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Abstract 

We suggest a technique for reconstructing 3D stress tensor fields with using po-
larimetric mapping, optical retardation simulations on the basis of integral Jones 
matrix approach and a relevant mechanical model. It is shown that the recon-
struction of stress fields essentially increases the accuracy of piezooptic experi-
ments, while the corresponding errors could be reduced almost to an apparatus 
error. 
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1.Introduction 

Piezooptic effect has been known as long ago as beginning from the first studies carried 
out by Brewster in 1818. This phenomenon is utilized in different technical branches, in 
particular for designing optical stress sensors and devices that measure acceleration, in 
stress field tomography, etc. (see, e.g., [1–4]). Besides, the piezooptic (or photoelasic) 
effect is to be properly taken into account when designing electrooptic devices. Far more 
important, the photoelasic effect underlies acoustooptic phenomena which are widely ex-
plored [5–8]. Therefore the knowledge of accurate values of piezooptic parameters of 
materials used in different practical applications is of a great importance. 

As a matter of fact, the piezooptic coefficients ( λµπ ) figuring in the relation 

Bλ λµ µπ σ∆ =       (1) 

(with Bλ∆  being the increment of optical-frequency impermeability tensor and µσ  the 

mechanical stress components where , 1,2,3,4,5,6λ µ =  correspond to 11,22,33,32,31,21  

under transforming the matrix notation to the tensor one) are usually measured with rather 
high errors, which often exceed tens of per cents (of many works demonstrating this fact 
see, e.g., [9–12]). On the contrary, the photoelastic coefficients ( p Cλν λν ν µπ= , where Cνµ  

are the elastic stiffness tensor) could be determined with higher accuracy with the known 
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Dixon method [13, 14]. However, recalculations of the photoelastic coefficients to the 
piezooptic ones on the basis of cumbersome relations including elastic compliances ( Sνµ ) 

give rise again to high final errors for the piezooptic parameters. 
The piezooptic coefficients are mainly studied with interferometric or polarimetric 

techniques, which are sensitive enough to satisfy the required experimental accuracies. 
Nevertheless, the final results include large errors caused by a spatial stress distribution 
inside samples. Moreover, as we show below, this stress distribution (the corresponding 
stress values can deviate by 30%∼  over the sample volume) exists even in the cases 
when the sample is loaded by homogeneous mechanical stress and the optical quality of 
material under study is high enough. As a result, the effective stress value and so the pie-
zooptic coefficients are determined with insufficiently low accuracy. 

One of the possible ways for solving the problem is creating stress distribution ge-
ometry in the sample, which is defined in advance. As an example (see, e.g., [15]), four-
point bending method provides high accuracy of piezooptic polarimetric experiments, 
with the error not exceeding few per cents. However, the method requires a special (plate-
like) geometrical shape of samples and, moreover, many such plates are needed for com-
plete piezooptic characterization of low-symmetry crystals. 

On the other hand, the polarimetric studies of the piezooptic effect yield only in dif-
ferences of the piezooptic coefficients, rather than separate coefficients of the piezooptic 
tensor themselves. In particular, the optical glasses are characterized by the stress-optic 
coefficient, which is in fact equal to the difference of coefficients of the piezooptic tensor. 
In their turn, the separate components of the piezooptic tensor can be obtained with utiliz-
ing interferometric technique, and then the knowledge of stress distribution inside the 
sample after its loading by uniaxial stress becomes important again. 

In case of inhomogeneity of the stresses that appear inside the sample under uniaxial 
loading, the problem of accurate determination of piezooptic coefficients transforms into 
that of determination of stresses distribution inside the sample, i.e. the problem of stress 
tensor field tomography. The topics related to the stress tensor field tomography have 
been considered by many authors (see, e.g., [16–19]). It is known that the problem could 
be completely solved for some special cases assuming a priori information on the stress 
distribution [16]. Such a priori information is actually available in our case of uniaxial 
loading of sample, which permits employing polarimetric data only for a single projection 
as shown below. 

In the present work we reveal the reasons for appearance of stress inhomogenity in 
the course of typical piezooptic experiments and demonstrate how to eliminate high cor-
responding errors or how these errors could properly be taken into account. 

2.Experimental procedure and mechanical model  
2.1.Experimental procedure 

We studied the distribution of optical retardation in a glass sample using the imaging po-
larimeter described earlier in the work [20]. The functional scheme of the corresponding 
set-up is presented in Fig. 1.  
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Fig. 1. Functional scheme of imaging polarimeter. 

(I) Light generation section: 1 – laser; 2 – light shutter; 3 – polarizer, 4 – quarter-wave 
plate; 5 – coherence scrambler; 6 – beam expander; 7 – spatial filter;  
(II) Polarization generation section: 8 – polarizer; 9 – quarter-wave plate; 10 – analyzer;  
(III) Sample section (see Fig. 2); 
(IV) Section of image analysis: 11 – objective lens; 12 – CCD camera;  
(V) Operating section: 13 – monitor; 14 – camera interface; 15 – PC; 16 – shutter control-
ler; 17 – step motor controller; 18 – step motor; 19 – position sensor controller. 
 

The measuring procedure is as follow. A quarter-wave retarder (position 9 in Fig. 1) 

is aligned in 45°-position with respect to the polarizer (position 8). As a result, the light 
propagating from a polarization generator is circularly polarized. In order to measure po-

larization state of the light transmitted through the sample, the analyzer is rotated from 0° 

to 180°. The sample image is recorded with the steps of 4.5 deg. Once the analyzer has 

reached the angle value of 90°, the light beam is shut out and the background image is 

recorded. The overall time of the measuring procedure is less than 30 seconds.  
In case when the probing light is circularly polarized and the sample is well de-

scribed by the model of linear optical retarder, the dependence of the light intensity I  on 
the analyzer azimuth α  is expressed by the formula 

( ){ }0 1 sin sin 2
2

I
I Γ α ϕ= +  −   ,    (2) 

where ϕ  is the orientation angle of the optical indicatrix, 2 /ndΓ π∆ λ=  the optical re-

tardation, λ  the light wavelength, d  the sample thickness and n∆  the optical birefrin-

gence. After recording and filtering of images, azimuthal dependences of the intensity I  
are fitted by the sine function for each pixel of the image: 

( )1 2 3sin 2I C C C= + ⋅  −  a ,    (3) 

where 1C , 2C  and 3C  are fitting coefficients. 
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Using the known relation for the optical retardation and the relation (3), one can 
write the fitting coefficients in the following form:  

( )0 0
1 2 3, sin , .

2 2

I I
C C CG j= = =    (4) 

It is seen that the optical retardation G  is determined by the fitting coefficients 1C  and 

2C , 

2

1

sin =
C

C
Γ ,     (5) 

while the angular orientation of the intensity mini-
mum is determined by the orientation of principal axis 
j  of the optical indicatrix and the coefficient 

3C .Thus, after fitting the light intensity for each pixel 

of the sample image behind the analyzer as a function 
of polarization azimuth, one can construct 2D maps of 
the optical anisotropy parameters of the sample under 
test, namely the optical retardation and the orientation 
of the principal axis of its optical indicatrix. 

A schematic view of the loading device used in 
our experiment is shown in Fig. 2. Between the sam-
ple and the top and bottom dies, the cardboards are 
used as intermediate layers, in order to eliminate in-
homogeneity of the corresponding surfaces and de-
crease the friction force between these surfaces. The 
sample in the shape of cube with the dimensions 

(X)11.45×(Y)11.3×(Z)11.45 mm3 was prepared from 
ВК7 (Schott classification) glass. Its refractive index 
for the wavelength of 632.8 nmλ =  is equal to 

1.51466n = , while the difference of the piezooptic coefficients amounts to 

3 12 2
0 11 12

1
( ) 2.76 10 m /N

2
n π π −− = ×  at 550 nmλ =  [21] (in the present study we neglect 

the dispersion of piezooptic coefficients in the spectral region of 550 632.8 nm− ). 

2.2.Mechanical model and simulations 

Let us assume that the experimental conditions provide a possibility for uniform applica-
tion of mechanical load in the Z direction of sample and that the sample is initially opti-
cally homogeneous and isotropic. The optical radiation propagates along the Y direction. 
Then inhomogeneity of the mechanical stresses inside the sample can appear only due to 
a friction force between the upper and lower sample surfaces and the intermediate card-

 

Fig. 2. Scheme of the  
loading device. 
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board layers. The maximum value of this friction forces maxdF are proportional to the 

loading stress 3σ , 

max 3dF k dSσ= ,      (6) 

where 0.22k =  is the friction coefficient 

for the case of friction between the glass 
and the paper [22] and dS  denotes the 

small element of the square of the surface 
of the loaded sample. These friction forces 
are directed from the lateral faces of the 
sample to the central Z axis (Fig. 3), thus 
leading to appearance of barrel-shaped dis-
tortion of the sample under the compres-

sive stress 3σ .  

In the first approximation we take into 
account the following boundary conditions for this type of inhomogeneously stressed 
sample: 

(1) 1 2 0σ σ= =  on four lateral faces of the sample; 

(2) max max
1 2 3kσ σ σ= =  on the upper and lower faces; 

(3) the value 3σ  remains the same on all the faces (in our experiment and simula-

tions we have 6 2
3 1.93 10 N/mσ = − × ). 

Let us use the approach presented in the work [23] for the superposition of three so-
lutions, each of which is a solution of the problem for elastic layer. The general solution 
of the Lame’s equation under the condition of absence of the volume forces can be writ-
ten as a sum of three solutions for the displacement vectors u , v , w  along X, Y and Z 

directions, respectively [23]: 
 

2 02 0 2 0
2 0

0 0 02

2 02 0 2 0
2 0

0 0 02

2 02 0 2 0
2 0

0 0 0 2

,

,

,

y yx z z
x

yx x z z
y

y yx x z
z

F fF F f
u A F A A

x x y z x z y

FF f F f
v A A F A

x y z y y z x

F fF f F
w A A A F

x z y y z x z

∂ ∂∂ ∂ ∂= + ∇ + − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂ ∂= + + + ∇ + −
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂ ∂= − + + + + ∇
∂ ∂ ∂ ∂ ∂ ∂ ∂

   (7) 

 

where 2 2 0
, , 0x y zF∇ ∇ = , 2

, , 0x y zf∇ = , 0 2
A

λ µ
λ µ

+= −
+

, and λ  and µ  are the Lame’s coeffi-

cients. The position of our sample is determined by 0 x a≤ ≤ , 0 y b≤ ≤  and 0 z c≤ ≤  

 
Fig. 3. Barrel-shaped distortion of the 

sample under compressive stress 3σ . 
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( , ,a b c  being the lengths of the sample along X, Y and Z directions, respectively). The 

functions 0
, ,x y zF  and , ,x y zf  may be written as follows: 

 

{0
1 2 3

1 1

2 2

4 2 2

sinh( ) cosh( ) sinh( )

cosh( ) sin sin , ,

nm nm nm
x nm nm nm

n m

nm
nm nm

F K xr K xr K x xr

n y m z n m
K x xr r

b c b c

π π π

∞ ∞

= =

= + + +


+ = +



∑∑
  (8) 

{0
1 2 3

1 1

2 2

4 2 2

sinh( ) cosh( ) sinh( )

cosh( ) sin sin , ,

km km km
y km km km

k m

km
km km

F L yr L yr L y yr

k x m z k m
L y yr r

a c a c

π π π

∞ ∞

= =

= + + +


+ = +



∑∑
  (9) 
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1 2 3

1 1

2 2
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sinh( ) cosh( ) sinh( )
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∞ ∞

= =
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∑∑
           (10) 
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      (11) 

Inserting equations (8)–(11) into (7) gives 

1 2
1 1 0 1

3
0 1

4 5
0 1 1 1

6
1 0

( )sin sin ( )cos cos

( )cos sin ,

( )cos sin ( )sin sin

( )sin cos ,

nm km

n m k m

kn

k n

nm km

n m k m

kn

k n

n y m z k x m z
u x y

b c a c

k x n y
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a b

n y m z k x m z
v x y

b c a c

k x n y
z

a b

w

π π π π

π π

π π π π

π π

∞ ∞ ∞ ∞

= = = =

∞ ∞

= =

∞ ∞ ∞ ∞

= = = =

∞ ∞

= =
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+ Θ

= Θ + Θ +

+ Θ

=

∑∑ ∑∑

∑∑

∑∑ ∑∑

∑∑

7 8
1 0 1 0

9
1 1

( )sin cos ( )sin cos

( )sin sin .

nm km

n m k m

kn

k n

n y m z k x m z
x y

b c a c

k x n y
z

a b

π π π π
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∞ ∞
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+ Θ
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∑∑

 (12) 
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Relations (12) should be completed by the equations that follow from the Hooke's law, 

1 4

2 5

3 6

2 , ,

2 , ,

2 , .

u u v w w v

x x y z y z

v u v w w u

y x y z x z

w u v w u v

z x y z y x

σ µ λ σ µ

σ µ λ σ µ

σ µ λ σ µ

   ∂ ∂ ∂ ∂ ∂ ∂= + + + = +   ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂ ∂ ∂ ∂ = + + + = +   ∂ ∂ ∂ ∂ ∂ ∂  

   ∂ ∂ ∂ ∂ ∂ ∂= + + + = +   ∂ ∂ ∂ ∂ ∂ ∂   

   (13) 

The functions 1 2 3 4 5 6 7 8( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ),nm km kn nm km kn nm kmx y z x y z x yΘ Θ Θ Θ Θ Θ Θ Θ  

9 ( )kn zΘ  in (12) depend on the coordinates, the number of harmonics and the coefficients 

, ,nm km kn
i i iK L M  ( 1,...6i =  – see relations (8)–(11)). These coefficients are determined after 

solving the set of equations (13) and accounting for the boundary conditions for the sam-
ple faces mentioned above. With the known coefficients and the relations (13), the stress 
distribution can be determined for all the sample volume. 

Simulations of distribution of the optical retardation have been performed on the ba-
sis of integral Jones matrix approach. The sample under test has been divided into one 
thousand (10 10 10× × ) elementary, optically uniform cells. The resulting Jones matrices 

for each of one hundred elementary beams ( , 1,...10i j = ) have been obtained by multiply-

ing the Jones matrices of ten ( n ) elementary cells, trough which each elementary beam 

has passed: 
10

1

ij ij
n

n

J J
=

=∏ ,     (14) 

where 

( )
( )

/ 2 / 22 2

/ 2 / 22 2

cos sin sin( / 2)sin 2

sin( / 2)sin 2 sin cos

ij ij
n n

ij ij
n n

i iij ij ij ij
n n n n

ij
n

i iij ij ij ij
n n n n

e e i
J

i e e

ξ ξ ξ

ξ ξ ξ

Γ − Γ

Γ − Γ

+ Γ
=

Γ +
,        (15) 

( )( )
2

3 5
0 11 12 1 3

1 3

5

1 3

2 2( )1
( ) ( ) 1 ,

2 ( ) ( )

2( )1
arctan

2 ( ) ( )

ij ij
ij ij ijn n
n n n ij ij

n n

ij
ij n
n ij ij

n n

d
n

π σΓ π π σ σ
λ σ σ

σξ
σ σ

 
  = − − +   −  

 

=
−

.     (16) 

Since 11
1 3

33

, 1,
ij

ij

ij

EE
J E E i

EE
= = = , the resulting optical retardation for the each 

elementary beam is determined by the relation 

( ) ( ){ }1 3 1 3arctan Im Reij ij ij ijij E E E EΓ = .    (17) 



Reconstruction of 3D 

Ukr. J. Phys. Opt. 2009, V10, №1 29

3.Experimental results 

In Fig. 4 we represent distribution of the optical retardation and the orientation of princi-
pal axis of the optical indicatrix for the optical tract including no sample, as a demonstra-
tion of accuracy of our experiment. Of course, the optical retardation in the optical tract 
which is filled only with air and isotropic optical elements such as lenses and polarizers 
should be equal to zero. However, some false “background” retardation still exists due to 
experimental errors caused mainly by multiple light reflections in the optical elements 
and small misalignments of optical axes of those elements, which are being rotated in the 
course of experimental procedures. Thus, following from the results presented in Fig. 4, 
one can determine the apparatus errors for evaluation of the optical retardation and the 
orientation of the optical indicatrix as 2deg±  and 5deg± , respectively. 

  
(a) (b) 

Fig. 4. Images of distribution of the optical retardation (a) and the orientation of principal 
axis of the optical indicatrix (b) (in deg) for the optical tract in our set-up including no 
sample. 

  
(a) (b) 

Fig. 5. Images of distributions of the optical retardation (a) and the orientation of principal 
axis of the optical indicatrix (b) (in deg) for the glass sample with no mechanical stress 
applied. 
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(a) (b) 

Fig. 6. Images of distributions of the optical retardation (a) and the orienta-
tion of principal axis of the optical indicatrix (b) (in deg) for the glass sample 
under the mechanical stress 6 2

3 1.93 10 N/mσ = − ×  applied. 

The distributions of the optical retardation and the orientation of principal axis of the 
optical indicatrix for the glass sample with no mechanical stress applied are presented in 
Fig. 5. From those results it follows that the residual optical birefringence is smaller than 

76 10−× . Moreover, one can see from comparison of the maps presented in Fig. 4 and 

Fig. 5 that the major part of this birefringence is false, being caused by peculiarities of 
both our experimental set-up and the method used, i.e. it is actually an apparatus error. In 

fact, the birefringence as small as 76 10−×  merely represents the accuracy for the birefrin-

gence achieved in the present experiment. 
The distributions of the optical retardation and the orientation of principal axis of the 

optical indicatrix for the glass sample in the conditions of the mechanical stress 
6 2

3 1.93 10 N/mσ = − ×  applied are displayed in Fig. 6. It is important that repeated ex-

periments accompanied with realignments of the sample have not led to notable differ-
ence in the distributions of the optical parameters (the optical phase differences through-
out the cross section of the sample and the cross section of circular-section laser beam 
with the diameter 1.5 mm propagated through the centre of the cross section are com-
pared in Table 1). However, the maximum of the optical retardation has been positioned 
at different points, i.e. in different experiments it has been close to lateral, upper or bot-
tom edges of the sample. These shifts are probably caused by some misalignments of 
stress application, leading to appearance of additional components of the stress tensor. 

It is seen that the relative error of determination of optical retardation for the whole 

cross section of the sample approaches 14%, while the relative error for the cross section 

of circular-section laser beam is about 4%. In other words, the error for the experiments 

with non-expanded laser beam can be reduced at least by 3.5 times, provided that we 

know the value of mechanical stress in the spatial region where laser beam propagates. 
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Table 1. Optical retardation for the whole cross section of the sample and for 
the cross section of circular-section laser beam with the diameter of 1.5 mm 
propagated through the centre of the sample. 

Number of  
experiment 

Retardation for the 
whole cross section 

of sample, deg 

Relative 

error, % 

Retardation for the cross 
section of circular-

section laser beam, deg 

Relative 

error, % 

1 33.06±4.85  14.66 37.58±0.97  2.59 

2 33.28±5.19  15.58 38.68±1.81  4.67 

3 31.70±4.40  13.87 35.89±1.62  4.50 

4 31.71±5.41  17.07 34.89±1.44  4.13 

5 31.70±3.26  10.30 34.32±1.27  3.71 

6 32.19±3.89  12.09 35.52±1.58  4.46 

Mean value 32.27±4.50 13.94 36.15±1.45 4.01 
 

4.Discussion 

In Fig. 7 we present the simulated optical retardation for the glass sample loaded by me-
chanical stress component 3σ . In these simulations we have employed the boundary con-

ditions mentioned above: 1 2 0σ σ= =  on all of the four lateral faces of the sample; 

1 2 3kσ σ σ= =  on the upper and lower faces; 3σ  has the same value on all the faces 

( 6 2
3 1.93 10 N/mσ = − ×  in our experiment and simulations). We have used relation (17) 

and 161 harmonics in the expansion (12). 
As one can see from Fig. 7b, the major part of the cross section (75%) satisfies the 

boundary conditions suggested by us, with the accuracy of 3 deg±  for the optical retarda-

tion. When comparing Fig. 6a and Fig. 7a, one can see that the maximum of optical retar-
dation obtained experimentally is shifted towards the upper edge of the sample. This shift 
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(a) (b) 

Fig. 7. Maps of the simulated optical retardation (a) and the difference of experi-
mental (see Fig. 6a) and simulated optical retardations (b) (in deg). 
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Fig. 8. Maps of the simulated optical retardation (a) and the difference of experimental 
(see Fig. 6a) and simulated optical retardations (b) (in deg), with additional considera-
tion of sinusoidal distribution of mechanical stress on the upper sample surface. 

can be produced by a slight inhomogeneity of the stress applied to the upper surface of 
the sample. For example, if the stress is applied to the upper surface of the sample with 
some misalignment, this stress is probably deviated from the initial flat profile to a sinu-
soidal (half-period) profile. In such a case the stress distribution on the upper face of the 
sample can be described by the relation 

3 1 20.5 sin sin
11.45 11.3

x y
N Nσ π π = − + 

 
,    (18) 

where 1N  and 2N  are the normalization factors which should satisfy the condition 

3 249.7 N
c

dxdyσ = −∫∫  (the magnitude 249.7 N−  corresponds to the force applied). In the 

simulations we have used the expansions (8)–(11) with mn
iK  ( 1...6i = , , 1...31m n = ), km

iL  

( 1...6i = , , 1...31k m = ) and kn
iM  ( 1...6i = , , 1...9k n = ).  

The results of the simulations are presented in Fig. 8. Fig. 8a testifies that the maxi-
mum of optical retardation on the simulated map is shifted towards the upper edge of the 
sample. This satisfies qualitatively better the optical retardation map obtained experimen-

tally. However, in this case a smaller part of the cross section (68%) agrees with the ex-
perimental results. The corresponding misalignment of experimentally obtained and 
simulated maps may be caused by the two following reasons. The first one consists in 
rather approximate character of the boundary condition 1 2 0σ σ= =  on the lateral faces of 

the sample. Indeed, if a barrel-shaped distortion of the sample takes place, the distribution 
of 1σ  and 2σ  on the lateral faces 0Y = , Y b=  and 0X = , X a=  can be described re-

spectively by the relations 

1 2 30, 0,

2 1 30, 0,

0, 0.2 sin sin ,

0, 0.2 sin sin ,

x a x a

y b y b

z y

c b
x z

a c

σ σ σ π π

σ σ σ π π

= =

= =

= = − ×

= = − ×
   (19) 
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where 0.2−  is the fitting parameter. The second reason is the fact that the maximum of 

optical retardation on the experimental map is shifted not only towards the upper face of 
the sample but also leftwards. This can be taken into account while modifying the relation 
(18): 

2

3 1 2

2

3 10

0.5 sin sin (1 / )(1 / ) ,
48

1 (1 / )(1 / ) / ,
48 8

z c

z

x y
N N x a y b

a b

N x a y b x a

πσ π π

π πσ

=

=

 
= − + + − − 

 

 
= − + − − + 

 

  (20) 

where 1N  and 2N  are the normalization factors which should satisfy the conditions 

3 249.7 N
z c

dxdyσ
=

= −∫∫  and 3

0

249.7 N
z

dxdyσ
=

= −∫∫ . The results of the corresponding 

simulations are shown in Fig. 9. 

Figure 9b shows that the major part of the cross section (91%) becomes correlated 
with the experimental results. Nonetheless, some small part of the cross section (9%) still 
disagrees with the experimental results. The disagreement is probably caused by some 
warp of the top die in the upper left side of the sample, along with some sliding between 
the sample and the dies. The last condition may be accounted for with reducing the fric-
tion coefficient down to the value 0.1k = . In this case the boundary conditions should be 

supplemented by the relations 
2

3 1 0.05sin sin 0.3 (1 / )(1 / )
48z c

x y
N x a y b

a b

πσ π π
=

 
= − − + − − 

 
 .  (21) 

The results of the relevant simulations are shown in Fig. 10. As one can readily see, 
we have reached the situation when the experimental and simulation results have the 
similarity of 98%. This enables one to finally reconstruct the stress tensor field inside the 
sample (see Fig. 11). 
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Fig. 9. Maps of the simulated optical retardation (a) and the difference of ex-
perimental (see Fig. 6a) and simulated optical retardations (b) (in deg), with 
additional consideration of conditions (19) and (20). 
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Basing on the results presented in Fig. 11, we are in a position to draw the following 
conclusions: 

− as a result of loading the sample in a manner described above, all the components of 
the stress tensor appear; 

− the distribution of the mechanical stress tensor components inside the sample is in-
homogeneous; 

− the 3σ  component in the vicinity of geometrical centre of the sample is one order of 

magnitude larger than the 1σ  component and two orders of magnitude larger than the 

other stress components; 

− the 3σ  component in the centre of the sample reaches a value 26% higher than the 

stress actually loaded, while the deviation of this component within the sample vol-
ume is equal to 32%. 

− the deviations of the other stress tensor components exceed hundred per cents and, 
moreover, the signs of the shift stress components are different in different parts of 
the sample. 

Let us assume that a non-expanded laser beam with the cross section area 22mm∼  

propagates through the sample centre parallel to the Y axis. It follows from Fig. 10 that 
the optical retardation for this light propagation direction is equal to 37.4deg . On the 

other hand, the value of optical retardation for the case of homogeneously distributed me-

chanical stress ( 6 2
3 1.93 10 N/mσ = − × ) calculated with the formula 

3
0 11 12 3( )

d
Г n

π π π σ
λ

= −      (22) 

(with 3 12 2
0 11 12( ) 5.52 10 m /Nn π π −− = × ) is equal to 34.2deg . Thus, the actual value of the 

optical retardation is smaller by 8.5% than the measured one. This means that in any prac 
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Fig. 10. Maps of the simulated optical retardation (a) and the difference of 
experimental (see Fig. 6a) and simulated optical retardations (b) (in deg), 
with consideration of additional condition (21) and taking into account of 
sliding between the sample and the dies. 
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(a)    (b) 

(c)     (d) 

(e)     (f) 

Fig. 11. Reconstructed distribution of the stress tensor components inside 
the glass sample: (a) 3σ , (b) 2σ , (c) 1σ , (d) 4σ , (e) 5σ  and (f) 6σ . 
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tical piezooptic experiment, which does not take the distribution of mechanical stresses 
into account, the piezooptic coefficients determined experimentally differ from their ac-
tual values at least by 8.5%. Of course, only complete reconstruction of the stress field 
inside a sample and a consistent consideration of the stress tensor components at each 
sample point would allow one to obtain a unique value of the piezooptic coefficient. In 

our case the latter is equal to 3 12 2
0 11 12( ) 5.52 10 m /Nn π π −− = × .  

In the present study we have considered the simplest case of isotropic glass only. 
However, in the case of anisotropic media different components of piezooptic tensor can 
differ as notably as by some orders of magnitude. Hence, the existence of the stress tensor 

components 1 2 4 5 6, , , ,σ σ σ σ σ  which are smaller than 3σ  can lead to considerable errors 

for the piezooptic coefficients. Perhaps, the only way out is to use the technique for re-
constructing the stress field described above. This should allow eliminating all the errors 
caused by inhomogeneity of the stress field inside the sample under study. 

5.Conclusions 

We have revealed that enormous errors appearing in many typical piezooptic experiments 
are mainly caused by the friction forces that exist inside an intermediate contact layer be-
tween the upper and lower sample surfaces and the corresponding substrates, along with 
misalignments of mechanical loading. The friction force leads to a barrel-shaped distor-
tion of samples and inevitable appearance of all components of the stress tensor, despite 
of the fact that a uniaxial pressure has been initially applied. 

The method for reconstruction of such 3D stress tensor fields has been proposed that 
includes a polarimetric mapping technique, optical retardation simulations based on the 
integral Jones matrix approach and a simple mechanical model. As a result of a number 
of natural approximations, the stress field for the cubic isotropic glass sample has been 
successfully reconstructed. We have also shown that reconstruction of the stress field al-
lows achieving significant increase in the accuracy of piezooptic experiments. The corre-
sponding errors could be reduced down to 4%, which in fact represents a residual, rather 
apparatus than systematic error.  
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Анотація. В роботі запропонований метод реконструкції 3D тензорного поля напружень з 
використанням поляриметричного картографування, моделювання оптичної різниці фаз на 
основі підходу інтегральних матриць Джонса і відповідної механічної моделі. Показано, що 
реконструкція поля напружень суттєво підвищує точність п’єзооптичного експерименту, 
тоді як відповідні похибки можуть бути зменшеними практично до апаратних. 


