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Introduction. The three-dimensional mathematical 

model of non-Newtonian fluid flow was introduced, with 
viscosity that depends of shear velocity in rectangular 
channels of food equipment. 

Materials and methods. Applying the method of 
superposition allows to build a field of longitudinal flow 
of non-Newtonian fluid in rectangular channel of 
technological equipment with moving borders and thus to 
define values of velocity and pressure at any point inside 
the channel. 

Results and discussion. We developed a model of 
longitudinal flow of non-Newtonian fluid in rectangular 
channels on borders of which different longitudinal 
velocities are set. The model is based on the solution of 
one-dimensional problem of the Couette flow in the 
channel. The composition of flows in the slit channels 
with mutually perpendicular pair of borders allows to 
receive a flow rate formula which satisfies the principle of 
limit correspondence between the currents in a rectangular 
and slit channels. We suggest a method of construction of 
the velocity field which is a subdivision of the final 
section of the channel into sections with a different 
dependence on the coordinates so that in some areas the 
velocity depends only on a single coordinate, while in 
others – only on the other coordinate. We obtain the 
equations of lines delimiting these areas, and how to 
determine the shape of boundaries. 

Conclusion. The analytical formulas allow defining 
macrokinetic characteristics of each channel at the 
boundary with arbitrary distribution of velocities of the 
flow of non-Newtonian fluid the viscosity of which 
depends on the shear speed. 
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Introduction 
 

The movement of non-linear fluids is a part if hydrodynamics for laminar or Stokes 
flows. In technical literature there are a lot of ways to solve problems related to flow of 
viscoplastic fluids. The objective of any solution of the problem of fluid flow is to find the 
pressure and the velocity vector at each point within the channel  
[1, 2, 3]. 

 
Materials and methods 
 

Three-dimensional flows are usually studied using the numerical methods. Results 
obtained this way are more accurate. To generalize it in order to isolate the impact of 
individual parameters the analysis of large amount of numerical information is required. 
The form of representing results of such impacts is mostly descriptive and may contain 
many errors. There is another approach to the problem of constructing a picture of the 
three-dimensional flow, the purpose of which is the analytical solution of a problem, which 
is simpler yet retains all the important parameters of the flow. Usually this problem is one-
dimensional. Then, a three-dimensional solution to the problem is constructed using 
heuristics compositions based on the results of one-dimensional problem solving. Then, a 
three-dimensional solution to the problem is constructed using heuristics compositions 
based on the results of one-dimensional problem solving. This solution has a lower 
accuracy than the numerical one, but allow the researcher to obtain physically reasonable 
parameter combinations as opposed to random combinations of a descriptive nature, which 
are obtained by numerical solution of the problem. Solutions based on the analytical 
methods have more methodical value, and can be used by other researchers for a variety of 
other tasks. As a means of studying the movement of nonlinear fluids authors adhere to the 
analytical approach followed by composition [4]. The basic problem in this case is the 
problem of the Couette flow in a slit channel. Rectangular channel and boundary conditions 
that create a three-dimensional flow in it are shown on Figure 1. 

Knowledge of pressure and velocity at each interior point of the channel makes it 
possible to calculate such quantities: flow rate, the dissipative heat, shear rate and shear 
stress [5, 6].  

Speed pressure fields are totally dependent on the boundary conditions on the channel 
walls. These conditions are determined by the construction of the working chamber through 
the helix lead angle of the worm and its pitch and speed of the machine shaft [1, 7, 8]. 

 

 

Figure 1. Rectangular channel and 
the boundary conditions  
of three-dimensional flow  

in channel: 

IIYW   – value of longitudinal velocity 
on the channel borders which are 

perpendicular to OY axis; 

IIXW   – value of longitudinal velocity 
on the channel borders which are 

perpendicular to OX axis; 
,X YW W 

   – value of transverse 
velocities on the channel borders 
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The boundary conditions for the basic problem of Couette flow are shown on Figure 2.  

 
 

Figure 2. Fragment of the slit channel with boundary conditions 
 
 

Results and discussion 
 
We studied the longitudinal flow of non-Newtonian fluid in rectangular channel, which 

has longitudinal velocities sent on its borders. The distribution of these boundary velocities 
is displayed on Figure 3.  

 
 

Figure 3. Longitudinal flow in rectangular channel and boundary conditions on its borders  
 

The flow on this figure is a special case of the general three-dimensional flow, shown 
on Figure 1. Longitudinal flow has one velocity component v2, which depends on two 
coordinates x and y in rectangular cross-section of the channel. The equation of liquid state 
is defined by viscosity μ, which has the following form: 

2 22 2

2 2
z z z zI I

x y x y
                              

                               (1) 

in which α and β – parameters that depend on molecular characteristics of liquid and that 
are determined by an experiment. The equation of the flow is represented in the following 
form: 

   2 2
z zdP I I

dz x x y y
 

   
          

      
  .                          (2)  
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In accordance with the above, this problem should be reduced to a form which 
corresponds to the problem of longitudinal slit flow. This should be done twice: at first 
problem (1) should be transformed into problem of slit flow with borders, which are 
parallel to ox axis; then it should be transformed into problem of slit flow with borders, 
which are parallel to oy axis. Afterwards, the general flow in rectangular channel is 
constructed using composition method. Following this plan, it is necessary to express the 
derivatives υz/x и υz/y through each other. Relationship between the derivatives has the 
form: /z x  x  /z y  , where x=h/a, while h and a are the sides of the rectangle on 
the Figure 3. This relationship is defined up to a factor, the form of which depends on the 
degree of convexity or concavity of the velocity profile. Using derivative υz/y as a 
primary one, and then derivative υz/x we can come to the following equations of the slit 
flow:  

   
3
21

1 0
2

z zxdP x
dz y y y

  


                  

.   

2
11

11 0
2

x
z zdP

dz x x y y


 



                       
    

.                             (3) 

Below, both problems are solved simultaneously, since they have the same structure. In 
order to solve them variables x and y are denoted as xi, where i=x,y; parameters of both 
problems, multiplied by factors, which depend on parameter x, are denoted as di, i, where 
i=x, y; rectangle sizes h and a are denotes as li, thus lx=a, lx=h. By virtue of inclusion of 
absolute value of velocity derivative, the solution to problem (3) consists of two branches 
which intersect at point x*

i 
2

1
22 4

i
i i i

iz
i ii

x dPv c
dz

 
 

      , 

2
1

22 4
i

i i i
iz

i ii

x dPv c
dz

 
 

      .                                          (4) 

The choice of characters is dictated by the fact that one branch should have a positive 
derivative, while the other – a negative one. At point x*

i where branches intersect, the 
derivative turns to zero. This condition along with boundary condition (see Figure 3), lead 
to the following expressions for velocity v ± 

z: 

 
3 3

2 * 2 *2 2

2 2

2 2( )
2 3 34 4i

i i i i i i i i i
i i i iz

i i ii i

x x l xdP dPv x l x w
dP dPdz dz
dz dz

    
   

     
           

   
, 

 
3 3

2 * 2 *2 2

2 2

2 2( )
2 3 34 4i

i i i i i i i i i
i i i iz

i i ii i

x x l xdP dPv x l x w
dP dPdz dz
dz dz

    
   

     
           

   
. 

(5) 
Values x*

i, which are calculated from the condition of continuity of velocity vi at points 
x*

i, have the following representation [5, 6]: 



─── Processes and Equipment of Food Productions ─── 

───Ukrainian Food Journal.   2016.  Volume 5. Issue 3 ─── 554 

*
2 1
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22( )
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i i
i

i i i

i ii

w w
x

l l d
dz


 

 
 


 

.                                          (6) 

By integrating expression (5) on interval (-li, x*
i) for branch vi and on interval (x*

i, li) 
for branch v+

i we can come to the following expression for the iv  flow rate: 
 

     
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   
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2 * 2 *2 2
* *
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2
3 4 4

i i i i i i i
i i i i

i i i i

l x l xdP dPl x l xdP dz dz
dz

  
   

 
              
     

. 

(7) 
 
The expression (7) can be somewhat simplified by compromising accuracy. To do so, 

the terms in powers 5/2 and 3/2 should be expanded in Taylor series up to and including the 
new term by the degree of smallness. The value (x*

i dP/dz)/ i should be used as an 
expansion parameter. This expansion gives an error of not more than 16% for the case of 
inequality *

i ix l . If such expansion is performed, then expression (7) for the flow rate 
turns into a square polynomial with respect to the value of x*

i The result is as follows: 
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2
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2 22 2
* * 2 *2

2 2

8
2 15 4 4

i i i i i
i i i i i i i i i

i ii i

l dPv w l x w l x l x
dP dz
dz

   
  

 
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 
                

. 

         (8) 
     

With the help of the formulas (7) or (8) it is possible construct a formula for the 
longitudinal flow rate, but in the rectangular channel, not a slit one. In order to perform 
such construction, we should use the considerations of limit compliance, which implies that 
if parameter x, which is present in definition of values αi, βi, tends to zero, we get a slit 
channel in channel with borders along the ox axis. If, however, this parameter tends to 
infinity, we get the slit flow in channel with borders along the oy axis. 
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Based on these two extreme cases, the rate of the general flow can be represented as the 
composition of slit flows rate with weighting factors that depend on parameter x and satisfy 
the compliance with the limit. Such composition is ambiguous. Its final concrete form is 
determined empirically. However, the simplest kind of composite factors is used. Based on 
what said above, the form of such composition can be the following: 

1
1 1

nn m

y xm m

xv v v
x x

          
   ,                                        (9) 

where m and n – composition parameters. The simplest choice is to set n=1. The following 
considerations can be made with regards to the value of the parameter m. A common 
feature of slow (Stokes) viscous fluids is that the influence of bounds on the velocity profile 
shaping distributes over the distance into the flow region of the order of the corresponding 
border length. From this, it follows that for rectangular channels, that are highly elongated 
along the x axis, the flow with velocity vy(y) distributes over an area of exponent ah-h2, 
while the flow with velocity vx(y) distributes over the area of exponent h2. For channels, 
that are highly elongated along the oy axis, the situation is exactly the opposite: flow with 
velocity vx(y) distributes over the area of exponent ah-a2, while flow with velocity vy(y) 
distributes over the area of exponent a2. For these the expression for the rates can be 
represented in the following form: 

 

     
2 2

1 0y x
a ah av x v x v x
ah ah


                                  (10) 

Comparing formulas (9) and (10) we can conclude that (10) leads to the fact that in (9) 
parameter n should be set to 1. 

Now we must construct the velocity field from the expressions (5). In order to do this 
we must refer to the Newtonian fluid flow in rectangular channel. Such a flow due to the 
linearity of the problem can be divided into two: the current, which is caused by the 
movement of the walls; and the flow caused by pressure drop. For the first flow, the rate is 
equal to the product of the average speed on the cross-sectional area and the velocity by a 
factor equal to the quantity ratio of the length of the moving part of the perimeter length of 
the cross section to the entire perimeter. This fact can also be interpreted in a way that the 
influence of the moving borders distributes not throughout the entire cross-sectional area 
but through its part. From physical considerations, it is clear that this part should be 
adjacent to the moving borders. The remaining part of the cross-section is influence by 
immovable walls and must adjust to non-moving borders. The influence areas of the 
borders are qualitatively presented on Figure 4. 

 

 
Figure 4. Areas of influences of the boundary conditions on rectangular channel borders:  

 – the depth of penetration of the zero boundary conditions. 
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The figure shows that the size of the area adjacent to immovable borders has the 
exponent of x/(1+x). From this follows the fact that is all the rectangle area is taken as 1 
then the size of the area influenced by borders movement is 1/(1+x). Then for the parts 
elongated along the cross-sections the remaining area will actually be x/(1+x). From this 
and from Figure 4 follows the fact that this value is the same as the depth of penetration of 
influence of zero boundaries. For the second flow slightly different considerations should 
be used. If the flow rate is taken as 1 and remove a pair of borders which are perpendicular 
to ox axis, then adding this pair of borders decreases the flow rate to 1/(1+x2) times. This 
fact can be interpreted as decreasing the maximum velocity in the same amount of times. 
The method of composing solutions (5) has the simple nature and can be used in 
engineering. In lies in using the corresponding solution from (5) for each pair of borders. 
Areas, in which different solutions work, have the shared borders. The shape of these 
borders can be defined from conditions of continuity of velocity fields on these borders. If 
we write continuity conditions for different solutions then there will be four conditions: 
v+

z(y)=v+
z(x); v-

z(y)=v+
z(x); v+

z(y)=v-
z(x); v-

z(y)=v-
z(x). 

Each of continuity conditions leads to one line. The above statements are presented on 
Figure 5.  

 

 
 

Figure 5. Partitioning of channel cross-section into areas with velocity profiles    ,z zy x   : 
solid line – actual partitioning; dashed line – approximate partitioning 

 
 
 
The conditions can be represented in the following expanded form: 

3 3
2 2( ) ( )a b y c d y m n x l p x              , 
3 3
2 2( ) ( )a b y c d y m n x l p x              , 
3 3
2 2( ) ( )a b y c d y m n x l p x                                         (11) 

in which values a ±, b ±, c ±, d ±, m ±, l ±, p ± are defined in the obvious way from (5) and are not 
shown because of triviality and in order to save space. Equations Equations (11) can be 
solved (in order to define the form of relationships yi(x), y=1,2,3,4) only numerically. 
Approximate solutions can be obtained by partially linearizing equation (11). To do this we 
need to make the following notations:  
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2
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y
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  


 

   

1

1
2

1

1 ( ) ;
a

x
l p x dx

a x
   

   

2
1
2

2

1 ( )
x

a
l p x dx

a x
  


 

  ,                                        (12) 

in which y1, y2, x1, x2 – points, presented on Figure 5. In these notations after linearization, 
the linear equations are obtained for boundary lines, while actual lines become line 
segments. Equations for boundary lines acquire the following form: 

 
( ) ( ) ( ) ( ) ;a c b d y m l n p x                      
( ) ( ) ( ) ( ) ;a c b d y m l n p x                      
( ) ( ) ( ) ( ) .a c b d y m l n p x                                          (13) 

 
Solutions (13) are represented on Figure 5 as contour lines. In order to obtain values x1 

and x2 (see Figure 5) the solutions of first two and the last two equations (13) should be 
equated in pairs. As a result, for x1 and x2 we get the following formulas:  

 

2

( ) ( ) ( ) ( )m l a c m l a c
b d b dx

n p n p
b d b d

   
 

 
 

           

     

     

     

     


 
 


 

                       (14) 

 
Since λ ± and δ ± are unknown, they should be determined by the equations (12) and 

(13), where values y1 и y2 should be defined as well. The system of equations for finding λ ± 

and δ ± is nonlinear and is solved numerically. 
For velocity profiles vz

i for which y* and x* lie correspondingly in intervals (-h, h) and 
(- ,a a ), the non-numeric solution can be obtained. The expressions for vz

i near the points y= 
± h and x= ± a should be expanded in Taylor series up to and including the first term. The 
results of these expansions can be written in the following form: 

   
1

2 2

2 ,
2 4

y y
z y

yy y

h y dPv y w h y
dz

 

 


 

             
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2 ,
2 4

x x
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x xx
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
 
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   
1

2 2

22 4
x x

z x
x xx

a x dPv x w a x
dz

 
 


 

           

.                          (15) 

 
In order to save space we denote multipliers before h ± y and a ± x as M, N, R, S 

correspondingly. The equations of boundary lines will then be written in a following way: 
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 
;x yw w R a Ry h x

M M

   
    

 
;x yw w R a Ry h x

N N

   
     

       .x yw w S a Sy h x
N N

   
     (16) 

Values for coordinates 1 1,y x  и 2 2,y x  are obtained from equations (16) from the 
following relations: 

 

2
1 12 ,x y x yw w S a w w S a

h S x
M N M N

               
 

 

1 1 ,x yw w R a Ry h x
M M

   
      

2 2 .x yw w S a Sy h x
M M

   
    (17) 

 
 
Conclusion 
 
The results that we received, allow us to construct the field of longitudinal flow in 

rectangular channel with moving borders. At the base of the construction is the solution of 
one-dimensional problem of slot flow. The composition of flows in slot channels with 
mutually perpendicular pairs of borders allows to receive the flow rate formula, which 
satisfies the principle of limit correspondence between flows in rectangular and slot 
channels [10]. We proposed the method of constructing the velocity field, which in essence, 
is the partition of the final cross-section of the channel into sections with different 
dependency on coordinates in a way that on some sections velocity depends only on one 
coordinate while on others – only on another coordinate. We established the equations for 
lines, which divide these regions. We suggested methods to define shapes of divider lines: 
one of them is the rectifications of these lines. For this method, the coordinates of divider 
lines intersection are fully defined by explicit formulas. 

Analyzing formulas (5), which are received from equations (3) it should be noted that 
the reduction of the original problem with velocity dependency on two coordinates to two 
problems, in each of which velocity depends on only one coordinate, was based on 
assessment of relation of derivatives vz/y к vz/x. Authors chose the simplest assessment. 
Objectively, this assessment is valid in the case when differences of velocities wy

+   wy
- 

and wx
+   wx

- do not differ very much one from another. The more accurate assessment 
leads to the following relation between derivatives: 

/ .
/

y yz

z x x

w wv y x
v x w w

 

 

 


  
                                        (18) 

This assessment is valid for such flows, velocity profiles of which are not too convex 
of bent. These flows are correspondent by values y* and x*, which are outside the intervals 
(-h, h) and (-a, a) correspondingly. Formally, in this case, the formulas do not change their 
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appearance. For strongly convex or concave velocity profiles when the contributions of 
pressure exceeds the contribution of moving channel walls, the assessment of relation of 
derivatives can be written in a following way: 

 
 

1 2

3 4

( )/ ,
/ ( )

y y myz

z x x mx

c w w c v l yv y x
v x c w w c v l x

  

  

  


   
      

 
 

max ,

max ,
my z

mx z

v v y

v v x




                 (19) 

where c1, c2, c3, c4 are constants, which depend on flow characteristics.  
In conclusion, it must be emphasized that the general form of the formulas in the 

present work does not depend on the choice of assessment of the relation of derivatives, 
because these assessments are included into values αy, βy, αx, βx as factors. 
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