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A. V. IVANOV AND I. V. ORLOVSKY

ASYMPTOTIC NORMALITY OF LINEAR REGRESSION

PARAMETER ESTIMATOR IN THE CASE OF RANDOM

REGRESSORS

Sufficient conditions of asymptotic normality of the least squares estimator of lin-
ear regression model parameter in the case of discrete time and weak or long-range

dependent random regressors and noise are obtained in the paper.

1. Introduction

Linear regression model with random regressors is considered in the paper. The least
squares estimator (LSE) is chosen for parameter estimation as one of the most important
and much used regression model parameter estimator.

The LSE asymptotic properties of linear regression model parameter with time in-
dependent trends in weak dependent random regressors were considered in the book
by A. Ya. Dorogovstev [1]. Consistency and asymptotic normality of parameter LSE
of the model with continuous time and weak or long-range dependent errors in regres-
sors and random noise were studied in the papers by L. P. Golubovska, A. V. Ivanov,
I. V. Orlovsky [2], A. V. Ivanov, I. V. Orlovsky [3, 4]. Strong consistency of parameter
LSE of the model with discrete time and weak or long-range dependent random noise
and errors in regressors are considered in the paper by I. V. Orlovsky [5].

The aim of the paper is to obtain results similar to [2, 3, 4] for models with discrete
time which are widely used in applications. It is not a trivial transfer and requires specific
property of sums that contain slowly varying functions (Lemma 3.2). This property is
needed to cover the case of long-range dependent errors in regressors and/or random
noise. In addition, one of the key points of asymptotic normality proof is the use of a
discrete analogue of the Hölder-Young-Brascamp-Lieb inequality (Lemma 3.4).

2. Model and estimator

Consider a regression model

(1) Xj =

q∑
i=1

θizij + εj , j = 1, N, zij = aij + yij , i = 1, q,

where θ∗ = (θ1, ..., θq) ∈ Rq is a vector of unknown parameters (∗ means transposition),
{aij , j ∈ N} ⊂ R, i = 1, q, are some non random sequences and

A1. yij , j ∈ Z, i = 1, q, are independent centered stationary Gaussian sequences
with covariance functions (c.f.) Bi(k), k ∈ Z, Bi(0) = σ2

i .
A2. Random noise εj , j ∈ Z, is centered stationary Gaussian sequence independent

of yij , j ∈ Z, i = 1, q, with c.f. B(k), k ∈ Z, B(0) = σ2.
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Definition 2.1. Any random vector θ̂N = θ̂N
(
Xj , zij , i = 1, q, j = 1, N

)
, having the

property

SN (θ̂N ) = min
τ∈Rq

SN (τ), SN (τ) =

N∑
j=1

[
Xj −

q∑
i=1

τizij

]2

,

is said to be the LSE of unknown parameter θ obtained by the observations
{
Xj , zij , i =

1, q, j = 1, N
}

of the form (1).

Introduce the following notation:

A∗j = (a1j , ..., aqj) , Y
∗
j = (y1j , .., yqj) , Zj = Aj + Yj ,

f1 ∼
N→∞

f2 means
f1(N)

f2(N)
−→
N→∞

1.

Then, formally,

(2) θ̂N = Λ−1
N N−1

N∑
j=1

ZjXj = θ + Λ−1
N N−1

N∑
j=1

Zjεj ,

where

ΛN =
(
ΛilN
)q
i, l=1

= N−1
N∑
j=1

ZjZ
∗
j .

3. Auxiliary assertions

Assume that random sequences yij satisfy condition

A3. Bi ∈ l1, i.e. ci =
∞∑

n=−∞
|Bi(n)| <∞, i = 1, q.

Write

JN =
(
J ilN
)q
i, l=1

, J ilN = N−1
N∑
j=1

aijalj .

B1. (i) {aij , j ∈ N}, i = 1, q, are bounded sequences: sup
j∈N
|aij | = k̃i <∞, i = 1, q.

(ii) lim
N→∞

JN = J , where J =
(
J il
)q
i=1

is some positive definite matrix.

Denote by Λ = diag
(
σ2
i

)q
i=1

+ J .

Lemma 3.1. If conditions A1, A3 and B1 hold, then ΛN −→
N→∞

Λ a.s.

Proof. For fixed i, l consider general element of the matrix ΛN :

(3)

ΛilN =N−1
N∑
j=1

yijylj +N−1
N∑
j=1

aijylj +N−1
N∑
j=1

yijalj+

+N−1
N∑
j=1

aijalj = ∆il(N) + ∆l
i(N) + ∆i

l(N) + J ilN .
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Let i 6= l. As BiBl ∈ l1, then

(4)

E
(
∆il(N)

)2
=N−2

N∑
j=1

N∑
k=1

Bi(j − k)Bl(j − k) =

=σ2
i σ

2
lN
−1 + 2N−2

N−1∑
k=1

(N − k)Bi(k)Bl(k) ≤

≤2N−1
N−1∑
k=0

Bi(k)Bl(k) ≤ 2N−1
∞∑
k=0

|Bi(k)Bl(k)| = 2bilN
−1.

Set Nn = n2. Then
∞∑
n=0

E
(
∆il(Nn)

)2
<∞ and consequently ∆il(Nn) −→

n→∞
0 a.s.

Suppose that Nn ≤ N ≤ Nn+1. Then

|∆il(N)| ≤ max
Nn≤N≤Nn+1

|∆il(N)−∆il(Nn)|+ |∆il(Nn)|.

Let us show that

(5) max
Nn≤N≤Nn+1

|∆il(N)−∆il(Nn)| −→
n→∞

0 a.s.

Obviously

(6)

∆il(N)−∆il(Nn) =N−1
N∑
j=1

yijylj −N−1
n

Nn∑
j=1

yijylj =

=
(
N−1 −N−1

n

) Nn∑
j=1

yijylj +N−1
N∑

j=Nn

yijylj = S1 + S2,

|S1| ≤
Nn+1 −Nn

Nn
·
∣∣∆il(Nn)

∣∣ ∼
n→∞

2n−1
∣∣∆il(Nn)

∣∣ .
Consider the second term in (6):

ES2
2 ≤ N−2

n

Nn+1∑
j=Nn

Nn+1∑
k=Nn

|Bi(j − k)Bl(j − k)| ≤

≤ 2N−2
n

Nn+1−Nn∑
k=0

(Nn+1 −Nn − k)|Bi(k)Bl(k)| ≤ 2bil(Nn+1 −Nn)

N2
n

∼
n→∞

4biln
−3.

Thus S2 −→
n→∞

0 a.s., and

(7) ∆il(N) −→
N→∞

0 a.s.

Let us prove

(8) ∆l
i(N) −→

N→∞
0 a.s., i, l = 1, q.

Evidently E∆l
i(N) = 0 and

(9)

E
(
∆l
i(N)

)2
=N−2

N∑
j=1

N∑
k=1

aijaikBl(j − k) ≤

≤k̃2
iN
−2

N∑
j=1

N∑
k=1

|Bl(j − k)| ≤ k̃2
i clN

−1.
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Set Nn = n2. Then
∞∑
n=1

E
(
∆l
i(Nn)

)2
<∞ and ∆l

i(Nn) −→
n→∞

0 a.s. Subsequent proof

of (8) is similar to the proof of (7).
From (7),(8) and condition B1(ii) it follows that for i 6= l, ΛilN −→

N→∞
J il a.s.

Now let i = l. Then (3) can be rewritten in the form

ΛiiN = ∆ii(N) + 2∆i
i(N) + J iiN .

Similarly to the proof of (7) one can get

(10) ∆ii(N) −→
N→∞

σ2
i a.s.

Indeed, E∆ii(T ) = σ2
i , and due to Isserlis formula (see, for example [7], p. 30),

E[∆ii(T )− σ2
i ]2 = 2N−2

N∑
j=1

N∑
k=1

B2
i (j − k) ≤ 2ciσ

2
iN
−1.

Further proof of (10) is similar to (7).
Then from (10), (8) and condition B1(ii) it follows that ΛiiN −→

N→∞
σ2
i + J ii a.s. , and

Lemma 3.1 is proved. �

Corollary 3.1. If conditions of Lemma 3.1 hold, then for almost all ω ∈ Ω there exists

such N0 = N0(ω) that for any N > N0 LSE θ̂N given by (2) is defined.

Next statement can be understood as a discrete analogue of the Theorem 2.7 (p. 65-66)
of the book [6], on integrals containing slowly varying, at infinity, functions (s.v.f.).

Lemma 3.2. Let for some η ≥ 0 and function a(t), t ∈ (0, 1], for any ε ∈ (0, 1]

(11) lim sup
n→∞

n−1

[εn]∑
k=1

∣∣∣∣a(kn
)∣∣∣∣ (kn

)−η
≤ ka(ε),

and, moreover, lim
ε↓0

ka(ε) = 0, ka(1) < ∞. Let L be a s.v.f. bounded on every finite

interval from (0,∞). Then for η > 0

(12) n−1
n∑
k=1

L(k)

L(n)
a

(
k

n

)
− n−1

n∑
k=1

a

(
k

n

)
→ 0, n→∞.

When η = 0 this relation is valid when the function L is nondecreasing on (0,∞).

Proof. For fixed ε ∈ (0, 1) consider

(13)

∣∣∣∣∣n−1
n∑
k=1

L(k)

L(n)
a

(
k

n

)
− n−1

n∑
k=1

a

(
k

n

)∣∣∣∣∣ ≤ n−1

∣∣∣∣∣∣
[εn]∑
k=1

L(k)

L(n)
a

(
k

n

)∣∣∣∣∣∣+
+ n−1

∣∣∣∣∣∣
[εn]∑
k=1

a

(
k

n

)∣∣∣∣∣∣+

∣∣∣∣∣∣n−1
n∑

k=[εn]

(
L(k)

L(n)
− 1

)
a

(
k

n

)∣∣∣∣∣∣ = S3 + S4 + S5.

Let η > 0. Then

S3 ≤
n−η sup

0≤u≤[εn]

uηL(u)

L(n)
· n−1

[εn]∑
k=1

∣∣∣∣a(kn
)∣∣∣∣ (kn

)−η
≤

≤
n−η sup

0≤u≤n
uηL(u)

L(n)
· n−1

[εn]∑
k=1

∣∣∣∣a(kn
)∣∣∣∣ (kn

)−η
∼

n→∞
n−1

[εn]∑
k=1

∣∣∣∣a(kn
)∣∣∣∣ (kn

)−η
,
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and from (11) it follows the existence of such a constant d1 that for sufficiently large n

(14) S3 ≤ d1ka(ε).

Similarly to (14) one can get

(15) S4 ≤ n−1

[εn]∑
k=1

∣∣∣∣a(kn
)∣∣∣∣ ≤ n−1

[εn]∑
k=1

∣∣∣∣a(kn
)∣∣∣∣ (kn

)−η
≤ d2ka(ε),

where d2 is some constant.
On the other hand,

(16)

S5 ≤ n−1
n∑

k=[εn]

∣∣∣∣L(k)

L(n)
− 1

∣∣∣∣ ∣∣∣∣a(kn
)∣∣∣∣ ≤ sup

ε≤u≤1

∣∣∣∣L(nu)

L(n)
− 1

∣∣∣∣n−1
n∑

k=[εn]

∣∣∣∣a(kn
)∣∣∣∣ ≤

≤ sup
ε≤u≤1

∣∣∣∣L(nu)

L(n)
− 1

∣∣∣∣n−1
n∑
k=1

∣∣∣∣a(kn
)∣∣∣∣ ≤ d3ka(1) sup

ε≤u≤1

∣∣∣∣L(nu)

L(n)
− 1

∣∣∣∣ ,
where d3 is some constant.

Now we firstly pass to the upper limit as n→∞ in the righthand side of (13), and then
to the limit as ε→ 0. The needed result follows from (14)-(16) and the next property of
s.v.f.:

sup
ε≤u≤1

∣∣∣∣L(nu)

L(n)
− 1

∣∣∣∣ −→n→∞ 0.

If η = 0 then due to nondecrease of L

n−1

∣∣∣∣∣∣
[εn]∑
k=1

L(k)a

(
k

n

)∣∣∣∣∣∣ ≤ L(n)n−1

[εn]∑
k=1

∣∣∣∣a(kn
)∣∣∣∣ ,

i.e relation (14) holds with η = 0. Further proof is obvious. �

A4. Random sequences yij , j ∈ Z, i = 1, q, satisfy long-range dependence condition
with seasonal effects, i.e. their c.f. are of the form Bi(n) = cosκin · Li(|n|)|n|−αi , n ∈
Z\{0}, where Li(t), t > 0, are s.v.f. bounded on every finite interval from (0,∞),
αi ∈ (0, 1), κi ∈ [0, π), i = 1, q.

Note that in the case κi = 0 sequence yij , j ∈ Z, satisfies standard long-range
dependent condition.

Lemma 3.3. If conditions A1, A4 and B1 hold, then ΛN −→
N→∞

Λ a.s.

Proof. Similarly to the proof of Lema 3.1, consider the behaviour of terms in (3).
Let i 6= l. We shall prove

(17) ∆il(N) −→
N→∞

0 a.s.

Obviously

(18)

E
(
∆il(N)

)2
=N−2

N∑
j=1

N∑
k=1

Bi(j − k)Bl(j − k) =

=σ2
i σ

2
lN
−1 + 2N−2

N−1∑
k=1

(N − k)Bi(k)Bl(k) ≤

≤σ2
i σ

2
lN
−1 + 2N−1

N−1∑
k=1

Li(k)Ll(k)k−(αi+αl).
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If αi + αl > 1, then

(19)

E
(
∆il(N)

)2 ≤ σ2
i σ

2
lN
−1 + 2N−1

N−1∑
k=1

Li(k)Ll(k)k−(αi+αl) ≤

≤ N−1

(
σ2
i σ

2
l + 2

∞∑
k=1

Li(k)Ll(k)k−(αi+αl)

)
= KilN

−1.

Further proof of (17) is similar to the proof of (7) in Lemma 3.1.
If 0 < αi + αl < 1, then

E
(
∆il(N)

)2 ≤ σ2
i σ

2
lN
−1 + 2N−1

N−1∑
k=1

Li(k)Ll(k)k−(αi+αl) = σ2
i σ

2
lN
−1+

+ 2Bi(N)Bl(N)

(
N−1

N−1∑
k=1

Li(k)Ll(k)

Li(N)Ll(N)

(
k

N

)−(αi+αl)

−N−1
N−1∑
k=1

(
k

N

)−(αi+αl)
)

+

+ 2Bi(N)Bl(N)N−1
N−1∑
k=1

(
k

N

)−(αi+αl)

= σ2
i σ

2
lN
−1 + S6 + S7.

Function a(t) = t−(αi+αl), t ∈ (0, 1], satisfies conditions of Lemma 3.2, so

N−1
N−1∑
k=1

Li(k)Ll(k)

Li(N)Ll(N)

(
k

N

)−(αi+αl)

−N−1
N−1∑
k=1

(
k

N

)−(αi+αl)

→ 0, N →∞.

It means that

(20) S6 = o
(
Bi(N)Bl(N)

)
, N →∞.

Since

S7 ∼ 2Bi(N)Bl(N)

1∫
0

t−(αi+αl)dt =
2Bi(N)Bl(N)

1− αi − αl
,

then, taking into account (20),

(21) E
(
∆il(N)

)2 ≤ σ2
i σ

2
lN
−1 + 2N−1

N−1∑
k=1

Li(k)Ll(k)k−(αi+αl) ∼
N→∞

2Bi(N)Bl(N)

1− αi − αl
.

Note that in the case αi + αl = 1, one can get for 0 < δ < 1

(22)

E
(
∆il(N)

)2 ≤ σ2
i σ

2
lN
−1 + 2N−1

N−1∑
k=1

Li(k)Ll(k)k−1 ≤

≤ σ2
i σ

2
lN
−1 + 2N−1+δ

N−1∑
k=1

Li(k)Ll(k)k−1−δ ∼
N→∞

KδN
−1+δ,

where Kδ = 2
∞∑
k=1

Li(k)Ll(k)k−1−δ <∞. Thus, this case can be reduced to (21).

Set Nn = n

[
1

2min{αi,αl}

]
+1

. Then
∞∑
n=0

E
(
∆il(Nn)

)2
<∞ and consequently

∆il(Nn) −→
n→∞

0 a.s.

Suppose that Nn ≤ N ≤ Nn+1. Then

|∆il(N)| ≤ sup
Nn≤N≤Nn+1

|∆il(N)−∆il(Nn)|+ |∆il(Nn)|.
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Similarly to S1 from Lemma 3.1 (see (5) and (6)),

|S1| ≤
Nn+1 −Nn

Nn
·

∣∣∣∣∣∣N−1
n

Nn∑
j=1

yijylj

∣∣∣∣∣∣ ∼n→∞
([

1

2 min{αi, αl}

]
+ 1

)
n−1 · |∆il(Nn)|,

and consequently S1 −→
n→∞

0 a.s.

Consider the second term in (6)

|S2| ≤ N−1
n

Nn+1∑
j=Nn

|yijylj | ≤
1

2

N−1
n

Nn+1∑
j=Nn

y2
ij +N−1

n

Nn+1∑
j=Nn

y2
lj

 ≤
≤ 1

2

Nn+1 −Nn
Nn

·
(
σ2
i + σ2

l

)
+N−1

n

Nn+1∑
j=Nn

(
y2
ij − σ2

i

)
+

+ N−1
n

Nn+1∑
j=Nn

(
y2
lj − σ2

l

) =
1

2

(
S8(n) + Si9(n) + Sl9(n)

)
.

It is obvious that S8(n) −→
n→∞

0. On the other hand, for i = 1, q,

Si9(n) =
Nn+1

Nn
Si10(n+ 1)− Si10(n), Si10(n) = N−1

n

Nn∑
j=1

(
y2
ij − σ2

i

)
.

We shall prove that

(23) Si10(n) −→
n→∞

0 a.s.

If αi ∈
(

1
2 , 1
)
, then due to Isserlis formula and similarly to (19)

(24)

E
(
Si10(n)

)2
= 2N−2

n

Nn∑
j=1

Nn∑
k=1

B2
i (j − k) ≤

≤ 2N−1
n

(
σ4
i + 2

Nn−1∑
k=1

L2
i (k)k−2αi

)
≤ 2KiiN

−1
n .

If αi ∈
(
0, 1

2

)
(If αi = 1

2 , then the proof will be similar, see (22)), then

(25)

E
(
Si10(n)

)2
= N−2

n

Nn∑
j=1

Nn∑
k=1

B2
i (j − k) ≤

≤ 2

(
σ4
iN
−1
n + 2N−1

n

Nn−1∑
k=1

L2
i (k)k−2αi

)
∼

n→∞

4B2
i (Nn)

1− 2αi
.

Since Nn = n

[
1

2min{αi,αl}

]
+1

, then from (24) and (25) it follows that
∞∑
n=1

E
(
Si10(n)

)2
<∞

and (23) is fulfilled.
Collecting the relations obtained above it is easy to get S2 −→

n→∞
0 a.s., and, so, (17)

is valid.
Let us show that

(26) ∆l
i(N) −→

N→∞
0 a.s., i, l = 1, q.
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Evidently E∆l
i(N) = 0 and similarly to (21)

(27)

E
(
∆l
i(N)

)2
=N−2

N∑
j=1

N∑
k=1

aijaikBl(j − k) ≤ k̃2
iN
−2

N∑
j=1

N∑
k=1

|Bl(j − k)|

≤k̃2
i

(
σ2
lN
−1 + 2N−1

N−1∑
k=1

|Ll(k)|k−αl
)
∼

N→∞

2k̃2
iBl (N)

1− αl
.

Set Nn = n
[ 1
αl

]+1
. Then

∞∑
n=1

E
(
∆l
i(Nn)

)2
<∞ and ∆l

i(Nn) −→
n→∞

0 a.s. Further reason-

ing is similar to the proof of (17).
From (17), (26) and condition B1(ii) it follows that for i 6= l ΛilN −→

N→∞
J il a.s.

If i = l, then we have to prove only

(28) ∆ii(N) −→
N→∞

σ2
i a.s.

Indeed, E∆ii(T ) = σ2
i and due to Isserlis formula

E[∆ii(T )− σ2
i ]2 = 2N−2

N∑
j=1

N∑
k=1

B2
i (j − k) ≤ 2N−1

(
σ4
i + 2

N−1∑
k=1

L2
i (k)k−2αi

)
,

and proof of (28) repeats the proof of (17). Then from (26), (28) and B1(ii) it follows
that ΛiiT −→

T→∞
σ2
i + J ii a.s. and Lemma 3.3 is proved. �

Corollary 3.2. If conditions of Lemma 3.3 hold, then for almost all ω ∈ Ω there exists

such N0 = N0(ω) that for any N > N0 LSE θ̂N given by (2) is defined.

Below we formulate homogeneous Hölder-Young-Brascamp-Lieb (HYBL) inequality
for Z (see [9, 8] for details). Denote by r(A) rank of a matrix A.

Lemma 3.4. Let li(J) = J∗βi, i = 1, k, be the linear functionals li : Zm → Z,
βi ∈ Zm, i = 1, k, M denotes the matrix with columns βi, i = 1, k.

Let functions fi ∈ lpi , i = 1, k, 1 ≤ pi ≤ ∞, and for values zi = 1
pi

, i = 1, k, one of

next two conditions holds:

(i)
k∑
i=1

zi = m and for arbitrary 1 ≤ d ≤ k, and {s1, ..., sd} ⊂ {1, ..., k}

d∑
l=1

zsl ≤ r(A),

where A = (βs1 ...βsd);

(ii)
k∑
i=1

zi = m and for arbitrary 1 ≤ d ≤ k, and {s1, , ..., sd} ⊂ {1, ..., k}

d∑
l=1

zsl ≥ r(M)− r(Ac),

where A = (βs1 ...βsd), Ac is a matrix that contains only those columns of M which do
not belong to A.
Then ∣∣∣∣∣ ∑

J∈Zm

k∏
i=1

fi(li(J))

∣∣∣∣∣ ≤ K
k∏
i=1

‖fi‖pi ,

where K = K(z1, ..., zk) is some constant which depends on values (z1, ..., zk) only (de-
termination of K can be found in [8]), ‖ · ‖pi is norm in lpi .
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4. Asymptotic normality of LSE

Let

d2
N = diag

(
d2
iN

)q
i=1

, d2
iN =

N∑
j=1

a2
ij , i = 1, q .

Introduce additional assumptions on random noise εj , j ∈ Z.

A5. Random sequence εj , j ∈ Z, has c.f. B ∈ l1, i.e. c =
∞∑

n=−∞
|B(n)| <∞.

Note that from condition A5 it follows that sequence εj , j ∈ Z, has continuous and
bounded spectral density (s.d.) f .

Introduce matrix measure µN (dx) on
(

[−π;π), B ([−π;π))
)

with density matrix

(
µk lN (x)

)q
k, l=1

=

akN (x)alN (x)

 π∫
−π

|akN (x)|2dx
π∫
−π

|alN (x)|2dx

− 1
2


q

k, l=1

,

akN (x) =

N∑
j=1

eixjakj , k, l = 1, q.

Note that d2
kN = (2π)−1

π∫
−π
|akN (x)|2dx, k = 1, q.

B2. Family of measures µN (·) converges weakly, as N → ∞, to a measure µ(·) and
π∫
−π

f(x)µ(dx) is some positive definite matrix.

Definition 4.1. Matrix measure µ(·) is said to be spectral measure of regression function
q∑
i=1

θiaij (See [10], [11] for details).

Denote by Γ = diag (ki)
q
i=1, where ki are defined in B1; bi =

∞∑
j=−∞

Bi(j)B(j), i = 1, q;

σ = 2π · Γ 1
2

 π∫
−π

f(x)µ(dx)

Γ
1
2 + diag (bi)

q
i=1 .

Theorem 4.1. If conditions A1 – A3, A5, B1 and B2 hold, then the distribution of the

normed LSE N1/2
(
θ̂N − θ

)
tends, as N →∞, to normal distribution N

(
0, Λ−1σΛ−1

)
.

Proof. Since N1/2
(
θ̂N − θ

)
= Λ−1

N ΨN , where ΨN = N−1/2
N∑
j=1

Zjεj , due to Lemma 3.1

it is sufficient to determine the asymptotic distribution of the vector ΨN .
Let λ∗ = (λ1, ..., λq) ∈ Rq be an arbitrary fixed vector, F is σ-algebra generated

by {εj , j ∈ N}. Conditional distribution relatively to F of random variable λ∗ΨN is
Gaussian with expectation E {λ∗ΨN |F} = 0 and variance

E
{

(λ∗ΨN )
2 |F

}
= λ∗

N−1
N∑
j=1

N∑
k=1

ZjZ
∗
kB(j − k)

λ = λ∗σNλ,

where equalities are valid a.s. [1]. Then for characteristic function of the vector ΨN we
have

ϕN (λ) = Eeiλ
∗ΨN = E

{
E
(
eiλ
∗ΨN |F

)}
= Ee−

1
2λ
∗σNλ.
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Consider behaviour of elements of matrix σN as N → ∞. For i-th diagonal element
of matrix σN

(29)

σiiN =N−1
N∑
j=1

N∑
k=1

B(j − k)aijaik + 2N−1
N∑
j=1

N∑
k=1

B(j − k)aijyik+

+N−1
N∑
j=1

N∑
k=1

B(j − k)yijyik = I11 + I12 + I13.

For the first term it is easy to get, using conditions B1 and B2, that

(30)

I11 ∼
N→∞

kid
−2
iN

N∑
j=1

N∑
k=1

B(j − k)aijaik =

= 2πki

π∫
−π

f(x)µi iN (dx) −→
N→∞

2πki

π∫
−π

f(x)µi i(dx; θ).

Furthermore,

EI2
12 = 4N−2

N∑
j=1

N∑
k=1

N∑
l=1

N∑
m=1

B(j − k)B(l −m)Bi(k −m)aijail ≤

= 4N−2
∞∑

j,k,l,m=1

f1(j − k)f2(l −m)f3(k −m)f4(j)f5(l)f6(k)f7(m),

where f1(j) = f2(j) = B(j), j ∈ Z, f3(j) = Bi(j), j ∈ Z, f4(j) = f5(j) = aijχN (j), j ∈
Z, f6(j) = f7(j) = χN (j), j ∈ Z, χN (j), j ∈ Z, is indicator of the set {1, 2, . . . , N}. We
will use for the last sum HYBL inequality (Lemma 3.4). In this case

M =


1 0 0 1 0 0 0
−1 0 1 0 1 0 0

0 1 0 0 0 1 0
0 −1 −1 0 0 0 1

 .

If we put p1 = p2 = p3 = 1, p4 = p5 = ∞, p6 = p7 = 2, then one can show that
assumptions of Lemma 3.4 are fulfilled and so

(31) EI2
12 ≤ 4K1c

2ciN
−2 · ‖ai· · χN‖2∞ · ‖χN‖

2
2 ≤ 4K1c

2cik̃
2
iN
−1,

where K1 = K1

(
1, 1, 1, 0, 0, 1

2 ,
1
2

)
, c and ci are constants from conditions A3 and

A5, respectively.
Now consider the behavior of the last term in (29). Since BiB ∈ l1, then

(32) EI13 = N−1
N∑
j=1

N∑
k=1

B(j − k)Bi(j − k) =

N−1∑
j=−N+1

(
1− |j|

N

)
Bi(j)B(j) −→

N→∞
bi.

Using the normality of the sequences yij , j ∈ Z, i = 1, q, one can obtain

E (I13 − EI13)
2

= 2N−2
N∑
j=1

N∑
k=1

N∑
l=1

N∑
m=1

B(j − k)B(l −m)Bi(j − l)Bi(k −m) =

= 2N−2
N∑
j=1

N∑
k=1

N∑
l=1

N∑
m=1

f1(j − k)f2(l −m)f3(j − l)f4(k −m)f5(j)f6(k)f7(l)f8(m),
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where f1(j) = f2(j) = B(j), j ∈ Z, f3(j) = f4(j) = Bi(j), j ∈ Z, fk(j) = χN (j), j ∈
Z, k = 5, 6, 7, 8. We will use for the last sum HYBL inequality. In this case

M =


1 0 1 0 1 0 0 0
−1 0 0 1 0 1 0 0

0 1 −1 0 0 0 1 0
0 −1 0 −1 0 0 0 1

 .

If we put p1 = p2 = 1, p3 = p4 = 2, pk = 4, k = 5, 6, 7, 8, then one can show that
assumptions of Lemma 3.4 are fulfilled and so

(33) E (I13 − EI13)
2 ≤ 2K2c

2c̃2iN
−1,

where K2 = K2

(
1, 1, 1

2 ,
1
2 ,

1
4 ,

1
4 ,

1
4 ,

1
4

)
, c̃i =

( ∞∑
n=−∞

B2
i (n)

) 1
2

, i = 1, q.

From (30)–(33) we obtain

(34) σiiT
P−→

N→∞
σii.

Similarly one can show that for elements σilN with i 6= l

(35) σilN
P−→

N→∞
σil.

Thus, from (34) and (35) it follows that σN
P−→

N→∞
σ. Note that λ∗σNλ ≥ 0. Then

lim
T→∞

ϕN (λ) = lim
N→∞

Ee−
1
2λ
∗σNλ = e−

1
2λ
∗σλ,

and Theorem 4.1 is proved. �

Theorem 4.2. If conditions A1, A2, A4, A5, B1 and B2 hold, then the distri-

bution of the normed LSE N1/2
(
θ̂N − θ

)
tends, as N → ∞, to normal distribution

N
(
0, Λ−1σΛ−1

)
.

Proof. Proof of the Theorem repeats the proof of Theorem 4.1, except the next details.
As in (31), one can apply HYBL inequality to EI2

12 , but with f3(j) = Bi(|j|)χN (|j|),
j ∈ Z, and use reasoning similar for obtaining (21) to get

(36)

EI2
12 ≤ 4K1c

2k̃2
iN
−1 ·

σ2
i + 2

N∑
j=1

|cos(κij)| |Li(j)| j−αi
 ≤

≤ 4K1c
2k̃2
iN
−1 ·

σ2
i + 2

N∑
j=1

|Li(j)| j−αi
 ∼

N→∞

8K1c
2k̃2
i |Bi(N)|

1− αi
.

Since BiB ∈ l1, then as in Theorem 4.1 (32) holds true. For E (I13 − EI13)
2

one can
use, as in (33), HYBL inequality, however with f3(j) = f4(j) = Bi(|j|)χN (|j|), j ∈ Z,

E (I13 − EI13)
2 ≤ 2K2c

2N−1

σ4
i + 2

N∑
j=1

L2
i (j)j

−2αi

 .

If αi ∈
(
0, 1

2

)
(if αi = 1

2 , then the proof will be similar, see (22)), then, as in (21),

(37) E (I13 − EI13)
2 ≤ 2K2c

2N−1

σ4
i + 2

N∑
j=1

L2
i (j)j

−2αi

 ∼
N→∞

4K2c
2B2

i (N)

1− 2αi
.
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If αi ∈
(

1
2 , 1
)
, then similarly to (19)

(38) E (I13 − EI13)
2 ≤ 2K2c

2N−1

σ4
i + 2

N∑
j=1

L2
i (j)j

−2αi

 ≤ 2K2c
2KiiN

−1.

From (30), (32), (36), (37) and (38) it follows that σiiT
P−→

T→∞
σii. Next steps of the

proof repeat the proof of Theorem 4.1. �

Now let εj , j ∈ Z, be a random sequence that satisfies long-range dependence condi-
tion with seasonal effects, i.e.

A6. εj , j ∈ Z, has c.f. B(n) = cosκn · L(|n|)|n|−α, n ∈ Z\{0}, where L(t), t > 0, is
s.v.f. bounded on every finite interval from (0,∞), α ∈

(
1
2 , 1
)
, κ ∈ (0, π).

From condition A6 it follows that εj , j ∈ Z, has s.d. f with two singularities at the
points ±κ.

Introduce the notion of µ-admissability of s.d. f(λ) (See [10], [12] for details).

Definition 4.2. S.d. f is called µ-admissible, if f is µ-integrable, i.e. all elements of

matrix
π∫
−π

f(λ)µ(dλ) are finite and

π∫
−π

f(λ)µN (dλ)→
π∫
−π

f(λ)µ(dλ), N →∞.

Sufficient conditions of µ-admissability of stationary process s.d. can be found in [13].
The main condition of µ-admissability requires that the set of singularity points of f and
the set of atoms of spectral measure µ do not intersect. Note that the spectral measure
is atomic for all known at present examples of its existence.

A7. S.d. f of random sequence εj , j ∈ Z, is µ-admissible.

Theorem 4.3. If conditions A1-A3, A6, A7, B1 and B2 hold, then the distri-

bution of the normed LSE N1/2
(
θ̂N − θ

)
tends, as N → ∞, to normal distribution

N
(
0, Λ−1σΛ−1

)
.

Proof. Proof of the Theorem is similar to the proofs of Theorems 4.2. Consider just
slight differences.

Relation (30) holds true due to condition A7. For EI2
12 (similarly to (36)) one can

use HYBL inequality, with f1(j) = f2(j) = B(|j|)χN (|j|), j ∈ Z, f3(j) = Bi(j), j ∈ Z,
f4(j) = f5(j) = aijχN (j), j ∈ Z, f6(j) = f7(j) = χN (j), j ∈ Z, and the same pj , j =
1, 7, as in (31),

(39)

EI2
12 ≤ 4K1cik̃

2
iN
−1 ·

σ2 + 2

N∑
j=1

|cos(κj)| · |L(j)|j−α
2

≤

≤ 4K1cik̃
2
iN
−1 ·

σ2 + 2

N∑
j=1

|L(j)|j−α
2

∼
N→∞

16K1cik̃
2
iL

2(N)N1−2α

(1− α)2
,

where 1− 2α < 0, as α ∈
(

1
2 , 1
)
.

As in (33), one can apply HYBL inequality to E (I13 − EI13)
2
, with f1(j) = f2(j) =

B(|j|)χN (|j|), j ∈ Z, f3(j) = f4(j) = Bi(j), j ∈ Z, fk(j) = χN (j), j ∈ Z, k = 5, 6, 7, 8,
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and p1 = p2 = 2, p3 = p4 = 1, pk = 4, k = 5, 6, 7, 8,

(40)

E (I13 − EI13)
2 ≤ 2K3c

2
iN
−1

σ4 + 2

N∑
j=1

L2(j)j−2α

 ≤
≤ 2K3c

2
iN
−1

σ4 + 2

∞∑
j=1

L2(j)j−2α

 = 2K3c
2
iKαN

−1,

where K3 = K3

(
1
2 ,

1
2 , 1, 1, 1

4 ,
1
4 ,

1
4 ,

1
4

)
.

From (30), (32), (39) and (40) it follows that σiiT
P−→

T→∞
σii. Next steps of the proof

repeat the proof of Theorem 4.1. �

Theorem 4.4. If conditions A1, A2, A4 with αi ∈
(

1
2 , 1
)
, A6 with α ∈

(
3
4 , 1
)
, A7, B1

and B2 hold, then the distribution of the normed LSE N1/2
(
θ̂N − θ

)
tends, as N →∞,

to normal distribution N
(
0, Λ−1σΛ−1

)
.

Proof. Proof of the Theorem repeats the proof of Theorem 4.3, besides the next frag-
ments.

For EI2
12 we get

(41)

EI2
12 ≤ 4K1k̃

2
iN
−1 ·

σ2
i + 2

N∑
j=1

|Li(j)| j−αi
σ2 + 2

N∑
j=1

|L(j)|j−α
2

∼
N→∞

∼
N→∞

32K1k̃
2
i |Li(N)|L2(N)N2−2α−αi

(1− αi)(1− α)2
,

where 2− 2α− αi < 0 under the conditions of the Theorem.
Since α + αi > 1 under the conditions of the Theorem, then BiB ∈ l1, and so (32)

holds true.
Similarly to (40), but with f3(j) = f4(j) = Bi(|j|)χN (|j|), j ∈ Z, one can get

(42)

E (I13 − EI13)
2 ≤ 2K3KαN

−1 ·

σ2
i + 2

N∑
j=1

|Li(j)| j−αi
2

∼
N→∞

∼
N→∞

8K3KαL
2
i (N)N1−2αi

(1− αi)2
,

as αi ∈
(

1
2 , 1
)

and α ∈
(

3
4 , 1
)
. �
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