#### © И.А. Самборская<sup>1</sup>, Г.В. Артеменко<sup>1</sup>, А.В. Мартынюк<sup>2</sup>, 2008

УДК 550.42:552.311(477)

<sup>1</sup>Институт геохимии, минералогии и рудообразования им. Н.П. Семененко НАН Украины, г. Киев <sup>2</sup>Криворожская комплексная геологическая партия, г. Кривой Рог

## ГЕОХИМИЧЕСКИЕ ДАННЫЕ О ГЕНЕЗИСЕ РАССЛОЕННОГО УЛЬТРАМАФИТ-МАФИТОВОГО КОМПЛЕКСА АЛЕКСАНДРОВСКОЙ СТРУКТУРЫ (СРЕДНЕПРИДНЕПРОВСКИЙ МЕГАБЛОК УЩ)

Вступление. Александровская структура является частью Авдотьевско-Александровского габбро-гипербазитового пояса, крупные тектонические фрагменты которого прослежены на расстоянии более 100 км – от Восточно-Анновской полосы на севере, до Чертомлыкской зеленокаменной структуры на юге (рис.1). Она простирается субпараллельно зеленокаменным толщам Саксаганской синклинали и Высокопольской зеленокаменной



Рис. 1 А. Упрощенная геологическая карта докембрия Криворожского железорудного района. Б – Александровский участок. Упрощенная геологическая карта фрагмента Александровской структуры: 1 – конкская серия; 2 – криворожская серия; 3 – Авдотьевско-Александровская структура; 4 – дуниты, лерцолиты, вебстериты, оливиновые вебстериты; 5 – метаультрабазиты; 6 – габбро; 7 – габбронориты; 8 – габброамфиболиты; 9 – диориты, кварцевые диориты; 10 – плагиогранитоиды днепропетровского комплекса; 11 – плагиомигматиты сурского комплекса; 12 – плагиограниты саксаганского комплекса; 13 – дайковые граниты двуполевошпатовые; 14 – тектонические разломы

структуре, вместе с которыми облекают с запада более молодой Саксаганский гранитный купол. В геологическом разрезе Александровской структуры выделяется нижняя толща ультрабазитов и верхняя – габброидного состава. Последние магматические фазы представлены андезиновыми анортозитами, диоритами и плагиогранитоидами возрастом 3060 млн лет. Метаморфизм пород – от зеленосланцевой до амфиболитовой фации. Вмещающие породы представлены плагиомигматитами мезоархейского возраста, от которых породы Александровской структуры отделяются тектоническими разломами. Структурное положение Авдотьевско-Александровской структуры аналогично зеленокаменным поясам, что позволяет рассматривать ее как корни глубоко эродированного зеленокаменного пояса. Близкие по составу базит-ультрабазитовые интрузии ритмично-зонального строения габбро-перидотитовой формации выделяются в пределах Алферовского участка Верховцевской зеленокаменной структуры [1-7]. Их генезис рассматривается как эффузивно-интрузивный. В зеленокаменных структурах Среднеприднепровского мегаблока они занимают стратиграфически устойчивое положение в нижней части разреза конкской серии. Мощность эффузивно-интрузивных горизонтов достигает 2,5 км, а длина – до нескольких десятков километров. Эта ассоциация пород рассматривалась предшествующими исследователями как офиолитовая ассоциация, формировавшаяся в эвгеосинклинальных прогибах [1-3, 8-12].

Расслоенные магматические комплексы широко распространены и в других архейских гранит-зеленокаменных областях. Эти комплексы весьма изменчивы по размерам и форме, а по валовому составу слагающих пород варьируют от ультраосновных (перидотитовых коматиитов) до базальтових коматиитов и толеитов [13]. Типичные для зеленокаменных поясов интрузивные (силловые) магматические комплексы имеют мощность от 0,5 до 1 км и протягиваются по простиранию на расстояние до 20 км. Они выделяются в зеленокаменном поясе Барбертон Каапваальского кратона [14], на блоке Йилгарн в Западной Австралии [15], поясе Саргур (Индия) [13] и др. С этими интрузиями связаны месторождения никеля, хрома, кобальта, золота, серебра, платиноидов и др. полезные ископаемых. Среди существующих представлений о генезисе архейских расслоенных комплексов рассматриваются модели с единовременным внедрением магмы из мантии и ее кристаллизацию в квазизамкнутой системе и такие, которые требуют неоднократных инъекций магмы из более глубоких очагов, где происходит фракционная кристаллизация [13].

**Методика исследований.** Геохимические исследования пород Александровской структуры выполнялись по наиболее полным пересечениям ультрабазитов и габброидов Александровской структуры. Ультрамафиты изучены по скв.23292, глубиной 378,0 м, которая вскрыла магматические расслоенные породы, отвечающие по составу дунитам, перидотитам и пироксенитам. Породы расслоенного базитового комплекса изучались по скважинам 23220, 23232. В этих скважинах выделены – габбро, габбронориты и нориты. Породы частично или полностью изменены в процессе низкотемпературного метаморфизма – амфиболизации, уралитизации, окварцевания. Наиболее полно разрез габброидов представлен в скв. 23220 в такой последовательности (сверху – вниз): норит, габбронорит, габбро. Анализы редких, в том числе редкоземельных элементов были выполнены методом масспектроскопии с индуктивно связанной плазмой (ICP-MS) на масс-спектрометре Elan 6100 в ЦЛ ВСЕГЕИ.

### Результаты геохимических исследований.

Ультрамафиты. В наиболее полном пересечении ультрабазитов скв.23292 вскрыты магматические расслоенные породы, отвечающие по составу дунитам, перидотитам и пироксенитам. Широкие вариации состава расслоенной толщи определяются переменными содержаниями в них ортои клинопироксена [16]. Оливиновые и двупироксеновые кумулаты (кумулятивные ультрамафиты) Александровской структуры характеризуются высоким содержанием MgO (19,89–41,66 мас.%), низким TiO<sub>2</sub> (0,13–0,50 мас.%), щелочей (K<sub>2</sub>O + Na<sub>2</sub>O = 0,16–1,10 мас.%) и РЗЭ. Коэффициент железистости пород составляет 18-43% (табл.1). Содержание Ni (324-1340 ppm), Cr (833-3550 ppm) (табл. 2). На диаграмме AFM (рис. 2) они попадают в поле кумулатов основного и ультраосновного состава офиолитов [17]. Их фигуративные точки расположены значительно ниже железистого тренда Скергаардской интрузии. Исходная магма для кумулятивных ультрамафитов Александровской структуры, вероятно, была более магнезиальной. Определение ее состава связано со значительными трудностями, поскольку их ритмично-слоистый разрез не отвечает закрытой системе дифференциации, а краевые фации закалки отсутствуют. По таким индикаторным отношениям, как Ti/V (6,1-23,6), Ni/Co (3,4-7,8), Ti/Zr (65,6-143,3), Zr/Y (2,5-6,6), ультрамафиты Александровской структуры наиболее близки к островодужным толеитам. Нормализованные отношения  $La_N/Nb_N$   $Ce_N/Nb_N$   $P_N/Nb_N$  на состав базальта N типа срединно-океанических хребтов (COX) [18] равны (соответственно) – 2,9; 2,7; 2,9. На диаграмме Nb/Y – Zr/Y [18] точки составов ультрамафитов попадают в поле островодужных пород (рис. 3).

Нормированное по хондриту [19] распределение РЗЭ в ультрамафитах Александровской структуры дифференцированное. Отношение  $La_N/Yb_N$  во всех образцах составляет 1,28–2,91 за исключением сильно измененных вебстеритов для которых  $La_N/Yb_N = 0,96$ . Среди них выделяются как слабо обогащенные легкими РЗЭ ( $La_N/Sm_N = 1,04-3,72$ , при Gd/Yb<sub>N</sub> = 1,16–1,96) так и обедненные

| 12/      | 92-519 | 54,28            | 0,14    | 1,60      | 4,27      | 7,89  | 0,27  | 26,08 | 3,70 | 0,40              |                  |      | 0,12     | 0,14              | 96,0   | 96,96  | 0,68 |
|----------|--------|------------------|---------|-----------|-----------|-------|-------|-------|------|-------------------|------------------|------|----------|-------------------|--------|--------|------|
| 11/      | 92-515 | 41,39            | 0,36    | 5,19      | 5,09      | 9,65  | 0,19  | 27,98 | 3,82 | 0,40              | 0,50             | 0,04 | 0,05     | 0,28              | 4,53   | 99,45  | 0,65 |
| 10/      | 92-512 | 39,23            | 0,12    | 2,38      | 3,17      | 5,79  | 0,14  | 40,69 | 0,70 | 0,15              | 0,10             | 0,02 | 0,05     | 0,46              | 7,04   | 100,03 | 0,82 |
| /6       | 92-492 | 38,71            | 0,13    | 1,56      | 2,29      | 6,98  | 60,09 | 41,66 | 0,92 | 0,20              | 0,10             | 0,03 | 0,10     | 0,15              | 7,36   | 100,48 | 0,82 |
| 8/       | 92-491 | 39,20            | 0,28    | 3,11      | 6,31      | 9,21  | 0,22  | 31,20 | 2,99 | 0,34              | 0,10             | 0,05 | 0,12     | 0,16              | 6,95   | 100,24 | 0,67 |
| /L       | 92-507 | 53,04            | 0,13    | 2,38      | 0,69      | 10,37 | 0,17  | 24,37 | 6,30 | 0,35              | 0,05             | 0,02 | 0,04     | 0,07              | 1,76   | 99,73  | 0,69 |
| /9       | 92-489 | 53,50            | 0,14    | 1,56      | Сл.       | 13,39 | 0,20  | 28,18 | 1,61 | 0,20              | 0,05             | 0,02 | 0,06     | Сл.               | 1,57   | 100,48 | 0,68 |
| 5/       | 92-504 | 53,25            | 0,14    | 2,97      | 0,58      | 10,65 | 0,19  | 24,72 | 5,44 | 0,20              | 0,05             | 0,01 | 0,04     | 0,39              | 1,56   | 100,19 | 0,69 |
| 4/       | 92-503 | 47,58            | 0,50    | 8,62      | 3,13      | 9,80  | 0,25  | 21,52 | 7,11 | 0,55              | 0,15             | 0,01 | 0,03     | 0,07              | 66'0   | 100,31 | 0,57 |
| 3/       | 92-488 | 43,44            | 0,47    | 3,96      | 3,93      | 9,36  | 0,20  | 30,41 | 3,22 | 0,05              | 0,20             | 0,02 | 60'0     | 60,09             | 4,95   | 100,39 | 0,70 |
| 2/       | 92-494 | 54,36            | 0,20    | 1,42      | 0,22      | 10,12 | 0,21  | 23,08 | 8,02 | 0,70              | Сл.              | Сл.  | 0,05     | 0,03              | 1,82   | 100,23 | 0,69 |
| 1/       | 92-493 | 53,59            | 0,14    | 1,56      | 0,82      | 12,16 | 0,19  | 26,95 | 2,41 | 0,10              | 0,06             | 0,04 | 60'0     | 0,07              | 1,40   | 99,58  | 0,67 |
| Окислы,% |        | SiO <sub>2</sub> | $TiO_2$ | $Al_2O_3$ | $Fe_2O_3$ | FeO   | MnO   | MgO   | CaO  | Na <sub>2</sub> O | K <sub>2</sub> O | Soom | $P_2O_5$ | H <sub>2</sub> O- | П.п.п. | Сумма  | #mg  |

Таблица 1. Представительные химические анализы ультрамафитов и габброидов

| 23/      | 93-158 | 49,22            | 1,05    | 14,21                          | 4,28                           | 9,48  | 0,30 | 8,07  | 8,67  | 2,40              | 0,06             |      | <0,02    | 0,17              | 1,59   | 99,50  | 0,53 |
|----------|--------|------------------|---------|--------------------------------|--------------------------------|-------|------|-------|-------|-------------------|------------------|------|----------|-------------------|--------|--------|------|
| 22/      | 91-394 | 48,76            | 0,72    | 12,87                          | 0,44                           | 6,75  | 0,24 | 7,90  | 18,40 | 2,20              | 0,10             | сл.  | 0,08     | сл.               | 1,04   | 99,50  | 0,48 |
| 21/      | 7-10   | 47,98            | 0,93    | 14,92                          | 1,45                           | 10,85 | 0,34 | 7,93  | 10,90 | 2,70              | 0,16             |      | <0,02    | 0,24              | 1,19   | 99,59  | 0,68 |
| 20/      | 93-51  | 51,35            | 0,59    | 14,67                          | 0,59                           | 9,58  | 0,30 | 7,87  | 12,21 | 1,30              | 0,10             |      | 0,09     | 0,05              | 0,97   | 99,67  | 0,56 |
| 19/      | 93-45  | 49,62            | 0,68    | 15,24                          | 1,25                           | 11,87 | 0,25 | 7,89  | 9,30  | 1,89              | 0,20             | 0,02 | 0,03     | 0,05              | 1,28   | 99,57  | 0,62 |
| 18/      | 93-49  | 48,22            | 0,93    | 14,92                          | 1,23                           | 8,98  | 0,34 | 6,80  | 15,51 | 1,36              | 0,08             |      | <0,02    | 0,08              | 1,06   | 99,51  | 0,60 |
| 17/      | 93-42  | 47,52            | 1,18    | 14,25                          | 2,68                           | 13,20 | 0,36 | 8,26  | 8,81  | 2,20              | 0,12             |      | 0,04     | 0,17              | 1,21   | 100,00 | 0,66 |
| 16/      | 93-37  | 45,28            | 1,05    | 14,84                          | 3,06                           | 14,44 | 0,34 | 7,77  | 9,28  | 2,40              | 0,08             |      | <0,05    | 0,12              | 1,02   | 99,68  | 0,69 |
| 15/      | 91-397 | 52,91            | 0,27    | 2,30                           | 1,47                           | 13,40 | 0,25 | 20,83 | 6,03  | 0,52              | Сл.              | Сл.  | 0,06     | 0,09              | 1,20   | 99,55  | 0,58 |
| 14/      | 91-391 | 52,12            | 0,33    | 3,29                           | 0,80                           | 11,20 | 0,24 | 19,89 | 9,44  | 1,10              | C.I.             | Сл.  | 0,06     | 0,01              | 1,52   | 100,0  | 0,62 |
| 13/      | 92-521 | 39,02            | 0,14    | 2,24                           | 4,67                           | 7,78  | 0,18 | 37,04 | 1,47  | 0,32              |                  |      | 0,15     | 0,38              | 6,40   | 99,81  | 0,75 |
| Окислы,% |        | SiO <sub>2</sub> | $TiO_2$ | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | FeO   | MnO  | MgO   | CaO   | Na <sub>2</sub> O | K <sub>2</sub> O | Soom | $P_2O_5$ | H <sub>2</sub> O- | П.п.п. | Сумма  | #mg  |

Таблица 1. Продолжение

габбронорит, инт.140,7-157,0м (93-45); 20 — габбронорит, инт.192,5-200,5м (93-51); Скв.23226: 21 — габброамфиболит, гл.118,6 м Примечания. Скв.23292: 1 — гл.65,5 м, вебстерит (92-493); 2 — гл.73,0 м, вебстерит (92-494); 3 — гл.139,0 м, оливиновый (7-10); Скв.23232: 22 — габбро, гл.151,3 м (91-394); Скв.23305: 23 — метагаббро, гл.205,5 м (93-158). Анализы выполнены в хим. вебстерит (92-488); 4 — гл.151,0 м, оливиновый вебстерит (92-503); 5 — гл.156,0 м, амфиболизированный пироксенит (92-504); 6 — гл.168,8 м, тоже (92-489); 7 — гл.194,0 м, вебстерит (92-507); 8 — гл.237,2 м, лерцолит (92-491); 9 — гл.245,0 м, дунит (92-492); 10 — гл. 247,5 м, дунит; 11 — гл.262,9 м, лерцолит (92-515); 12 — гл.290,0 м, актинолитизированный пироксенит (92-519); 13 — гл.316,0 м, лерцолит (92-521). Скв.23232: 14 — гл.105,2 м, вебстерит (91-391); 15 — гл.177,0 м, вебстерит (91-397). Скв.23220: 16 — норит, гл.140,7 м (93-37); 17 — габбронорит, гл.154,0 м (93-42); 18 — норит , инт.198,0 м (93-49); 19 лаборатории ИГМР НАН Украины.

| Элем.                | 1/     | 2/     | 3/     | 4/     | 5/     | 6/     | 7/     | 8/     | 9/     | 10/    |
|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                      | 91-391 | 91-397 | 92-507 | 92-491 | 92-515 | 92-521 | 92-493 | 92-498 | 92-487 | 92-488 |
|                      |        |        |        |        |        | -      |        |        |        |        |
| Rb                   | 1,31   | 0,65   | 0,74   | 1,24   | 26,9   | 0,75   | -      | -      | -      | -      |
| Sr                   | 49,8   | 37,9   | 9,60   | 11,50  | 13,8   | 6,63   | -      | -      | -      | -      |
| Ba                   | 26,2   | 13,9   | 8,38   | 10,40  | 125    | 14,0   | 5,99   | 2,33   | 10,9   | 15,3   |
| V                    | 204    | 198    | 128    | 70,3   | 96,5   | 39,7   | -      | -      | -      | -      |
| Cr                   | 1230   | 1090   | 1460   | 3550   | 3010   | 833    | -      | -      | -      | -      |
| Co                   | 97,0   | 83,0   | 90,9   | 155    | 145    | 173    | -      | -      | -      | -      |
| Ni                   | 332    | 324    | 507    | 648    | 555    | 1340   | -      | -      | -      | -      |
| Cu                   | 63,8   | 34,4   | 8,46   | 6,29   | <5     | 5,19   | -      | -      | -      | -      |
| Zn                   | 170    | 167    | 113    | 108    | 137    | 124    | -      | -      | -      | -      |
| Ga                   | 9,17   | 8,58   | 4,63   | 4,66   | 5,73   | 3,23   | 4,20   | 3,92   | 4,35   | 4,54   |
| Y                    | 6,20   | 5,55   | 2,58   | 4,11   | 6,34   | 1,93   | 1,30   | 2,14   | 6,46   | 7,38   |
| Nb                   | 0,83   | 0,70   | 0,34   | 1,33   | 1,50   | 0,78   | 0,27   | -      | 0,68   | 1,14   |
| Та                   | 0,076  | 0,059  | 0,029  | 0,044  | 0,11   | 0,061  | 4,39   | 1,36   | 6,57   | 9,60   |
| Zr                   | 24,7   | 20,0   | 11,1   | 12,5   | 15,9   | 12,8   | -      | -      | -      | -      |
| Hf                   | 0,80   | 0,61   | 0,27   | 0,37   | 0,54   | 0,26   | 3,64   | 0,22   | 0,51   | 0,65   |
| U                    | <0,1   | <0,1   | <0,1   | <0,1   | <0,1   | <0,1   | <0,1   | 1,18   | 1,12   | <0,1   |
| Th                   | 0,14   | 0,14   | 0,058  | 0,10   | 0,064  | 0,13   | -      | -      | 0,11   | 0,18   |
| La                   | 1,47   | 1,29   | 0,73   | 0,78   | 1,46   | 0,42   | 0,20   | 0,56   | 1,54   | 1,69   |
| Ce                   | -      | 3,70   | 2,50   | 1,93   | 4,29   | 1,07   | 0,58   | 1,80   | -      | -      |
| Pr                   | 0,80   | 0,65   | 0,41   | 0,32   | 0,66   | 0,15   | 0,10   | 0,34   | 0,67   | 0,70   |
| Nd                   | 3,90   | 3,31   | 1,78   | 1,28   | 3,12   | 0,63   | 0,54   | 1,53   | 3,23   | 3,63   |
| Sm                   | 1,22   | 1,04   | 0,57   | 0,51   | 1,00   | 0,22   | 0,15   | 0,49   | 0,81   | 1,02   |
| Eu                   | 0,37   | 0,26   | 0,18   | 0,19   | 0,31   | 0,065  | -      | 0,11   | 0,26   | 0,28   |
| Gd                   | 1,24   | 1,04   | 0,59   | 0,66   | 1,14   | 0,26   | 0,15   | 0,44   | 0,97   | 1,14   |
| Tb                   | 0,21   | 0,17   | 0,087  | 0,12   | 0,18   | 0,042  | -      | -      | 0,20   | 0,22   |
| Dy                   | 1,20   | 1,00   | 0,53   | 0,79   | 1,20   | 0,25   | 0,23   | 0,41   | 1,17   | 1,24   |
| Но                   | 0,26   | 0,21   | 0,11   | 0,15   | 0,23   | 0,062  | -      | -      | 0,27   | 0,29   |
| Er                   | 0,67   | 0,67   | 0,28   | 0,47   | 0,67   | 0,15   | 0,12   | 0,17   | 0,64   | 0,71   |
| Tm                   | 0,098  | 0,094  | 0,036  | 0,063  | 0,086  | 0,021  | -      | -      | 0,11   | 0,12   |
| Yb                   | 0.65   | 0,60   | 0,19   | 0.38   | 0,59   | 0.11   | 0,15   | 0,16   | 0,60   | 0,58   |
| Lu                   | 0,094  | 0,092  | 0,041  | 0,064  | 0,098  | 0,029  | -      | -      | 0,078  | -      |
| Ge                   | 1,64   | 1,76   | 1,54   | 1,47   | 1,62   | 1,35   | 1,29   | 1,50   | 1,32   | 1,41   |
| Мо                   | 0.65   | 0,58   | 0,64   | 0,76   | 0,61   | 0,73   | -      | -      | -      | -      |
| Sn                   | 0.39   | 0,36   | 0,29   | 0,41   | 0,52   | 0,32   | -      | -      | -      | -      |
| Sb                   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | -      | -      | -      | -      |
| Cs                   | 0.16   | 0.15   | 0.20   | 0.099  | 1.25   | 0.066  | -      | -      | -      | -      |
| W                    | <0.15  | <0.15  | <0.15  | 0.27   | < 0.15 | 0.32   | -      | -      | -      | -      |
| Pb                   | 5,98   | 1,71   | 1,45   | 0,81   | 1,40   | 2,72   | -      | -      | -      | -      |
| (Nb/La) <sub>N</sub> | 0,54   | 0,52   | 0,45   | 1,64   | 0,99   | 1.79   | 1,3    | -      | 0,43   | 0,65   |
| $(La/Yb)_N$          | 1.62   | 1.54   | 2.76   | 1.47   | 1.78   | 2.74   | 0.96   | 2.51   | 1.84   | 2.09   |
| Zr/Y                 | 4      | 3.6    | 4.3    | 3      | 2.5    | 6.6    | -      | -      | -      | -      |
| Ti/Zr                | 82.5   | 81     | 43.2   | 143.9  | 135.7  | 70.2   | -      | -      | -      | -      |

#### Таблица. 2. Содержание редких элементов в ультрамафитах и габброидах

легкими РЗЭ породы (La<sub>N</sub>/Sm<sub>N</sub> = 0,74–0,99, при Gd/Yb<sub>N</sub> = 1,44–2,28) (табл. 2, рис. 4). Содержания РЗЭ четко коррелируют с содержанием иттербия, что указывает на преимущественное вхождение их в пироксен. Присутствуют ультрамафиты как с отрицательной, так и с положительной ниобиевой аномалиями – соответственно (Nb/La)<sub>N</sub> = 0,31–0,71 и (Nb/La)<sub>N</sub> = 1,30–1,79.

Габброиды. В наиболее полном разрезе габброидов (скв. 23220) выделяется такая последовательность (сверху – вниз): норит, габбронорит, габбро. Переходная зона от ультрабазитов к габброидам сложена плагиоклазовыми оливиновыми вебстеритами. Плагиоклаз расположен в интерстициях и является интеркумулусом [16]. Габброиды по химическому составу отно-

| Таблица. | 2. | Продолжение |
|----------|----|-------------|
|----------|----|-------------|

|                      | T      |        | -      | -      |        |       |       |       |       |
|----------------------|--------|--------|--------|--------|--------|-------|-------|-------|-------|
| Элементы             | 11/    | 12/    | 13/    | 14/    | 15/    | 16/   | 17/   | 18/   | 19/   |
|                      | 92-503 | 92-504 | 92-492 | 92-512 | 92-518 | 93-37 | 93-42 | 93-49 | 93-45 |
| Be                   | -      | -      | -      | -      | -      | <1    | <1    | <1    | -     |
| Rb                   | -      | -      | -      | -      | -      | <0,5  | 0,80  | 0,66  | -     |
| Sr                   | -      | -      | -      | -      | -      | 50,7  | 49,9  | 114   | -     |
| Ва                   | 55,3   | 3,81   | 8,70   | 9,80   | 19,6   | 10,1  | 14,7  | 10,3  | 15.3  |
| V                    | -      | -      | -      | -      | -      | 304   | 255   | 252   | -     |
| Cr                   | -      | -      | -      | -      | -      | 18,6  | 11,3  | 228   | -     |
| Со                   | -      | -      | -      | -      | -      | 58,0  | 56,5  | 37,2  | -     |
| Ni                   | -      | -      | -      | -      | -      | 42,3  | 43,7  | 102   | -     |
| Cu                   | -      | -      | -      | -      | -      | 99,8  | 124   | 50,2  | -     |
| Zn                   | -      | -      | -      | -      | -      | 70,2  | 55,4  | 55,6  | -     |
| Ga                   | 8,92   | 3,80   | 1,72   | 1,70   | 3,12   | 13,6  | 12,5  | 13,4  | 13,3  |
| Y                    | 10,0   | 1,99   | 2,02   | 1,90   | 3,48   | 15,1  | 15,0  | 13,8  | 17,8  |
| Nb                   | 1,26   | 0,20   | 0,34   | 0,27   | 0,43   | 0,78  | 1,50  | 1,45  | 0,98  |
| Та                   | 6,92   | 4,49   | 2,58   | 2,34   | 2,54   | <0,1  | <0,1  | <0,1  | 4,15  |
| Zr                   | -      | -      | -      | -      | -      | 14,4  | 18,0  | 17,7  | -     |
| Hf                   | 0,76   | 0,17   | 0,13   | 0,095  | 0,32   | 0,53  | 0,75  | 0,54  | 0,81  |
| U                    | 1,16   | <0,1   | 2,14   | <0,1   | -      | <0,1  | <0,1  | <0,1  | <0,1  |
| Th                   | 0,14   | -      | -      | -      | 0,15   | <0,1  | <0,1  | <0,1  | 4,87  |
| La                   | 1,71   | 0,62   | 0,69   | 0,49   | 1,08   | 0,88  | 0,89  | 1,32  | 0,88  |
| Ce                   | -      | 1,74   | 1,61   | 1,27   | 2,59   | 3,05  | 2,70  | 4,32  | 2,97  |
| Pr                   | 0,81   | 0,31   | 0,22   | 0,21   | 0,37   | 0,61  | 0,45  | 0,74  | 0,51  |
| Nd                   | 3,60   | 1,47   | 1,01   | 0,91   | 1,69   | 3,32  | 2,69  | 4,43  | 3,10  |
| Sm                   | 1,06   | 0,34   | 0,12   | 0,17   | 0,54   | 1,28  | 1,08  | 1,48  | 1,25  |
| Eu                   | 0,41   | 0,11   | -      | -      | 0,15   | 0,45  | 0,44  | 0,59  | 0,46  |
| Gd                   | 1,44   | 0,43   | 0,29   | 0,28   | 0,63   | 2,10  | 1,95  | 2,16  | 2,00  |
| Tb                   | 0,29   | -      | -      | 0,062  | 0,11   | 0,39  | 0,36  | 0,39  | 0,39  |
| Dy                   | 1,64   | 0,35   | 0,31   | 0,30   | 0,67   | 2,92  | 2,60  | 2,70  | 3,21  |
| Но                   | 0,40   | -      | -      | -      | 0,16   | 0,62  | 0,61  | 0,59  | 0,65  |
| Er                   | 1,17   | 0,19   | 0,23   | 0,17   | 0,39   | 1,79  | 1,78  | 1,68  | 2,14  |
| Tm                   | 0,15   | 0,047  | -      | 0,029  | -      | 0,28  | 0,28  | 0,27  | 0,35  |
| Yb                   | 0,96   | 0,22   | 0,17   | 0,20   | 0,36   | 1,65  | 1,73  | 1,62  | 2,15  |
| Lu                   | 0,12   | 0,020  | 0,023  | -      | -      | 0,27  | 0,27  | 0,23  | 0,29  |
| Ge                   | 1,68   | 1,17   | 0,83   | 0,97   | 0,96   | 1,77  | 1,82  | 1,78  | 2,46  |
| Mo                   | -      | -      | -      | -      | -      | <1    | <1    | <1    | -     |
| Sn                   | -      | -      | -      | -      | -      | <0,5  | <0,5  | <0,5  | -     |
| Sb                   | -      | -      | -      | -      | -      | <0,5  | <0,5  | <0,5  | -     |
| Cs                   | -      | -      | -      | -      | -      | <0,1  | <0,1  | <0,1  | 0,27  |
| W                    | -      | -      | -      | -      | -      | <0,5  | <0,5  | <0,5  | -     |
| Pb                   | -      | -      | -      | -      | -      | <1    | <1    | <1    | -     |
| (Nb/La) <sub>N</sub> | 0,71   | 0,31   | 0,48   | 0,53   | 0,38   | 0,85  | 1,62  | 1,06  | 1,07  |
| (La/Yb) <sub>N</sub> | 1,28   | 2,02   | 2,91   | 1,76   | 2,15   | 0,38  | 0,37  | 0,59  | 0,29  |
| Zr/Y                 | -      | -      | -      | -      | -      | 0,95  | 1,2   | 1,28  | -     |
| Ti/Zr                | -      | -      | -      | -      | -      | 437,1 | 393   | 315   | -     |
| Eu/Eu*               | -      | -      | -      | -      | -      | 0,84  | 0,93  | 1,10  | 0,89  |

Примечание. Привязки образцов даны в таблице 1. Прочерк – нет данных.

сятся к натриевой серии (табл.1). Они характеризуются широкими колебаниями CaO (8,81–18,40 мас.%), низким содержанием  $K_2O$  (0,06–0,2 мас.%), при сумме щелочей (1,40–2,86 мас.%), умеренным содержанием TiO<sub>2</sub> (0,59–1,2 мас.%) с магнезиальностью в пределах 0,31–0,52. Содержание MgO (6,80–8,07 мас.%), Cr до 311 ppm., Ni до 84 ppm. (табл. 1, 2). На диаграмме AFM фигуративные точки габброидов лежат в поле пород толеитовой серии и расположены в начале тренда Скергаардской интрузии (рис. 2). Вниз по разрезу скв. 23220 наблюдается увеличение содержания CaO (от 9,28 мас.% до 15,51 мас.%), что обусловлено увеличением количества клинопироксена



Рис. 2. Вариации составов ультрамафитов (а) и габброидов (б) Александровской структуры на диаграмме AFM; в – тренд Скергаардской интрузии, г – линия раздела толеитовой и известково-щелочной серий. Средние составы базитов (треугольники и квадраты) [20]: ТБ – средний состав толеитовых базальтов островных дуг; ОТ – океанические толеиты; 1 – двупироксеновое офиолитовое габбро Войкарского массива; 2 – оливиновые габбро Кемпирсайского массива; 3 – габбронориты Кытлымского массива



Рис. 3. Вариации составов ультрамафитов на диаграмме Zr/Y – Nb/Y



Рис. 4. Нормализованное к хондриту С1 [19] распределение РЗЭ в ультрамафитах и габброидах Александровской интрузии

в породе. Концентрации редких элементов в расслоенных габброидах примерно в 1,5 – 6 раза выше, чем в примитивной мантии. Они обеднены Rb, Ba, Zr. На диаграмме K–Rb (Лутц, рис. 45 [20]) точки составов магматических пород гипербазит-габбровой серии Александровской структуры совпадают с трендом COX. Содержание РЗЭ в 10–15 раз выше хондритового. Габброиды деплетированы легкими РЗЭ –  $(La/Sm)_N = 0,44-0,58; (La/Yb)_N = 0,29-0,59)$  (табл. 2, рис. 4), что свидетельствует о поступлении расплавов из истощенного мантийного источника. Высокое отношение  $(Nb/La)_N = 1,07-1,25,$ указывает на отсутствие коровой контаминации.

Вниз по разрезу скв. 23220 наблюдается увеличение содержаний легких РЗЭ, Cr, Ni. В то же время наблюдается уменьшение содержания V (от 304 до 252 p.p.m.) и величины Ti/Zr отношения (от 439 до 315) (табл. 2). Высокие Ti/Zr отношения свидетельствуют о накоплении титана в результате расслоения базитовой магмы. В габброидах верхней части разреза скв.23220 наблюдаются отрицательные европиевые аномалии (Eu/Eu\*=0,84–0,93), а в нижней части (обр.93–49) – положительная (Eu/Eu\*=1,10) (табл. 2).

Геохимические данные об исходных расплавах расслоенных пород. Для определения геохимических характеристик исходных расплавов расслоенных магматических пород были использованы Zr, Y, Ti, поскольку эти элементы мало подвижны при низкотемпературном метаморфизме, а отношение Zr/Y мало зависит от фракционирования плагиоклаза, оливина и пироксенов. На диаграммах Zr–Y (рис. 5), Ti–Y (рис. 6) ультрамафиты и мафиты Александровской структуры разделяются на две геохимические группы. В ультрамафитах отношения Zr/Y (2,51–6,63); а в габброидах Zr/Y (0,95– 1,2). При выраженном тренде совместного накопления Ti и Y (рис. 6) отношение Ti/Y существенно выше в габброидах.



Рис. 5. Положение фигуративных точек составов ультрамафитов и габброидов Александровской структуры на диаграмме Zr – Y. Условные на рис. 2



Рис. 6. Положение фигуративных точек составов ультрамафитов и габброидов Александровской структуры на диаграмме Ti – Y. Условные – на рис. 2





Рис. 8. Диаграмма (La/Sm)<sub>N</sub> – (Sm)<sub>N</sub> для пород Александровской структуры [13]. Данные по базальтам срединно-океанических хребтов (COX) заключены в прямоугольник. Условные на рис. 2

Рис. 7. Диаграмма Ті/1000 — V [21] Для магматических пород Александровской структуры. Условные на рис. 2

По низкому содержанию титана и отношению Ti/V<20 [21] исходная магма ультрамафитов и габброидов соответствует толеитам островных дуг (рис. 7).

На диаграмме (La/Sm)<sub>N</sub>-Sm<sub>N</sub> используемой для оценки степени истощенности мантии [13], точки габброидов попадают в поле базальтов срединно-океанических хребтов (COX) (рис. 8), что свидетельствует о их выплавлении из деплетированного магматического источника, а ультрамафиты – в поле менее деплетированных вулканических пород зеленокаменных поясов.

На диаграмме La–Sm, позволяющей оценить относительную степень частичного плавления мантийного субстрата [22], точки ультрамафитов и габброидов Александровской структуры расположены в секторе океанических плутонических комплексов, что указывает на их образование при высокой степени частичного плавления (рис. 9). Большинство образцов ультрамафитов характеризуются меньшими содержаниями La и Sm, чем габброиды и они формируют несколько различающиеся тренды.

На диаграмме (La/Sm)<sub>N</sub> – Y [23] отчетливо проявлена отрицательная корреляция между соотношением легких и тяжелых лантаноидов от Yb, что характерно для пород островных дуг. Анализ зависимости отношения (La/Yb)<sub>N</sub> от содержаний La и Yb показывает, что основную роль в изменении соотношений



легких и тяжелых лантаноидов играют вариации содержаний Yb, что связано с фракционированием пироксенов, фиксирующих Yb.

Рис. 9. Диаграмма La – Sm для плутонических комплексов [22]. Поля: I – океанические, II – раннеостроводужные; III – островодужные; IY – зрелых дуг, активных континентальных окраин и зон коллизии. Условные на рис. 2

# Выводы.

- 1. Ультрамафиты и габброиды Александровской структуры являются расслоенными магматическими породами. Ультрамафиты имеют кумулятивный генезис и представлены дунитами, лерцолитами и вебстеритами, которые слагают толщу ритмично-зонального строения. Среди габброидов выделяются габбро, габбро-нориты и нориты. Расслоенность габброидов выражена увеличением вниз по разрезу содержаний СаО, ЛРЗЭ, а также Cr и Ni, что обусловлено фракционированием клинопироксена. В ультрамафитах и габброидах выделяется скрытая расслоенность.
- 2. Магматические породы перидотит-пироксенит-габбровой ассоциации Александровской структуры характеризуются низкими содержаниями калия, титана, рубидия, стронция, РЗЭ, что позволяет отнести их геохимическому типу примитивных низкокалиевых толеитов.
- Исходная магма для расслоенных ультрамафитов выплавлялась из неистощенного магматического источника, а габброидов – из деплетированного. Это является, вероятно, результатом последовательных выплавок в пределах одной зоны магмогенерации. В процессах кристаллизационной дифференциации магм ведущая роль принадлежала фракционированию клинопироксена и оливина.
- 4. Расслоенные ультрамафиты и габброиды Александровской структуры имеют геохимические характеристики островодужных магматических пород. Эта ассоциация пород, сходная по геологическому строению с габброидными комплексами офиолитов, формировалась, вероятно, на ранней стадии заложения проторифтогенных структур зеленокаменных поясов Среднеприднепровского мегаблока.
- 5. Среди ультрамафитов выделяются неконтаминированные- ((Nb/La)<sub>N</sub> = 1,30–1,79) и контаминированные коровым веществом ((Nb/La)<sub>N</sub> = 0,31–0,71). Габброиды характеризуются отсутствием коровой контаминации ((Nb/La)<sub>N</sub> = 1,07–1,25).
- 1. Наливкина Э.Б. Офиолитовые ассоциации раннего докембрия. М.: Недра, 1977. 183 с.
- 2. Семененко Н.П., Бойко В.Л., Бордунов И.Н. и др. Ультрабазитовые формации центральной части Украинского щита. Киев: Наук. Думка, 1979. 412 с.
- 3. Метабазитовые и кератофировые алюмосиликатные формации центральной части Украинского щита / Под ред. Н.П. Семененко. – Киев: Наук. Думка, 1982. – С. 368.
- 4. Стульчиков В.А. Геохимии и рудоносность докембрия Верховцевской синклинали. Киев: Наук. Думка, 1985. 156 с.
- 5. Дудник Н.Ф. Петрогенетические типы мафитов Среднего Приднепровья (Украинский щит) // Геология и металлогения мафит-ультрамафитов докембрия Приднепровья: Сб. науч. Тр. – Днепропетровск: ДГУ, 1989. – С. 103–113.
- 6. Стульчиков В.А. Никеленосность ультраосновных пород зеленокаменных поясов Среднего Приднепровья // Геохимия и рудообразование. Сборник научных трудов. Киев.: Изд-во АН УССР, 1992. Вып. 19. С. 57–69.

- 7. Бобров А.Б. К вопросу о расчленении основных и ультраосновных пород Среднего Приднепровья // Геол. журнал. – 1992. – № 6. – С. 35–42.
- 8. Бордунов И.Н. Криворожско-Курская эвгеосинклиналь. Киев: Наук. думка. 1983. 304 с.
- 9. Ильвицкий М.М. Ультрамафиты Днепровской гранит-зеленокаменной области // Геология и металлогения мафит-ультрамафитов докембрия Приднепровья: Сб. науч. Тр. Днепропетровск: ДГУ, 1989. С. 103–113.
- 10. Каляев Г.И. Тектоника докембрия Украинской железорудной провинции. Киев. Наук. думка. 1965. 190 с.
- 11. Фомин А.Б. Геохимия гипербазитов Украинского щита. Киев: Наук. Думка, 1984. 232 с.
- 12. Бондаренко Я.Н. Метаморфизованная офиолитовая формация гранит-зеленокаменных структур Среднего Приднепровья // Геол. журнал. 1992. № 1. С. 45–54.
- 13 Конди К. Архейские зеленокаменные пояса: Пер. с англ. М.: Мир, 1983. 390 с. (Науки о Земле, Т.85).
- 14. Viljoen M.J., Viljoen R.P. The geology and geochemistry of the layered ultramafic bodies of the Kaapmuiden area, Barberton Mountain Land// Geol. Soc. S. Afr., Spec. Publ., 1: 661-688, 1970.
- 15. McCall G.J.H., Doepel J.J.G. Some ultrabasic and basic igneous rock occurrences in the Archean of western Australia // Geol. Soc. Aust., Spec. Publ., 3: 429-442, 1971.
- Самборская И.А., Артеменко Г.В. Геохимия расслоенных ультрамафитов Александровской структуры (Среднеприднепровский мегаблок УЩ) // Ультрабазит-базитовые комплексы складчатых областей. Мат-лы междунар. Конф. – Иркутск: Изд-во ИрГТУ, 2007. – С. 233–236.
- 17. Coleman. Ophiolites. Springer-Verlag. 1977. 229 p.
- 18. Kerr A.C., White R.V. and Saunders A.D. LIP Reading: recognizing Oceanic Plateaux in the Geological Record // J. Petrol., 2000, V.41, №7. P. 1041–1055.
- 19. Sun S.S. & McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Saunders A.D. & Norry M.J. Magmatism in the Ocean Basins, Geological Society. Special Publication 1989, № 42. P. 313–345.
- 20. Лутц Б.Г. Геохимия океаническая и континентального магматизма. М.: Недра, 1980. 247 с.
- 21. Shervais J.W. Ti-V plots and petrogenesis of modern and ophiolitic lavas // Earth Planet. Sci. Lett. 1982. V.59, №2. P.101–118.
- 22. Sun S.S., Nesbitt R.W. Petrogenesis of Archean ultrabasic and basic volcanics: evidence from rare earth elements // Contrib. Mineral. Petrol., 65: 301-325, 1978.
- 23. Cameron W.E. Petrology and origin of primitive lavas from the Troodos ophiolite // Contrib. Mineral. Petrol. 1985. V.89, №2/3. P. 239–255.