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PIETRO RIGO AND HERMANN THORISSON

TRANSFER THEOREMS AND RIGHT-CONTINUOUS PROCESSES

A counterexample to a transfer result in [5] (Theorem 2.4, Chap. 4) is given. A new

result, which provides a reasonable substitute for the disproved one, is proved as

well. This result yields, in particular, a transfer theorem for processes whose paths
are right-continuous but not necessarily cadlag.

1. Introduction

A transfer theorem is a result of the following type; see e.g. [3, page 112] and [5, pages
135 and 152]; see also [1].

Let (X , E) and (Y,F) be measurable spaces, X and X0 random variables with values
in (X , E), and Y0 a random variable with values in (Y,F). Suppose X is defined on
the probability space (Ω,A, P ) while X0 and Y0 are defined on the probability space
(Ω0,A0, P0). A transfer theorem gives conditions for the existence of a random variable
Y , defined on an extension of (Ω,A, P ), taking values in (Y,F), and such that (X,Y ) is
a copy of (X0, Y0), namely

(1) (X,Y ) ∼ (X0, Y0).

By an extension of (Ω,A, P ), we mean a probability space (Ω1,A1, P1) such that

Ω1 = Ω× T, A× T ∈ A1 and P1(A× T ) = P (A)

for all A ∈ A and some set T . Then, with a slight abuse of notation, X can be regarded
as a random variable on (Ω1,A1, P1). Note that X ∼ X0 is a necessary condition for (1).

Apart from foundational interest, transfer theorems are particularly useful in coupling
constructions. A typical application can be outlined as follows. Some key aspect of
the coupling construction is isolated and treated on a conveniently chosen probability
space, say (Ω0,A0, P0), supporting both a copy X0 of a random variable X from the
original probability space (Ω,A, P ) and also a “new” random variable Y0. Subsequently,
Y0 is “transferred” to (an extension of) the original probability space (Ω,A, P ). One
example is the construction of distributional coupling times for two versions of a classical
regenerative process with inter-regeneration times that have an absolutely continuous
component with respect to Lebesgue measure. Distributional coupling times can then
be constructed for copies of the regeneration times and transferred to the original regen-
erative processes; see [5, Chap. 10, Sect. 3.4 – 3.5]. Another example is the turning of
distributional couplings into nondistributional couplings; see [5, Chap. 4 – 7].

A well known transfer theorem states that, for Y satisfying condition (1) to exist, it
suffices that X ∼ X0 and Y0 admits a regular conditional distribution (r.c.d.) given X0.
A r.c.d. is a function K on X × F such that

− K(x, ·) is a probability measure on F for fixed x ∈ X ;

− The map x 7→ K(x, F ) is E-measurable for fixed F ∈ F ;

2010 Mathematics Subject Classification. 60A05, 60A10, 60F99, 60G07, 60G17.
Key words and phrases. Coupling – Perfect probability measure – Regular conditional distribution –

Transfer theorem.

91



92 PIETRO RIGO AND HERMANN THORISSON

− P0

(
X0 ∈ E, Y0 ∈ F

)
=
∫
E
K(x, F )µ(dx) for all E ∈ E and F ∈ F , where µ

denotes the probability distribution of X0.

We recall that a r.c.d. for Y0 given X0 exists whenever F is countably generated and the
probability distribution of Y0 is perfect (see Section 2).

The proof of this transfer theorem is straightforward. With K as above, it suffices to
let

Ω1 = Ω× Y, A1 = A⊗F , Y (ω, y) = y for (ω, y) ∈ Ω× Y, and

P1(H) =

∫ ∫
IH(ω, y)K

(
X(ω), dy

)
P (dω) for H ∈ A⊗ F .

Then, P1(A×F ) =
∫
A
K(X,F ) dP for all A ∈ A and F ∈ F . In particular, P1(A×Y) =

P (A). Further, since X ∼ µ,

P1

(
X ∈ E, Y ∈ F

)
= P1

(
{X ∈ E} × F

)
=

∫
{X∈E}

K(X,F ) dP

=

∫
E

K(x, F )µ(dx) = P0

(
X0 ∈ E, Y0 ∈ F

)
for all E ∈ E .

While X ∼ X0 is a necessary condition for (1), the existence of a r.c.d. is not. Thus,
a natural question is whether the existence of a r.c.d. may be replaced by some weaker
condition. Say that Y0 admits a weak-sense-r.c.d. given X0 if:

There are a measurable space (Z,G), a subset G ⊂ Z, and a bijective bi-
measurable function

f : (Y,F)→ (G,G ∩G)

such that f(Y0) (regarded as a (Z,G)-valued random variable) admits a r.c.d.
given X0.

According to Theorem 2.4 of [5, Chap. 4], a random variable Y satisfying (1) exists
provided X ∼ X0 and Y0 admits a weak-sense-r.c.d. given X0. As it stands, however,
this assertion fails to be true.

The aim of this note is to present a counterexample to Theorem 2.4 and to establish
a reasonable substitute for that incorrect result; see Example 1 and Theorem 2. In [5],
the flawed transfer theorem was used to turn distributional couplings of right-continuous
processes on a Polish state space into nondistributional couplings. A transfer result for a
right-continuous (but not necessarily cadlag) process Y0 follows easily from Theorem 2;
see Corollary 3.

2. A counterexample and two transfer results

For any probability space (V,V, Q), the outer measure Q∗ and the inner measure Q∗
are defined as

Q∗(A) = inf
{
Q(B) : A ⊂ B ∈ V

}
and Q∗(A) = 1−Q∗(Ac) for A ⊂ V.

Also, Q is perfect if, for each measurable function f : V → R, there is a Borel subset B
of R such that B ⊂ f(V ) and Q(f ∈ B) = 1. If V is separable metric and V the Borel
σ-field, then Q is perfect if and only if it is tight. We refer to [4] for more information
on perfect probability measures.

We begin with a counterexample to Theorem 2.4.

Example 1. Let B and B2 be the Borel σ-fields on [0, 1] and [0, 1]2, respectively, and let
m be the Lebesgue measure on B. Fix a subset I ⊂ [0, 1] with m∗(I) = 1 and m∗(I) = 0,
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and define J = [0, 1] \ I and

Ω = J, Ω0 = [0, 1]× I, X = [0, 1], Y = I,

X(ω) = ω, X0(x, y) = x, Y0(x, y) = y

for all ω ∈ Ω and (x, y) ∈ Ω0. All spaces are equipped with the corresponding Borel
σ-fields, namely,

A = B ∩ Ω, A0 = B2 ∩ Ω0, E = B, F = B ∩ Y.

Define also P = m∗ on A and

P0

(
H ∩ Ω0

)
= m∗

{
x ∈ I : (x, x) ∈ H

}
for all H ∈ B2.

Since m∗(J) = 1−m∗(I) = 1, then P is a probability measure on A. Similarly, P0 is a
probability measure on A0.

It remains to see that: (i) X ∼ X0; (ii) Y0 admits a weak-sense-r.c.d. given X0; (iii)
No random variable Y , defined on an extension of (Ω,A, P ) and measurable with respect
to (Y,F), satisfies condition (1).

(i) Just note that

P (X ∈ B) = m∗(B ∩ J) = m(B) = m∗(B ∩ I) = P0(X0 ∈ B) for all B ∈ B.

(ii) Take (Z,G) = ([0, 1],B), G = Y = I, and f(y) = y for all y ∈ Y. Define
K0(x,B) = δx(B) for all x ∈ X and B ∈ G. Since µ = m, where µ is the probability
distribution of X0, then∫

A

K0(x,B)µ(dx) = m(A ∩B) = m∗(A ∩B ∩ I) = P0

(
X0 ∈ A, f(Y0) ∈ B

)
for all A, B ∈ B. Hence, K0 is a r.c.d. for f(Y0), regarded as a (Z,G)-valued random
variable, given X0.

(iii) Let Y be a random variable, with values in (Y,F), defined on an extension
(Ω1,A1, P1) of (Ω,A, P ). Since X ∈ J and Y ∈ I, then X 6= Y everywhere on Ω1. Thus,
if (X,Y ) ∼ (X0, Y0), one gets the contradiction

P1(∅) = P1

(
X = Y

)
= P0

(
X0 = Y0

)
= 1.

Example 1 disproves Theorem 2.4. The parts of [5] where that flawed theorem was
used concern assertions about existence of nondistributional couplings. Accordingly,
these parts need to be adjusted. The conservative way of doing this is to replace the
condition of existence of weak-sense-r.c.d. by r.c.d. and to add the condition of existence
of left-hand limits wherever assertions are made about nondistributional couplings of
right-continuous processes. We also mention that Section 3.4, page 84, does not work as
it stands.

Let us turn now to a possible substitute of Theorem 2.4, partially saving the results
affected by that incorrect assertion. The idea is to place a mild condition on F plus
a condition on the probability space (Ω,A, P ) where X lives. Our main result is the
following.

Theorem 2. Let R ⊂ F be a countably generated sub σ-field and ν the restriction on R
of the probability distribution of Y0. Given C ⊂ Y, suppose

R∩ C = F ∩ C, X ∼ X0, P and ν are perfect.

If the range of Y0 is contained in C, then (X,Y ) ∼ (X0, Y0) for some random variable Y ,
defined on an extension of (Ω,A, P ), measurable with respect to (Y,F), and with range
included in C.
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Proof. To avoid misunderstandings, we write Z0 when Y0 is regarded as a (Y,R)-valued
random variable. The probability distribution of Z0 is ν. Hence, since R is countably
generated and ν is perfect, Z0 admits a r.c.d. given X0. It follows that

(X,Z) ∼ (X0, Z0)

for some random variable Z, defined on an extension (Ω1,A1, P1) of (Ω,A, P ) and mea-
surable with respect to (Y,R). Also, as shown in Section 1, we can take

Ω1 = Ω× Y, A1 = A⊗R, Z(ω, y) = y for all (ω, y) ∈ Ω× Y.

Since Z is a canonical projection, the marginal of P1 on R is ν. Since the range of Y0 is
contained in C, we have ν∗(C) = 1. Therefore,

P ∗1 (Z ∈ C) = P ∗1 (Ω× C) = ν∗(C) = 1

where the second equality depends on P is perfect and [1, Lemma 6].
Next, define Ω2 = Ω1 and

A2 = σ
(
A1 ∪ {Z ∈ C}

)
.

Let P2 be the probability on A2 such that P2 = P1 on A1 and P2(Z ∈ C) = 1. Also,
fix c ∈ C and define Y = c on {Z /∈ C} and Y = Z on {Z ∈ C}. Then, (Ω2,A2, P2) is
an extension of (Ω,A, P ) and the range of Y is contained in C. Fix E ∈ E and F ∈ F .
Since R ∩ C = F ∩ C, we have F ∩ C = B ∩ C for some B ∈ R. Since the ranges of Y
and Y0 are both included in C, we have {Y ∈ F} = {Y ∈ B} and {Y0 ∈ F} = {Y0 ∈ B}.
Thus, if c ∈ B, one obtains

{Y ∈ F} = {Y ∈ B} = {Z /∈ C} ∪ {Z ∈ B ∩ C} ∈ A2.

Similarly, {Y ∈ F} ∈ A2 if c /∈ B. Hence, Y is measurable with respect to (Y,F).
Finally, since (X,Z) ∼ (X0, Z0), we obtain

P2

(
X ∈ E, Y ∈ F

)
= P2

(
X ∈ E, Y ∈ B, Z ∈ C

)
= P1

(
X ∈ E, Z ∈ B

)
= P0

(
X0 ∈ E, Z0 ∈ B

)
= P0

(
X0 ∈ E, Y0 ∈ B

)
= P0

(
X0 ∈ E, Y0 ∈ F

)
.

�

We conclude by applying Theorem 2 to the case when Y0 is a process with right-
continuous (but not necessarily cadlag) paths.

Corollary 3. Suppose X ∼ X0, P is perfect, and Y0 = {Y0(t) : t ≥ 0} is an S-valued
process with right-continuous paths, where S is a Polish space. Then, (X,Y ) ∼ (X0, Y0)
for some S-valued process Y = {Y (t) : t ≥ 0}, with right-continuous paths, defined on an
extension of (Ω,A, P ).

Proof. Let Y be the set of all functions y : [0,∞)→ S and

ft(y) = y(t) for all t ≥ 0 and y ∈ Y.

Fix an enumeration q1, q2, . . . of the non-negative rationals, and define

φ(y) =
(
y(q1), y(q2), . . .

)
for all y ∈ Y.

Take R to be the σ-field generated by φ : Y → S∞ and F the σ-field generated by the
evaluation maps ft for all t ≥ 0. Clearly, R ⊂ F and R is countably generated. Since S
is Polish, every Borel probability on S is perfect. Hence, every Borel probability on S∞

is perfect as well. Since φ is surjective, it follows that each probability on R is perfect.
Now, let

C =
{
y ∈ Y : y right-continuous

}
.
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To prove R∩C = F ∩C, it suffices to show that ft|C (i.e., the restriction of ft to C) is
measurable with respect to R∩ C for each t ≥ 0. Fix t ≥ 0 and take a sequence (rn) of
non-negative rationals such that rn ↓ t as n→∞. Then,

ft(y) = y(t) = lim
n
y(rn) = lim

n
frn(y) whenever y ∈ C,

and frn |C is R∩C-measurable since frn is R-measurable. Thus, ft|C is measurable with
respect to R∩ C. An application of Theorem 2 completes the proof.

�

Actually, the above proof yields slightly more than asserted. Even if the state space
S of Y0 is not Polish, Corollary 3 applies provided S is a separable metric space and
each Borel probability on S is perfect. This happens if (and only if) S is a universally
measurable subset of a Polish space; see [2, Lemma 4].
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