© Г.В. Артеменко¹, И.А. Швайка¹, Е.А. Татаринова², В.И. Калинин¹, 2008

УДК.550.42.:552.311(477)

 ¹ Институт геохимии и рудообразования им. Н.П. Семененко НАН Украины, г. Киев
² Центр менеджмента и маркетинга в области наук о Земле ИГН НАН Украины, г. Киев

ГЕОХИМИЯ ГРАНИТОИДОВ И ВУЛКАНИЧЕСКИХ ПОРОД ГУЛЯЙПОЛЬСКОГО БЛОКА (ПРИАЗОВСКИЙ МЕГАБЛОК УЩ)

Вступление. Гуляйпольской блок, размером около 40×50 км (рис.1), является тектоническим фрагментом мезоархейского кратона (3,20-2,92 млрд лет) [1,2]. Останцы глубокоэродированных зеленокаменных поясов выделяются в Косивцевской приразломной моноклинали и Гайчурской трогообразной структуре. Ксенолиты зеленокаменных пород также широко распространены среди гранитоидов этого блока. Зеленокаменные пояса сложены метаморфизованными породами коматиит-толеитовой формации (косивцевская толща), которая сопоставляется с сурской свитой конкской серии Среднеприднепровского мегаблока. Среди гранитоидов значительно преобладает ТТГ формация, возрастом 3,0-2,92 млрд. лет [1,2]. Интрузии гранодиоритов шевченковского комплекса – 2,835±0,03 млрд. лет и более поздних коровых гранитоидов добропольского комплекса – 2,1±0,015млн лет занимают значительно меньшую площадь [3]. На смежном с севера Ремовском блоке выделяются гранитоиды ремовского комплекса возрастом 2,97±0,18 млрд лет. Характерной особенность мезоархейских гранитоидов Гуляйпольского блока является присутствие в них реликтового палеоархейского гранулитового циркона, возрастом 3,4 млрд лет, что указывает на формирование зеленокаменных поясов на более древней сиалической коре [1,3]. Высокая степень тектонической переработки зеленокаменных поясов и высокая степень их гранитизация позволяет высоко оценивать их перпективы этого района на благороднометальное оруденение.

Методика исследований. Нами выполнены детальные геохимические исследования представительных проб метаморфизованных коматиитов и базальтов зеленокаменных поясов и основных типов гранитоидов Гуляйпольского блока. Анализы редких, в том числе редкоземельных элементов были выполнены методом масс-спектроскопии с индуктивно связанной плазмой (ICP-MS) на масс-спектрометре Elan 6100 в ЦЛ ВСЕГЕИ. Это ме-

Рис. 1. Схематическая геологическая карта северной части Гуляйпольского блока (Шпыльчак, Киньшаков, 1990, с упрощениями). Условные обозначения: 1 - гнейсы западноприазовской серии; 2 - метабазальты и метакоматииты косивцевской толщи; 3 - сланцы и гнейсы терноватской толщи, 4 - породы гуляйпольской свиты (метагравелиты, метапесчаники, железистые кварциты, сланцы, метавулканиты), 5 - интрузивные породы добропольского комплекса (диориты, кварцевые диориты, тоналиты, плагиограниты); 6 -плагиомигматиты ремовского комплекса с телами плагиогранитов шевченковского комплекса; 7 - разломы; 8 - номера скважин. Главные геологические структуры (римские цифры): I – Косивцевская зеленокаменная структура, II – Терноватская полоса (Риздвяно-Успенская моноклинальная структура); III – Зеленовская синклинальная структура; IV – Верхнетерсянская синклинальная структура; интрузивные массивы добропольского комплекса (VI-VII): VI- Добропольский массив, VII – Риздвянский массив; VIII – Воздвиженская антиклинальная структура

тод многоэлементного анализа, в котором для десольватизации, испарения, атомизации и ионизации пробы используется индуктивно-связанная плазма, а для детектирования и измерения количества ионов пробы – метод масс-спектрометрии. Применение современного программного обеспечения позволяет провести автоматический учёт изобарических наложений и обеспечить пределы обнаружения элементов в горных породах на уровне 0,0002–0,01 г/т.

Результаты геохимических исследований. Зеленокаменные пояса

Метаморфизованные перидотитовые коматииты. В Косивцевской 3С метаморфизованные перидотитовые коматииты (скв.842, обр.89-230) характеризуются высоким содержанием MgO (30,95%), Cr (2570 ppm), Ni (841 ppm), при относительно невысокой магнезиальности mg = 69,7 (табл. 1, 2). На диаграмме AFM их фигуративная точка попадает в поле Таблица 1. Представительные химические анализы гранитоидов и метаморфизованных вулканических пород Гуляйпольского блока.

								-											
15/	89-204	48,60	0,50	14,40	2,00	7,70	0,20	9,50	11,90	1,92	1,00	0,08	0,08	0,52	SI	1,38	99,75	49,5	
14/	89-317	47,20	0,94	14,22	3,46	10,05	0,32	6,60	12,66	1,62	0,30	He oup	0,16	Hc onp	0,04	2,63	100,20	32,8	,
13/	06-68	45,62	1,00	14,24	5,09	9,76	0,27	9,00	10,74	2,10	0,20	He oup	0,24	Hc onp	0,06	1,94	100,26	37,7	,
12/	89-262	46,87	0,50	6,74	5,23	8,55	0,27	22,10	9,01	0,58	0,06		0,09			,	100*	61,6	
11/	89-230	45,36	0,36	4,14	6,48	6,99	0,26	30,95	5,12	0,22	0,06	,	0,06			,	100*	69,7	
10/	89-286	70,91	0,34	13,65	0,47	2,59	0,04	1,66	2,62	3,25	3,39	0,02	0,06	0,38	0,01	0,53	99,92	35,2	2,9
/6	89-260	66,55	0,66	14,87	0,79	3,81	0,08	2,81	3,96	2,53	1,89	0,31	0,20	0,49	0,05	0,87	99,87	37,9	2
8/	89-141	68,40	0,41	14,80	1,29	2,07	0,06	1,76	2,59	3,80	2,96	0,09	0,15	Hc onp	0,06	1,36	99,80	34,3	2,9
1L	89-214	60,79	0,74	13,25	2,84	4,02	0,11	5,54	4,49	2,69	2,69	0,07	0,33	0,31	0,25	1,54	99,66	44,7	1,1
6/	89-344	68,67	0,20	16,85	0,13	2,59	0,08	1,18	3,22	2,97	2,82	0,14	0,05	Hc onp	0,10	0,90	99,83	30,3	4,3
5/	89-301	70,18	0,31	14,62	0,51	1,87	0,05	1,48	3,19	4,43	1,57	0,06	0,12	0,73	0,08	0,51	99,71	38,3	3,8
4/	89-67	68,69	0,14	16,18	,	2,50	0,01	1,03	2,52	4,22	3,90	0,28	0,03	Hc onp	0,06	0,92	99,98	29,2	4,6
3/	89-277	74,19	0,13	14,73	0,03	0,93	0,01	0,39	3,19	4,94	0,40	SI	0,05	0,45	0,02	0,22	99,68	28,9	10,9
2/	89-266	74,59	0,13	13,79	0,26	0,72	0,01	1,01	2,30	5,77	0,34	SI	0,03	0,42	0,01	0,20	99,58	50,8	6,9
1/	89-289	63,24	0,40	15,86	1,32	3,31	0,08	3,63	5,19	4,30	1,10	0,02	0,15	Hc onp	0,18	0,95	99,73	44	1,9
OKMCJIЫ,	%	SiO_2	TiO_2	Al ₂ O ₃	Fc ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K20	Sootu	P_2O_5	CO_2	H ₂ O-	П.п.п.	Сумма	#mg	al'

12 — то же, 794, инт. 127,7—127,9 (89-262); 13 — метабазалыт, скв. 741, гл. 207,0 м (89-90); 14 — то же, скв. 742, инт. 151,5—157,5 266); 3 — тоже, скв. 795, инт. 148,3—153,2 м (89-277). *Жильные граниты:* 4 — гранодиорит, скв. 741, гл. 155,9 м (89-67); 5 — тоналит, скв. 742, инт. 181,9—183,5 м (89-301). Шевченковский комплекс: 6 — гранодиорит, скв. 836, инт. 256,6—258,0 м (89-344). Доброполь*ский комплекс:* 7 — кварцевый диорит, скв. 200, гл. 150 м (89-214); 8 — плагиогранит, скв. 835, инт. 89,0—67,0 м (89-141); 9 — Примечание. *ТТГ формация*: 1 — плагиогранит, скв. 792, 93,5—94,5 м (89-289); 2 — трондьемит, скв. 794, инт. 177,1—180,5 м (89катаклазированный плагиогранит, скв. 830, инт. 235,7—240,6 м (89-260). *Ремовский комплекс*: 10 — гранит, скв. 763, инт. 187,2— 190,0 м (89-286). *Косивцевская толща*: 11 — метаморфизованный перидотитовый коматиит, скв. 842, инт. 244,8—245,0 м (89-230); м (89-317); 15 – то же, скв. 791, инт. 203,0–203,1 м (89-204). (Химические анализы выполнены в ИГМР НАН Украины) 22 * – анализы пересчитаны на безводный остаток.

Элем.,	1/	2/	3/	4/	5/	6/	7/	8/	9/	10/
Ppm	89-289	89-266	89-277	89-67	89-301	89-344	89-214	89-141	89-260	89-286
Rb	30	8	8,9	81	41.0	63,1	75,2	71	60,0	133
Sr	331	445	405	133	135	518	765	618	720	318
Ва	461	294	560	1370	1200	1240	1940	1300	1200	1030
Nb	5,1	<1	<1	2,05	4,64	8,68	6,66	6,2	8,39	13,7
Y	9,9	1,1	0,83	3,2	4,26	8,47	11,6	6,9	8,55	8,18
Zr	106	50	32	92	88,0	110	131	107	148	174
Ga	42,7	12,2	9,4	18,7	17,2	18,7	17,6	17,1	20,2	21,5
Ge	1,02	0,37	0,46	1,23	0,91	1,09	1,29	0,88	1.30	1,40
As	<0,2	0,29	0,22	0,88	-	-	-	0,55	-	-
Pb	-	17	13	-	3,21	13,7	12,8	-	9,53	16,5
Th	-	3,7	<0,4	5,8	7,20	8,06	5,05	5,5	4,98	42,6
U	1,28	0,21	0,16	1,36	2,73	2,04	0,91	0,84	1,08	1,68
Mo	<0,6	<0,6	<0,6	<0,6	1,15	<0,1	<0,1	<0,6	<0,1	0,91
Be	0,71	0,51	0,78	2,3	1,12	1,75	1,57	1,03	1,41	-
V	62	6,8	9,7	43,5	43,8	43,6	108	43	88,2	41,3
Cr	37	11	3,9	18	17,3	26,1	270	70	60,1	76,5
Co	13,4	2,9	2,6	5,8	5,75	6,46	26,1	9,4	13,4	9,24
Ni	14	4,3	1,8	5	9,75	9,14	118	22	21,9	23,6
Cu	21	26	12	28	33,8	21,8	32,9	6,4	19,8	27,4
Zn	42,7	13,5	9,4	18,7	29,3	50,8	80,7	42,8	70,1	42,3
In	0,025	<0,01	<0,01	<0,01	-	-	-	0,023	-	-
Sn	0,99	<0,02	<0,2	<0,2	0,89	1,0	1,41	0,63	1,06	1,18
Sb	<0,1	0,23	<0,1	<0,1	<0,1	<0,1	0,12	0,11	0,14	0,10
Cs	0,25	0,26	0,12	1,18	0,87	1,42	2,65	1,87	1,55	1,82
Hf	2,6	1,26	0,81	2,22	2,64	3,46	3,31	2,8	4,04	4,71
Та	0,38	<0,1	<0,1	0,11	0,25	0,59	0,33	0,79	0,55	0,56
W	0,36	0,8	<0,15	1,55	0,56	0,45	1,81	0,44	0,52	<0,15
T1	0,2	<0,1	<0,1	0,36	0,26	0,48	0,39	0,6	0,49	0,47
La	16,2	17,8	1,04	33,7	33,4	28,9	23,3	22,7	27,6	71,3
Ce	31	29,9	1,72	62,4	61,6	51,8	48,3	40,9	51,0	136
Pr	3,42	2,99	0,21	6,44	6,61	5,89	5,35	4,42	5,69	14,3
Nd	12,4	9,91	0,7	21,1	22,9	20,6	20,6	16,1	20,6	46,2
Sm	2,4	1,36	0,15	2,4	3,10	3,62	4,29	2,59	2,96	7,04
Eu	0,8	0,34	0,28	0,93	0,90	0,96	1,36	0,89	1,14	1,05
Gd	2,31	0,75	0,15	1,63	2,22	3,03	3,43	1,96	2,91	4,51
Tb	0,35	0,078	0,024	0,20	0,25	0,37	0,49	0,26	0,36	0,53
Dy	1,68	0,29	0,12	0,77	0,93	1,76	2,21	1,28	1,65	1,91
Ho	0,33	0,037	0,029	0,10	0,16	0,33	0,42	0,24	0,31	0,31
Er	0,96	0,097	0,079	0,24	0,39	0,76	1,05	0,63	0,82	0,88
1 m	0,13	0,015	0,015	0,035	0,045	0,10	0,17	0,087	0,11	0,11
Yb	0,91	0,096	0,097	0,26	0,32	0,67	1,03	0,62	0,70	0,76
	0,14	0,014	0,015	0,036	0,048	0,10	0,14	0,089	0,11	0,13
$(Nb/La)_N$	0,30	0,05	0,93	0,06	0,13	0,29	0,28	0,26	0,29	0,19
$(La/Yb)_{N}$	12,8	133,0	7,7	93	74,9	30,9	16,2	26,3	28,3	67,3
Zr/Y	10,7	62,7	92,8	28,8	20,7	13	11,3	15,5	17,3	21,3
$\frac{11}{Zr}$	22,6	15,6	24,4	9,1	21,1	10,9	33,9	23	26,7	11,7
Eu/Eu*	1,04	1,03	5,/1	1,41	1,05	0,89	1,08	1,21	1,19	0,57
Kb/Sr	0,09	0,02	0,02	0,61	0,30	0,12	0,10	0,15	0,08	0,42
Sr/Y	33,4	404,6	488	41,6	31,7	61,2	66	89,6	84,2	38,9

Таблица. 2. Содержание редких элементов в гранитоидах и метавулканитах Гуляй-польского блока

Продолжение таблицы 2

№№ проб	11/	12/	13/	14/	15/	Верхняя
1	89-230	89-262	89-90	89-317	89-204	граница
Rb	0,97	1,15	3.5	4.8	22,4	0,1
Cs	0,46	0,071	0.23	0,40	0.66	0,02
Sr	30,1	70,7	158	116	294	0,1
Ba	6,14	8,08	16	46	550	0,1
Nb	1,17	1,87	1.51	1,41	1,49	0,1
Y	5.00	8,59	15.5	13.3	12,1	0,1
Zr	12,1	26,9	35	35	28,0	0,1
Zn	84,7	82,2	70	77	74,0	5
Ga	6,42	8,85	12,6	13,6	15,5	0,1
Ge	1,85	2,10	1,6	1,48	1,98	0,03
As	-	-	0,61	0,55	-	0,1
Pb	4,18	1,94	2.36	15	4,30	1
Th	0,17	0,37	<0,4	5,5	0.16	0,1
U	<0.10	0,15	0,47	0.84	0.15	0,1
Мо	0,56	0,84	<0.6	<0.6	6,54	0,1
V	145	210	270	242	244	1
Cr	2570	2300	99	123	240	0,05
Со	137	120	60	48,8	53,0	0,1
Ni	841	542	90	50,7	70,9	0,05
Cu	57.7	69.5	71	104	12,6	0,05
Sn	0,44	0.59	0.31	0,36	0.76	0,2
Sb	0,29	<0,1	-	-	0,13	0,1
Hf	0,34	0.88	1.02	0,99	0.78	0,1
Та	0.087	0,12	<0,1	<0.1	0,11	0,05
W	0,41	0,17	<0,15	0,44	0.27	0,05
T1	0,032	0,12	-	-	0,12	0,1
La	0,88	2,06	2,54	2,49	1,68	0,01
Ce	1,97	4,31	6,19	6,11	4,09	0,01
Pr	0,27	0,60	0,94	0,92	0,58	0,01
Nd	1,51	2,81	4,61	4,47	2,80	0,01
Sm	0,42	0,86	1,49	1,50	1,00	0,005
Eu	0,14	0,25	0,57	0,56	0,51	0,005
Gd	0,58	1,16	1,97	1,87	1,31	0,01
Tb	0,11	0,21	0,39	0,20	0,25	0,005
Dy	0,69	1,24	2,76	2,51	1,69	0,01
Ho	0,17	0,30	0,61	0,56	0,39	0,005
Er	0,43	0,82	1,70	1,67	1,16	0,01
Tm	0,068	0,12	0,28	0,25	0,16	0,005
Yb	0,45	0,74	0,26	1,68	1,11	0,01
Lu	0,075	0,11	0,036	0,25	0,18	0,005
(Nb/La) _N	1,28	0,88	0,57	0,55	0,86	
(La/Yb) _N	1,40	3,0	7,01	1,06	1,09	
Zr/Y	2,42	3,13	2,26	2,63	2,31	
Ti/Zr	163,5	104,7	171,3	161	107,1	
Eu/Eu*	-	-	1,02	1,02	1,36	

Примечание. Привязки проб даны в таблице 1.

коматиитов (рис. 2). Они деплетированы глиноземом (барбертонский тип): Al₂O₃/TiO₂ = 11,5; CaO/Al₂O₃ = 1,24. Отношения Ti/Zr = 178 – выше, а Zr/Y = 2,4 близко к аналогичным отношениям в примитивной мантии [4]. По содержанию редких элементов они близки к примитивной мантии (рис. 3). Положительная аномалия Ті свидетельствует, возможно, о его кумулятивном накоплении, а положительные аномалии Р и Ва отражают наложенные процессы. Перидотитовые коматииты слабо обогащены легкими РЗЭ $(Ce/Sm)_N = 1,17; (Yb/Gd)_N = 0,94, при Yb_N = 2,7$ (рис.4). Высокое отношение (Nb/La)_N = 1,28, указывает на отсутствие коровой контаминации (табл. 2). Расчетные РТ параметры формирования перидотитовых коматиитов (обр. 89-230), составляют: температура расплава = 1613,8°С, температура в источнике – 1882,3°С, давление в источнике 7-8,2 ГПА $(T_{\text{расплава}} = 17,86 \cdot \text{MgO} (\text{вес.\%}) + 1061^{\circ}\text{C} [5];). T_{\text{источника}} = -1382,5 + 2,8246 \cdot T_{\text{распл -0,00049671 \cdot T^2_{\text{распл}}$ [6]. Давление в источнике: $Al_2O_3 = (\text{вес. \%}) = 22,8581 - 22,8581$ -4,0110 · P + 0,2703 · P² - 0,0061 · P³, где Р - давление в ГПА). Для расчетов использованы также данные работы [7]. Полученная температура в магматическом источнике перидотитовых коматиитов (обр.89-230) значительно превышают модельные температуры мантии в архее [8] и для их образования необходим источник дополнительного тепла – плюм.

Перидотитовые коматииты Зеленовского участка (скв. 791, обр. 89-262) характеризуются содержанием MgO (22,10%), mg = 61,6, Cr (2300 ppm), Ni (542 ppm) (табл. 1, 2). На диаграмме AFM их фигуративная точка попадает в поле коматиитов (рис. 2). Они деплетированы глиноземом (барбертонский тип): $Al_2O_3/TiO_2 = 13,5$; CaO/ $Al_2O_3 = 1,3$. Отношения Ti/Zr = 111,4 и Zr/Y = 3,1, близки к аналогичным отношениям в примитивной мантии [4]. Содержание редких элементов в 2–3 раза выше, чем в примитивной мантии (рис. 3). Перидотитовые коматииты слабо обогащены легкими P3Э (Ce/Sm)_N = 1,25; (Yb/Gd)_N = 0,77, при Yb_N = 4,4 (рис. 4). Отношение (Nb/La)_N = 0,88, указывает на отсутствие коровой контаминации (табл. 2). PT параметры формирования перидотитовых коматиитов (обр. 89-262), согласно [5, 6] составляли: температура расплава = 1455,7°C, температура в источнике – 1676,7°C, давление в источнике 6,6 ГПА.

Метабазальты. Метабазальты Косивцевского участка (обр. 89-90, 89-317): SiO₂ (45,62–47,20 мас. %), MgO (6,60–9,00 мас. %), TiO₂ (0,94– 1,10 мас. %); mg (32,8–37,7 ppm), Cr (99–123 ppm); Ni (50–90 ppm) (табл.1,2). На диаграмме AFM они попадают в поле толеитовой серии (рис. 2). Для метабазальтов характерно плоское недифференцированное распределение P3Э (La/Yb)_N ~1,0 (рис. 4). Концентрации P3Э в 10 раз выше, чем в хондрите (рис. 3). На спайдер-диаграмме выделяются положительные аномалии K, P, Ti. Накопление калия обусловлено, вероятно, наложенными процесса-

Рис.2. Диаграмма AFM для метавулканитов зеленокаменных поясов и гранитоидов Гуляйпольского блока. На графике линия раздела пород толеитовой и известковощелочной серий. Цифры на графике – номера проб

Рис.3. Спайдер-диаграмма для метаморфизованных перидотитовых коматиитов и метабазальтов зеленокаменных поясов Гуляйпольского блока. Концентрация элементов нормализована на примитивную мантию [4]

Рис.4. Распределение РЗЭ в метаморфизованных перидотитовых коматиитах и метабазальтах зеленокаменных поясов Гуляйпольского блока. Концентрация элементов нормирована на хондрит [4]

ми, а Р и Ті – процессами кристаллизационной дифференциации. Отношение Ті/Zr в метабазальтах Косивцевского участка – 161,0–171,3 выше аналогичного отношения в примитивной мантии [4]. Отрицательная ниобиевая аномалия (Nb/La)_N = 0,55–0,57 скорее всего указывает на плавление их источника в присутствии воды, что характерно для обстановки островных дуг, или под действием флюида [4].

Метабазиты Зеленовского участка (обр. 89-204) характеризуются высоким содержанием MgO (9,50 мас. %), магнезиальность mg = 49,5, TiO₂ (0,50 %). Содержания хрома и никеля: Cr (240 ppm); Ni (71 ppm) (табл. 1, 2). На диаграмме AFM метабазиты Зеленовского участка попадают в поле толеитовой серии (рис. 2). Для них характерно недифференцированное распределение РЗЭ (La/Yb)_N ~1,0 (рис. 4). Концентрация РЗЭ в 7 раз выше, чем в хондрите. Меньшая концентрация РЗЭ в обр. 89-204, чем в обр. 89-90 и 89-317, при более высоком содержании SiO₂ и большей магнезиальности обусловлена, вероятно, меньшей долей выплавки из мантийных пород. Выделяется положительная европиевая аномалия (Eu/Eu* = 1,36), что указывает на кумуляцию плагиоклаза. На спайдер-диаграмме наблюдаются положительные аномалии K, Rb, Sr, Ba (рис. 3). Аномалии K, Ba и Rb обусловлены, вероятно, наложенными процессами, а накопление Sr связано с кумуляцией плагиоклаза. Отношение Ti/Zr в метабазальтах Зеленовского участка – 107,05 (табл. 2), а $(Nb/La)_{N} = 0,86$, что свидетельствует об отсутствии коровой контаминации. Изученные метабазиты Зеленовского участка представляют собой, очевидно, расслоенное тело.

На диаграмме Nb/Y–Zr/Y [9] коматииты и базальты Гуляйпольского гранит-зеленокаменного блока лежат в поле островодужных образований (рис.5). Для метавулканитов зеленокаменных поясов Гуляйпольского блока характерны относительно невысокие содержания Ni [10].

Гранитоиды Гуляйпольского блока.

Плагиогранитоиды ТТГ ассоциации. Выделяются диориты и трондье-

миты натриевой серии, кварцевые диориты и тоналиты калиево-натриевой серии [1]. В проанализированных образцах (89-289, 89-266, 89-277) $SiO_2(63,24-74,59\%)$; $Na_2O/K_2O = 3,9-17$ (табл. 1). По

Рис.5. Диаграмма Zr/Y-Nb/Y для метаморфизованных перидотитовых коматиитов и метабазальтов зеленокаменных поясов Гуляйпольского блока [9]

Рис. 6. Диаграмма K_2O-Na_2O для гранитоидов Гуляйпольского блока. Поля современных кислых вулканитов различных геодинамических обстановок: a — континентальные рифты; δ — океанические острова; s — окраино-плитные вулканические дуги; r — островные дуги [11]

отношению K₂O/Na₂O < 0,5 их фигуративные точки четко отделяются от гранитоидов шевченковского, ремовского и добропольского комплексов (рис. 6). Образцы тоналитов на этой диаграм-

ме попадают в поле окраинно-плитных вулканических дуг [11]. Это высокоглиноземистые и весьма высокоглиноземистые породы (al' = 1,9–10,9) натриевой серии, нормального петрохимического ряда – (Na₂O + K₂O = 5,34– 6,11 мас.% [12]. На диаграмме AFM их фигуративные точки располагаются в поле известково-щелочных пород (рис. 2). Содержание нормативного ортоклаза 2,03–6,60%. На диаграммах Na–K–Ca и Ab–Qz–Ort точки тоналитов и трондьемитов располагаются вдоль тоналит-трондьемитового тренда [1].

Тоналиты ТТГ ассоциации (обр. 89-289) отличаются низкими содержаниями Rb (30ppm), Ba (461 ppm), P3Э и отношением Rb/Sr (0,09) (табл. 2). По содержанию стронция (331 ppm) они относятся к малостронциевым тоналитам [13]. Распределение P3Э в тоналитах дифференцированное – (La/Yb)_N = 12,8 (при Yb_N = 5,4) с незначительной положительной европиевой аномалией Eu/Eu* = 1,04 (рис.7). На спайдер-диаграмме выделяются отрицательные аномалии Nb и Ti (рис. 8). Согласно самарий-неодимовым изотопным данным, тоналиты (обр. 89-289) выплавлялись из слабо деплетированного субстрата eNd(T) = +0,6 (табл), T_{DM} = 3097 млн лет (табл.3, рис.9).

Трондьемиты (обр. 89-266, 89-277) характеризуюся низкими содержаниями TiO₂, FeOt, MgO, K₂O. Количество Rb (8–8,9 ppm), Sr (405–445 ppm), Ba (294–560 ppm), отношение Rb/Sr (0,02) (табл. 1, 2). Образец 89-277 имеет слабо дифференцированное распределение P3Э (La/Yb)_N = 7,7; Yb_N = 5,4), а образец 89-266 – сильнодифференцированное (La/Yb)_N = 133,0; Yb_N = 5,4) (табл. 2). В образце 89-266 наблюдается положительная европиевая аномалия (Eu/Eu* = 5,71. Трондьемиты отличаются самым высоким Sr/Y отношение (404,6–488). Согласно Sm-Nd изотопным данным, трондьемиты выплавлялись из деплетированного субстрата єNd(T) = +2,6, T_{DM} = 2921 млн лет (табл. 3). Согласно диаграмме Чаппела и Уайта они относятся к гранитоидам I типа [1].

Шевченковский комплекс (2830±70 млн. лет). Интрузии гранитоидов шевченковского комплекса слагают Воздвиженский и Новогоригорьевский

Рис. 7. Распределение РЗЭ в гранитоидах Гуляйпольского блока, нормализованное на ходрит [4]

Рис. 8. Спайдер-диаграмма для гранитоидов Гуляйпольского блока. Концентрация элементов нормализована на примитивную мантию [4]

Рис. 9. Диаграмма eNd(T)-Т для гранитоидов Гуляйпольского блока

				P.	p.m.	рм	рм	±2σ	εNd(0)	εNd(T)	Возраст	T _{DM} ,
№ п/п	№ обр.	Привязка	Порода	Sm	Nd	147 Sm/ 144 P	¹⁴⁵ Nd/ ¹⁴⁴				для paccчета εNd(T)	De Paolo, 1981 [14]
1	89-289	скв.792, инт. 93,5–94,5 м	Плагио- гранит	2,60	13,61	0,1146	0,511040	10	-31,2	+0,6	3000	3097
2	89-277	скв.795, инт. 148,3–153,2 м	Трондье- мит	0,18	0,90	0,1216	0,511285	14	-26,4	+1,9	2920	2921
3	89-67	скв.741, гл.155,9 м	Грано- диорит	3,30	25,70	0,0779	0,510327	7	-45,1	-1,7	2835	3054
4	89-141	скв.835, инт. 89,0–67,0 м	Плагио- гранит	2,90	18,00	0,0973	0,510761	5	-36,6	-9,9	2100	2994
5	89-286	скв.763, инт. 187,2–190,0 м	Гранит	6,93	47,95	0,0873	0,510610	3	-39,6	+2,3	2970	2937

Таблица 3. Результаты Sm-Nd изотопных исследований гранитоидов Гуляйпольского блока

массивы, а также более мелкие тела в Косивцевской ЗС и Гайчурской полосе. По хим. составу они относятся к гранодиоритам нормального петрохимического ряда калиево-натриевой серии [12]: SiO₂ (68,67 мас. %); Na₂O (2,97 мас. %), K₂O (2,82 мас. %), mg = 30,3 (табл. 1). Это весьма высокоглиноземистые (al' = 4,32) породы калиево-натриевой серии, нормального петрохимического ряда. На диаграмме AFM их фигуративные точки располагаются в поле известково-щелочных пород (рис. 2). Содержание нормативного ортоклаза Or = 16,9%. На диаграммах Na–K–Ca и Ab–Qz–Ort точки гранодиоритов располагаются вдоль известково-щелочного тренда [1]. На диаграмме K₂O/Na₂O их фигуративные точки находятся в одном поле с с гранитоидами добропольского и ремовского комплексов (рис. 6).

В гранитоидах шевченковского комплекса наблюдаются повышенные содержания Ва (1240 ppm). Содержание Rb 63 ppm, отношение Rb/Sr (0,12) (табл. 2). Распределение РЗЭ сильно дифференцированное (La/Yb)_N = 30,9, при Yb_N = 3,9 (рис. 7). На диаграмме Чаппела и Уайта фигуративные точки гранодиоритов шевченковского комплекса попадают в поле коллизионных гранитоидов S типа [1].

Добропольский комплекс. К добропольскому комплексу отнесены Риздвянский и Добропольский массивы. Они резко дискордантны по отношению к структурам района, что свидетельствует о их более позднем образовании. Эти крупные штокообразные тела, приуроченные к Терноватской и Добропольской зонам разломов (соответственно). Согласно данным геологосъемочных работ, в массивах добропольского комплекса выделяются кварцевые диориты, плагиограниты и гранодиориты калиево-натриевой серии. Согласно геохронологическим данным, полученным на SHRIMP, возраст гранитоидов добропольского комплекса – 2100 млн лет [3].

По хим. составу они относятся к кварцевым диоритам и гранодиоритам нормального петрохимическому ряда калиево-натриевой серии. SiO₂ (60,79–68,40 мас.%); Na₂O (2,53–3,80 мас. %), K₂O (1,89–2,96 мас. %) (табл. 1). Это высокоглиноземистые и весьма высокоглиноземистые (al' = 1,1–2,9) породы. На диаграмме AFM их фигуративные точки располагаются в поле известково-щелочных пород (рис. 2). Содержание нормативного ортоклаза – 11,3–17,8%. На диаграммах Na–K–Ca и Ab–Qz–Ort точки гранитоидов добропольского комплекса располагаются вдоль известковощелочного тренда [1].

Диориты добропольского комплекса характеризуются невысокими содержаниями Rb (60-75,2 ppm) и повышенными содержаниями Ba (1200-1940 ppm). Содержание Sr (618-765 ppm), Rb/Sr (0,08-0,15) (табл. 2). Повышенные содержания Cr, Ni, Co и V обусловлены наличием в породе мелких ксенолитов ультрабазитов. Распределение РЗЭ в плагиогранитах дифференцированное – (La/Yb)_N = 16,2–28,3 (при Yb_N = 3,7–6,1) с незначительной положительной европиевой аномалией Eu/Eu* = 1,08-1,19 (рис. 7). В кварцевых диоритах добропольского комплекса спектр распределения РЗЭ также дифференцированный – $Ce_N/Yb_N = 17,1$ (при $Yb_N = 3,6$), Eu/Eu* = 1,2 [15]. Согласно самарий-неодимовым изотопным данным, плагиограниты добропольского комплекса (89-141) выплавлялись из субстрата с модельным возрастом T_{DM} = 2994 млн лет (табл. 3). Параметр єNd(T), рассчитанный на возраст 2100 млн лет – ϵ Nd(T) = –9,9 (рис. 9). Первичное отношение изотопов стронция в плагиоклазе и апатите кварцевых диоритов Добропольского массива находятся в пределах 0,706, что также свидетельствует о их коровом генезисе [1].

На диаграмме Чаппела и Уайта, используемой для геодинамической типизации гранитоидов, фигуративные точки гранитоидов добропольского комплекса попадают в поле коллизионных гранитоидов S типа [1].

Жильные граниты.

Жильные тоналиты (обр.89-301, скв 742, инт. 181,9–183,5 м). SiO₂ (70,18 мас. %); Na₂O (4,43 мас. %), K₂O (1,57 мас. %) (табл. 1). Это весьма высокоглиноземистые (al' = 3,8) породы с высокой магнезиальностью 38,3 (табл. 1). Содержание нормативного ортоклаза – 9,4%. На диаграмме Na₂O–K₂O попадает попадают в одно поле с низкокалиевыми плагиогранитоидами TTГ ассоциации. Распределение РЗЭ дифференцированное (La/Yb)_N = 74,9 (при Yb_N = 1,9), наблюдается положительная европиевая аномалия Eu/Eu* = 1,05 (рис. 7).

Жильные гранодиориты (обр.89-67, скв. 741, гл.155,9 м). SiO₂ (68,69 мас. %); Na₂O (4,22 мас. %), K₂O (3,90 мас. %), mg = 29,2 (табл. 1). Это весьма высокоглиноземистые (al' = 4,6) породы (табл. 1). Содержание нормативного ортоклаза – 23,22%. На диаграмме Na₂O–K₂O попадают попадают в одно поле с гранодиоритами шевченковского комплекса (рис. 6). Распределение РЗЭ дифференцированное (La/Yb)_N = 93 (при Yb_N = 1,5), наблюдается положительная европиевая аномалия Eu/Eu* = 1,41 (рис. 3). Согласно Sm-Nd данным, гранодиориты (обр. 89-67) характеризуются отрицательным єNd(T) = –1,7; T_{DM} = 3054 млн лет (табл. 3, рис. 9), что указывает на их контаминацию более древними коровыми магматическими породами.

Ремовский комплекс. К ремовскому комплексу относятся жильные гранитоиды, развивающиеся по гранулит-гнейсовым образованиям. По хим. составу они относятся к гранитам нормального петрохимического ряда калиево-натриевой серии. SiO₂ (70,91 мас. %); Na₂O (3,25 мас. %), K₂O (3,39 мас. %) (табл. 1) [4]. Это весьма высокоглиноземистые (al' = 2,9) породы. На диаграмме AFM их фигуративные точки располагаются в поле известково-щелочных пород (рис. 2). Магнезиальность пород 35,2 (табл. 1). Содержание нормативного ортоклаза – 20,2%.

Граниты ремовского комплекса характеризуются невысокими содержаниями Rb (133 ppm) и Sr (318 ppm), Rb/Sr (0,42) (табл. 2). Содержание Ba (1030 ppm). На спайдер-диаграмме выделяются отрицательные аномалии Nb, Sr, Ti (рис. 8). Распределение P3Э сильно дифференцированное (La/Yb)_N = 67,3 (при Yb_N = 4,5) (рис. 7). Выделяется отрицательная европиевая аномалия Eu/Eu* = 0,57.

Согласно самарий-неодимовым изотопным данным, граниты ремовского комплекса (89-286) выплавлялись из деплетированного субстрата $\epsilon Nd(T) = +2,3; T_{DM} = 2962$ млн лет (табл. 3, рис. 9).

Согласно полученным результатам, модельные самарий-неодимовые изотопные даты гранитоидов Гуляйпольского блока Т_{DM} находятся в интервале – 3097–2921 млн лет (табл. 3). Эти данные показывают, что ксеногенная составляющая палеоархейского возраста не отразилась на самарий-неодимовой системе изученных проб гранитов.

Выводы. Перидотитовые коматииты и метабазальты зеленокаменных поясов Гуляйпольского блока имеют геохимические характеристики островодужных магматических пород. Они формировались, вероятно, в магматических источниках над мезоархейским (≈3200 млн лет) мантийным плюмом.

Среди гранитоидов Гуляйпольского блока по петрохимическим и геохимическим данным четко индивидуализируются гранитоиды ТТГ ассоциации и ремовского комплекса. Гранитоиды шевченковского и добропольского комплексов имеют очень сходные геохимические характеристики, что усложняет их идентификацию. Среди жильных гранитоидов вероятно присутствуют две интрузивные фазы. Одни близки по составу гранитоидам ТТГ ассоциации, а другие – с образованиями шевченковского комплекса. Гранитоиды ТТГ ассоциации имеют геохимические характеристики гранитоидов I типа и формировались в геодинамической обстановке окраинно-плитных вулканических дуг, а гранитоиды шевченковского, добропольского, и ремовского комплексов – относятся к коллизионным гранитам S типа и формировались в континентально-рифтовой обстановке.

- 1. Артеменко Г.В., Татаринова Е.А., Шпыльчак В.А., Бондаренко В.К., Довбуш Т.И. U-Pb возраст тоналит-гранодиоритовой формации Гайчурского блока (Западное Приазовье) // Мин. журнал. Т. 24 №1. 2002. С.28–33.
- 2. Щербак Н.П., Артеменко Г.В. Лесная И.М., Пономаренко А.Н. Геохронология раннего докембрия Украинского щита (архей)", монография. Киев: Наук. думка, 2006. 321 с.
- 3. Степанюк Л.М., Бобров О.Б., Шпильчак В.О., Стефанишин О.Б. Нові дані про радіологічний вік гранітоїдів Добропільського масиву // Матер. IV наук.-вироб. наради геол.зйом., м. Дніпропетровськ. – 2007. – С. 52–54.
- 4. Sun S.S. & McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Saunders A.D. & Norry M.J. Magmatism in the Ocean Basins, Geological Society. Special Publication 1989, № 42. P. 313–345.
- Nisbet E.G., Cheadle, Arndt N.T., Bickle M.J. Constraining the potential temperature of the Archaean mantle: A review of the evidence from komatiites // Litos. 1993. V.30, №3–4. P. 291–307.
- 6. McKenzie D. The generation and compaction of partially molten rock // Journal of Petrology, 1984, №25. P. 713–765.
- 7. Бобров А.Б., Малюк Б.И., Шпыльчак В.А. Метаморфизованные коматииты Приазовского геоблока Украинского щита // Геол.журнал. – 1991. – №1. – С. 92–100.
- 8. Richter F.M. Models of the Archaean thermal regime // Earth and Planetary Science Letters, 1985, №73. P. 350–360.
- 9. Kerr A.C., White R.V. and Saunders A.D. LIP Reading: recognizing Oceanic Plateaux in the Geological Record // J. Petrol., 2000, V.41, №7. P. 1041–1055.
- 10. Магматические горные породы. Т.5. Ультраосновные породы. М.: Наука, 1988. С. 8–96.
- 11. Богатиков О.А., Цветков А.А. Магматическая эволюция островных дуг. М., 1988. 248 с.
- 12. Магматические горные породы. Классификация, номенклатура, петрография. 1983. T1. Ч.2. М: Наука. С. 371–767.
- Robb L.J., Anhaeusser C.R. Chemical and petrogenetic characteristics of Archaean tonalitetrondjemite gneiss plutons in the Barberton Mountain Land // Spec. Pabl. Geol.Soc. South. Afr. 1983. – V.9. – P. 1030 –1163.
- 14. DePaolo D.J. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic // Nature. 1981. V.291, №5812. P. 193–196.
- 15. Щербак М.П., Артеменко Г.В., Бартницький Є.М., Верхогляд В.М., Довбуш Т.І. Генезис порід граніт-зеленокам'яних областей Українського щита за даними досліджень РЗЕ // Допов. АН УРСР. Сер.Б. 1991. N7. С. 95–99.