k)

ηqi = inf
i(k+1)≥i>i(k)

ηqi }

occur, the event B2 means that the events

{∀q ∈ {1, 2} sup
i(k−1)<i≤i(k)

ξqi ≤ zmk
−d/2−‖a‖∞T, inf

i(k+1)≥i>i(k)
ηqi ≥ zmk

+d/2+‖a‖∞T}
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occur infinitely often.
The inequalities (22) and (21) imply that∑
k≥1

P
({
∀q ∈ {1, 2} sup

i≤i(k)
ξqi 6= sup

i(k−1)<i≤i(k)
ξqi
}
∪

∪
{
∀q ∈ {1, 2} inf

i>i(k)
ηqi 6= inf

i(k+1)≥i>i(k)
ηqi
})
≤
∑
k≥1

(1/2k + 1/2k) < +∞.

Now it follows from the Borel-Cantelli lemma that P (B1) = 1.
Denote

Ck = {∀q ∈ {1, 2} sup
i(2k−1)<i≤i(2k)

ξqi ≤ zm2k
− d/2− ‖a‖∞T,

inf
i(2k+1)≥i>i(2k)

ηqi ≥ zm2k
+ d/2 + ‖a‖∞T}

Events Ck, k ≥ 1 are independent. If we prove that

(26)
∑
k≥1

P (Ck) = +∞,

then the Borel-Cantelli lemma will imply that P (B2) = 1.
Let us estimate the probability P (Ck) from below:

P (Ck) = P

 i(2k)⋂
i=i(2k−1)+1

{∀q ∈ {1, 2} ξqi ≤ zmk
− d/2− T‖a‖∞}∩

∩
i(2k+1)⋂
i=i(2k)+1

{∀q ∈ {1, 2} ηqi ≥ zmk
+ d/2 + T‖a‖∞}

 ≥
≥

i(2k+1)∏
i=i(2k−1)+1

(1− 2pw(T, |zmk
− ui| − d/2− T‖a‖∞})) ≥

≥
∏
i∈Z

(1− 2pw(T, |zmk
− ui| − d/2− T‖a‖∞})) ≥ r > 0,

where r > 0 is from condition 5 of Theorem 2.1. Hence (26) is satisfied and, consequently,
P (B2) = 1. Therefore, P (B1 ∩ B2) = 1, and (23) implies that the events Ak occur
infinitely often almost surely as k → +∞. The case k → −∞ can be considered similarly.
This completes the proof of Lemma 4.2. Hence Lemma 4.1 and Theorem 2.1 are proved.

Thanks. The author is very grateful to A. Yu. Pilipenko for useful advices and the
permanent attention to this work. The author is also grateful to the anonymous referee
for his/her constructive comments that improved significantly the clarity of this paper.
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