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S. M. KRASNITSKIY AND O. O. KURCHENKO

BAXTER TYPE THEOREMS FOR GENERALIZED RANDOM

GAUSSIAN PROCESSES

Some type of Baxter sums for generalized random processes are constructed in this

work. Sufficient conditions for such a sum to converge to a non–random constant
are obtained. We apply our result to a process of white noise and a derivative of

fractional Brownian motion.

1. Introduction

Let ξ(t), t ∈ [0, 1] be a random process, λn =
{

0 = t0, t1, . . . , tb(n) = 1
}

be a uniform
partition of line segment [0, 1], ∆ξ(tk) = ξ(tk+1) − ξ(tk), f : R → [0,∞) be a Borel
function, b(n) ∈ N, b(n)→∞, n→∞. The sum

S (X,λn) =

b(n)−1∑
k=0

f (∆ξ(tk))

is called a Baxter sum. Further we consider only the case f(x) = x2, x ∈ R.
Limit theorems dealing with one or another sense of convergence of properly normal-

ized Baxter sums to non–random constants are called Baxter type theorems or theorems
of Levy–Baxter type. Theorems of Baxter type for Gaussian random processes and fields
were obtained by many authors. The pioneer works on this topic for Gaussian processes
belong to P. Levy [1], G. Baxter [2], E. G. Gladyshev [3] and ones for Gaussian fields
belong to S. M. Berman [4], S. M. Krasnitskiy [5], T. V. Arak [6]. Traditionally the Levy–
Baxter type theorems refer to domain of stochastic analysis. Later these theorems were
applied to some problems of statistics of random processes. For example the Baxter sum
method was applied to the estimation of fractional Brownian motion Hurst parameter in
works of O. O. Kurchenko [7], J–C Breton, I. Nourdin, G. Peccati [8]. This method was
used for the estimation of covariation function parameters for multiparameter fractional
Brownian fields in the article [9] by Yu. V. Kozachenko and O. O. Kurchenko. The part
of monograph by B. L. S. Pracasa Rao [10] is devoted to the application of Baxter sums to
statistics of random processes. The estimates obtained by the Baxter sum method have
the property of consistency. One of the advantages of this method lies in the possibility
to construct non-asymptotic confidence intervals. The Baxter sum method in statistics
of generalized random functions was used as an example in monograph [11] by Yu. A.
Rozanov, and also in articles [12] by V. B. Gorjainov, [13] by N. M. Arato. The theory
of generalized random functions is rather completely exploited in the third chapter of
monograph [14] by I. M. Gelfand and N. Vilenkin.
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2. Main results

Let K be the space of compactly supported infinitely differentiable functions on R,
ξ(ϕ) = (ξ, ϕ), ϕ ∈ K be a generalized Gaussian random process with zero mean. Subse-
quently we will use the two–parameter function families

{χt,h ∈ K : χt,h = χt,h(·), t ∈ R, h > 0, suppχt,h ⊂ [t, t+ h]}

and sequences {b(n)} ⊂ N, b(n)→∞, n→∞. Note that part of the overall results given
in this paper (for example, Theorem 2.1 and 2.2), do not require further specification of
the family of functions χt,h. On the other hand, not every family of such functions is
suitable for various classes of stochastic processes and different tasks. Some additional
properties of functions χt,h (and sequences bn) are shown below in the relevant parts of
the text.

For the family {χt,h} and the sequence {b(n)} we denote

χk,n = χt,h(·)
∣∣
t=k/b(n),h=1/b(n)

, k = 0, 1, . . . , b(n)− 1, n ≥ 1.

We define

Sn(ξ) =

b(n)−1∑
k=0

(ξ, χk,n)
2
, n ≥ 1,

vn(ξ) =

b(n)−1∑
k,j=0

(E (ξ, χk,n) (ξ, χj,n))
2
.

Theorem 2.1. Let ξ(ϕ) be a generalized Gaussian random process on K, Eξ(ϕ) = 0, ϕ ∈
K. Then the condition

vn(ξ)→ 0, n→∞
is necessary and sufficient to have

(1) Sn(ξ)− ESn(ξ)→ 0,

where the convergence takes place in the square mean. If

∞∑
n=1

vn(ξ) <∞,

then we have the almost sure convergence in (1).

Proof. Let us obtain the variance of Baxter sum Sn(ξ):

V arSn(ξ) = E (Sn(ξ)− ESn(ξ))
2

= E (Sn(ξ))
2 − (ESn(ξ))

2
, n ≥ 1.

We have the next equality:

E (Sn(ξ))
2

=

b(n)−1∑
k,j=0

E
(

(ξ, χk,n)
2

(ξ, χj,n)
2
)
.

For mathematical expectation of random values η1, η2, η3, η4 that have Gaussian joint
distribution with zero mean value product we have [15, p. 29]:

(2) E (η1η2η3η4) = Eη1η2Eη3η4 + Eη1η3Eη2η4 + Eη1η4Eη2η3.

Substituting η1 = η2 = (ξ, χk,n) , η3 = η4 = (ξ, χj,n) in the last equality, we get

E
(

(ξ, χk,n)
2

(ξ, χj,n)
2
)

= 2 (E (ξ, χk,n) (ξ, χj,n))
2

+ E (ξ, χk,n)
2
E (ξ, χj,n)

2
,
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0 ≤ k, j ≤ b(n)− 1. So we have

V arSn(ξ) = 2

b(n)−1∑
k,j=0

(E (ξ, χk,n) (ξ, χj,n))
2

= 2vn(ξ).

Thus,

V arSn(ξ) = E (Sn(ξ)− ESn(ξ))
2 → 0, n→∞

if and only if vn(ξ) → 0 as n → ∞. Using this fact, we get the Theorem 2.1 statement
about the convergence in the square mean. In the case of convergence of series

∞∑
n=1

vn(ξ) =
1

2

∞∑
n=1

V arSn(ξ)

the sequence Sn(ξ) − ESn(ξ) approaches to 0 with probability 1 when n → ∞ ([16, p.
24]). The proof is over. �

Corollary 2.1. If the conditions of the Theorem 2.1 are fulfilled and ESn(ξ) → c ∈ R
when n→∞, then the requirement vn(ξ)→ 0, n→∞ is necessary and sufficient for the
square mean convergence

Sn(ξ)→ c, n→∞.
If
∑∞
n=1 vn(ξ) <∞, then the convergence takes place almost surely.

Definition 2.1. The generalized random process is said to be a process with independent
values if the random variables (ξ, ϕ), (ξ, ψ) are independent for ϕ,ψ ∈ K,ϕ(x)ψ(x) = 0
for any x ∈ R.

Corollary 2.2. Let ξ(ϕ) be the generalized Gaussian random process with independent
values, Eξ(ϕ) = 0, ϕ ∈ K. Next, put

v(0)n (ξ) =

b(n)−1∑
k=0

(
E (ξ, χk,n)

2
)2
.

Then the condition
v(0)n (ξ)→ 0, n→∞

is necessary and sufficient for the convergence (1) in the square mean. If
∞∑
n=1

v(0)n (ξ) < +∞,

then we have the almost sure convergence in (1).

Proof. Since χk,n(x)χj,n(x) = 0 for any x ∈ R, k 6= j, we have E (ξ, χk,n) (ξ, χj,n) = 0

for k 6= j. For this reason, in this case vn(ξ) = v
(0)
n (ξ). The Corollary is proved. �

Example 2.1. Let ξ = ξ(ϕ) be the process of white noise, i.e. a generalized Gaussian
random process with zero mean and covariation function Eξ(ϕ)ξ(ψ) =

∫∞
−∞ ϕ(x)ψ(x)dx.

So ξ is the process with independent values. Further let a function χt,h : R → [0, 1] be
defined for t ∈ R, h > 0 as

χt,h ∈ K, suppχt,h ⊂ (t, t+ h), χt,h = 1 forx ∈ (t+ h2, t+ h− h2)

Then

E (ξ, χt,h)
2

=

∫ t+h

t

χ2
t,h(x)dx = h+O(h2), h→ 0.

For this reason

ESn(ξ) = 1 +O

(
1

b(n)

)
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and

v(0)n (ξ) =

b(n)−1∑
k=0

(
E (ξ, χk,n)

2
)2

= O

(
1

b(n)

)
, n→∞.

On the account of Corollaries 2.1, 2.2 we have Sn(ξ)→ 1 in the square mean as n→∞.
If the series

∞∑
n=1

1

b(n)

is convergent, then Sn(ξ)→ 1 almost surely.

Remark 2.1. Let (Ω, σ, P1, P2) be a statistical structure, i.e. Ω be an elementary events
space, σ be a σ–algebra of events (subsets of Ω), P1, P2 be a probabilistic measures
on (Ω, σ). Let σ(ξ) ⊂ σ be a σ–algebra generated by the generalized random process
ξ = ξ(ϕ), ϕ ∈ K. The process ξ is supposed to be Gaussian with respect to both measures
P1, P2.

Definition 2.2. Further let E1, E2 be the symbols of mathematical expectation with
respect to the measures P1, P2 respectively. Denote by vi,n(ξ), i = 1, 2 the result of
substitution of the symbol Ei into the vn(ξ) expression instead of E, i = 1, 2. Further,
denote the restrictions of measures P1, P2 to the σ–algebra σ(ξ) by P1,ξ, P2,ξ respectively.

Corollary 2.3. Let the process ξ and the measures P1, P2 satisfy the conditions of Re-
mark 2.1, E1ξ(ϕ) = E2ξ(ϕ) = 0. Suppose that the next conditions (1) – (3) are fulfilled

(1)
∑∞
n=1 v1,n(ξ) < +∞,

∑∞
n=1 v2,n(ξ) < +∞;

(2) E1Sn(ξ)→ c1, E2Sn(ξ)→ c2, n→∞;
(3) c1 6= c2.

Then the measures P1,ξ, P2,ξ are orthogonal (singular).

Proof. Let Xi = {ω ∈ Ω : Sn(ξ)(ω)→ ci, n→∞} , i = 1, 2. Since Theorem 2.1, it follows
that P1,ξ(X1) = 1, P2,ξ(X2) = 1. But X1 ∩X2 = ∅. �

Theorem 2.2. Suppose that the function family χt,h ⊂ K and the generalized Gaussian
random process ξ = ξ(ϕ) with zero mean satisfy the following conditions:

(1) For a sufficiently small positive h the function E (ξ, χt,h)
2

is continuous for t ∈
[0, 1] and there exist a Borel function g : (0,+∞) → (0,+∞), g(0+) = 0 and a
Borel function u : [0, 1]→ [0,+∞) such that

E (ξ, χt,h)
2

g(h)
→ u(t), h ↓ 0

uniformly over t ∈ [0, 1];
(2) For the sequences

α(n)
def
=

1

b(n)g
(

1
b(n)

) , n ≥ 1

and

v(1)n (ξ)
def
= α2(n)

b(n)−1∑
k,j=0,
|k−j|≥2

(E (ξ, χk,n) (ξ, χj,n))
2

it is fulfilled that v
(1)
n (ξ)→ 0, n→∞.



BAXTER TYPE THEOREMS FOR GENERALIZED RANDOM GAUSSIAN PROCESSES 49

Then

(3) S̃n(ξ)
def
= α(n)

b(n)−1∑
k=0

(ξ, χk,n)
2 →

∫ 1

0

u(t)dt, n→∞

in the square mean. If the series

(4)

∞∑
n=1

v(1)n (ξ),

∞∑
n=1

1

b(n)

are convergent, then the convergence in (3) takes place almost surely.

Proof. It follows from the condition (1) that

(5) ES̃n(ξ)→
∫ 1

0

u(t)dt, n→∞.

Using the equality (2) as before in Theorem 2.1 proof, we get the expression for S̃n(ξ)
variance:

V arS̃n(ξ) = 2α2(n)

b(n)−1∑
k,j=0

(E (ξ, χk,n) (ξ, χj,n))
2

=

= 2α2(n)

b(n)−1∑
k,j=0,
|k−j|≤1

(E (ξ, χk,n) (ξ, χj,n))
2

+

+2α2(n)

b(n)−1∑
k,j=0,
|k−j|≥2

(E (ξ, χk,n) (ξ, χj,n))
2
.

Due to the condition (2) the last summand tends to 0 with n→∞. Next,

α2(n)

b(n)−1∑
k,j=0,
|k−j|≤1

(E (ξ, χk,n) (ξ, χj,n))
2 ≤

≤ α2(n)

b(n)−1∑
k,j=0,
|k−j|≤1

E (ξ, χk,n)
2
E (ξ, χj,n)

2
=

= α2(n)

b(n)−1∑
k,j=0,
|k−j|≤1

(
u

(
k

b(n)

)
+ o(1)

)(
u

(
j

b(n)

)
+ o(1)

)
g2
(

1

b(n)

)
= ∆n.

Here we used the Cauchy-Bunyakovskii inequality for estimation of (E (ξ, χk,n) (ξ, χj,n))
2

and the condition (1). Now set C = supt∈[0,1] u(t) + 1. The sum in the expression of

∆n has 3b(n)− 2 summands. Thus, for all sufficiently large n we have ∆n ≤ 3
b(n)C

2. So

V arS̃n(ξ)→ 0, n→∞. Hence, it follows from (5) that (3) is fulfilled in the square mean.

If the series (4) are convergent, then the series
∑∞
n=1 V arS̃n(ξ) is convergent. Therefore,

in this case, the convergence in (3) takes place with probability 1. The proof is over. �

Example 2.2. Let ξH(t), t ∈ R be a Gaussian random process with zero mean and
covariation function

(6) BH(s, t) =
1

2

(
|s|2H + |t|2H − |s− t|2H

)
, s, t ∈ R, 0 < H < 1



50 S. M. KRASNITSKIY AND O. O. KURCHENKO

(the constant H is called a Hurst parameter). The process ξH(t) is called the fractional
Brownian motion with Hurst parameter H. We will consider the derivative ηH = ξ′H of
this process as the generalized Gaussian random process on K : (ηH , ϕ) = − (ξH , ϕ

′).
The process ηH has zero mean and covariation function

BH(ϕ,ψ) =

∫ ∞
−∞

∫ ∞
−∞

BH(s, t)
dϕ(s)

ds

dψ(t)

dt
dsdt.

By µt,h = µt,h(·) denote the function from the space K with parameter t ∈ R, h > 0,
that is determined, provided that h is sufficiently small, by the following conditions:

(1) supp µt,h(·) ⊂
[
t, t+ exp

(
− 1
h

)]
∪
[
t+ h− exp

(
− 1
h

)
, t+ h

]
;

(2) 0 ≤ µt,h(s) ≤ exp
(
1
h

)
on
[
t, t+ exp

(
− 1
h

)]
;

(3) µt,h(s) = exp
(
1
h

)
on
[
t+ exp

(
− 1
h2

)
, t+ exp

(
− 1
h

)
− exp

(
− 1
h2

)]
;

(4) The graph of µt,h is centrally symmetric relative to the point
(
t+ h

2 , 0
)
.

Define the function family {χt,h} by the equality

χt,h(x) =

∫ x

−∞
µt,h(s)ds, x ∈ R.

As a result of the formula (6) and the stationarity of the derivative of fractional Brownian
motion we get

E (ηH , χt,h)
2

= E (ηH , χ0,h)
2

= E (ξH , µ0,h)
2

=

=
1

2

∫ h

0

ds

∫ h

0

(
s2H + t2H − |s− t|2H

)
µ0,h(s)µ0,h(t)dt.

Directly integrating, we find that

E (ηH , χt,h)
2

= h2H + o(h2H), h→ 0.

Thus, condition (1) of Theorem 2.2 holds for

u(t) = 1, t ∈ [0, 1]; g(h) = h2H .

Thus α(n) = (b(n))
2H−1

. Let us move on to the verification of condition (2). Due to the
stationarity of the derivative of fractional Brownian motion we have

v(1)n (ηH)
def
= α2(n)

b(n)−1∑
k,j=0,
|k−j|≥2

(E (ηH , χk,n) (ηH , χj,n))
2

=

= 2α2(n)

b(n)−3∑
j=0

b(n)−1∑
k=j+2

(E (ηH , χk,n) (ηH , χj,n))
2

=

= 2α2(n)

b(n)−1∑
l=2

(b(n)− l) (E (ηH , χ0,n) (ηH , χl,n))
2
,

where χk,n = χkh,h, h = 1
b(n) . Further,

E (ηH , χ0,n) (ηH , χl,n) = E (ξH , µ0,n) (ξH , µl,n) =

=
1

2

∫ h

0

µ0,n(s)ds

∫ (l+1)h

lh

(
t2H + s2H − (t− s)2H

)
µl,n(t)dt =

= −1

2

∫ h

0

µ0,n(s)ds

∫ (l+1)h

lh

(t− s)2Hµl,n(t)dt =

= −1

2

∫ h

0

µ̃0,n(s)ds

∫ (l+1)h

lh

(t− s)2H µ̃l,n(t)dt+O

(
exp

(
− 1

h2

)
exp

(
1

h

))
, h→ 0,
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where µ̃k,n(s) = exp
(
1
h

) (
I[kh,kh+exp(− 1

h )](s)− I[(k+1)h−exp(− 1
h ),(k+1)h](s)

)
, k = 0,

1, . . . , b(n)− 1 and the O–large relation is fulfilled uniformly with respect to l ∈
{2, 3, . . . , b(n)− 1}. The direct integration permits to obtain the equality

−1

2

∫ h

0

µ̃0,n(s)ds

∫ (l+1)h

lh

(t− s)2H µ̃l,n(t)dt = O

(
h2H

(l − 1)2H

)
, h→ 0

uniformly with respect to l ∈ {2, 3, . . . , b(n)− 1}.
Thus, for some C > 0 and for all sufficiently large n we have

v(1)n (ηH) ≤ C (b(n))
4H−2 1

(b(n))
4H
b(n)

b(n)−1∑
l=2

1

(l − 1)4H
=

=
C

b(n)

b(n)−1∑
l=2

1

(l − 1)4H
→ 0, n→∞.

Since

b(n)−1∑
l=2

1

(l − 1)4H
=


O
(

(b(n))
−4H+1

)
, 0 < H < 1

4 ;

O (ln b(n)) , H = 1
4 ;

O(1), 1
4 < H < 1,

as n→∞, then

v(1)n (ηH) =


O
(

(b(n))
−4H

)
, 0 < H < 1

4 ;

O
(

ln b(n)
b(n)

)
, H = 1

4 ;

O
(

1
b(n)

)
, 1

4 < H < 1.

That is, the condition (2) of Theorem 2.2 is satisfied. By the virtue of Theorem 2.2

(7) (b(n))
2H−1

b(n)−1∑
k=0

(ηH , χk,n)
2 → 1, n→∞

in the square mean. If for any ε > 0 the series
∞∑
n=1

1

(b(n))
ε

converges, the convergence in (7) occurs with probability 1.

For brevity, we will call the process ξH(t) of Example 2.2 ξH–process.

Corollary 2.4. Let the statistical structure (Ω, σ, P1, P2) be such that the process ξ(t), t ∈
R is the ξH1

-process with respect to the measure P1 and ξ(t), t ∈ R is the ξH2
-process with

respect to the measure P2. Let η = η(ϕ), ϕ ∈ K be the generalized random process that
is the derivative of ξ(t). In accordance to Definition 2.2 let σ(η) ⊂ σ be the σ–algebra
generated by the generalized process η, P1,η and P2,η be the restrictions of measures P1, P2

on the σ–algebra σ(η) respectively. Then for H1 6= H2 measures P1,η, P2,η are orthogonal
(singular).

Proof. Corollary 2.4 follows from the limit relation (7) in the same way as Corollary 2.3
follows from Theorem 2.1. Indeed, let

Xi =

ω ∈ Ω : (b(n))
2Hi−1

b(n)−1∑
k=0

(η, χk,n)
2 → 1, n→∞

 , i = 1, 2,

where b(n) tends to infinity sufficiently fast. We have the equalities P1,η(X1) = P2,η(X2)
= 1. But X1

⋂
X2 = ∅. �
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It is known, that the condition H1 6= H2 implies that P1,ξ, P2,ξ are singular (see, for
example, [5]). But this does not imply orthogonality of P1,η, P2,η automatically, because
the sigma-algebras σ(ξ), σ(η), generally speaking, do not coincide with each other ([17]).
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