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Abstract 

The solutions are obtained to vector wave equation for nonparaxial beams 
propagating along the optic axis in a uniaxial birefringent crystal. We have re-
vealed that circularly polarised nonparaxial beams may be presented as a set of 
transverse electric and transverse magnetic waves keeping their structure up to a 
scale factor when propagating. A beam with arbitrary field distribution may be 
written as a composition of such the wave fields. We have shown that a circu-
larly symmetric vortex beam with the initial circular polarisation preserves its 
structure inside the crystal. A circular symmetry of nonparaxial vortex beam with 
the initial linear polarisation gets lost as the beam transmits through the crystal. 
The circular symmetry is not recovered in the paraxial case, being an inherent 
property of the linearly polarised beams. 
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1. Introduction 

Propagation of vortex beams in anisotropic crystals is of obvious interest from both prac-
tical and theoretical points of view. On the one hand, modern technology needs special 
tools permitting to trap and transport micro objects. Optical vortices embedded in light 
beams can implement this task. A comparatively simple way to produce singular beams is 
a computer-generated hologram technique (or phase masks method) [1]. However, it is 
very difficult to employ the holograms in real-time-scale systems without special com-
plex mechanical gadgets. At the same time, optically uniaxial crystals are capable of per-
forming the same operations without additional devices [2, 3]. 

On the other hand, theoretical description of singular optical processes in optically 
birefringent crystals encounters too often mathematical difficulties. In particular, solu-
tions to the Maxwell equations involve evolution integrals that very seldom lead to closed 
expressions. As a rule, one obtains uncertain results for tightly focused (i.e., nonparaxial) 
beams, which are right out of a major interest for modern technologies. 

To the present time, there has been a great number of works targeting propagation of 
nonparaxial beams in free space or homogeneous media (see, e.g., [4–10] and references 
therein). The key point in these studies is a right choice of vector-potential that can lead 
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to a wanted solution. A classical way for analysing the propagation of light in crystals is a 
plane-wave technique [11] that enables one to probe each direction in a crystal, looking 
after the polarisation state transformations. However, any beam involves a great number 
of rays (plane waves) propagating in different directions with different velocities. In order 
to reproduce a picture as a whole, it is necessary to use a spectral integral technique [5]. 
Employing of this method for paraxial beams propagating through both uniaxial [12–14] 
and biaxial [15–17] crystals has entailed fruitful results, while the expansion of this tech-
nique to nonparaxial beams again has resulted in solutions that need asymptotic or nu-
merical methods for their analysis. 

Another approach to the problem is a technique of wave modes with eigen polarisa-
tions or, otherwise, a complex-source-point technique [18–22]. This method has been 
used for the first time for a tilted propagation of extraordinary Gaussian beam in a uniax-
ial birefringent crystal (see the work [19]). In the studies [23, 24], variations of the above 
method have been employed for tilted vortex beams of the highest orders. 

The aim of our work is to study the main properties of nonparaxial beams which 
have their analogues among Laguerre-Gaussian paraxial beams propagating along the 
optic axis of uniaxial birefringent crystals, using the technique of wave modes with eigen 
polarisations. 

2. Generatrix beams 

Let us consider at first a general solution to the Maxwell equations for the waves propa-
gating in an optically uniaxial birefringent crystal, with the permittivity tensor presented 

as ( )3ˆ , ,diagε ε ε ε= . For the case of monochromatic waves containing the factor 

{ }tiωexp , the Maxwell equations acquire the following form: 

0 0 ˆ, ,

ˆ 0, 0.

ik ik ε
ε

∇ × = − ∇ × =
∇ = ∇ =

E H H E

E H
    (1) 

Among a variety of different vector-potential forms used for free-propagating non-
paraxial beams [5], we choose the solutions for anisotropic case which possess a circular 
symmetry of circularly polarised components of the field. Such a requirement corre-

sponds to two different cases related to (1) a transverse electric wave ( 0zE = ) and (2) a 

transverse magnetic one ( 0zH = ), where the vector-potential A  in the work [8] is di-

rected along z axis. 

(1) The transverse electric wave field ( 0zE = ): 

The field components of the electric field may be presented as 

1 1, , 0x y y x zE E E= ∂ Ψ = −∂ Ψ = .   (2) 

From Eq. (1) one can write 

( ) 0 zz
ik H∇ × = −E ,  

so that the longitudinal component of the magnetic field is as follows: 
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2
1

0
z

i
H

k ⊥= − ∇ Ψ .      (3) 

Moreover, we have 

2
1

0
0x x y y z

i
H H

k ⊥∇ = ∂ + ∂ − ∂ ∇ Ψ =H . 

Thus, the transverse components of the magnetic field may be written as 

2 2
1 1

0 0
,x xz y yz

i i
H H

k k
= ∂ Ψ = ∂ Ψ .              (4) 

In order to find equation for the function 1Ψ , we use the relation 

( ) 0 xx
ik Eε∇ × = −H . 

Substituting Eqs. (3) and (4) in the above equation, we come to the Helmholtz scalar 
equation: 

2 2 2
1 1 0 1 0z k ε⊥∇ Ψ + ∂ Ψ + Ψ = .     (5) 

The wave of such a type spreads over a crystal in a manner similar to the case of 

homogeneous medium with the refractive index on ε= . We call this wave beam as a 

nonparaxial ordinary generatrix beam. 

(2) The transverse magnetic field ( 0zH = ): 

Let us choose the components of the magnetic field as 

2 2, , 0x y y x zH H H= ∂ Ψ = −∂ Ψ = .   (6) 

Then we obtain from Eq. (1)  

( ) 0 3 zz
ik Eε∇ × =H , 

so that the longitudinal component of the electric field is given by 

2
2

0 3
z

i
E

k ε ⊥= ∇ Ψ .      (7) 

Further, from the condition ˆ 0ε∇ =E  we find 

( ) 2
3 2

0 3
0x x y y z

i
E E

k
ε ε

ε ⊥
 

∂ + ∂ + ∂ ∇ Ψ = 
 

, 

so that 

2 2
2 2

0 0
, .x xz y yz

i i
E E

k kε ε
= − ∂ Ψ = − ∂ Ψ    (8) 

Equation for the 2Ψ  function may be found basing on the relation 

( ) 0 xx
ik H∇ × = −E . 

It has the following form: 

2 2 23
2 2 0 3 2 0z k

ε ε
ε⊥∇ Ψ + ∂ Ψ + Ψ = .     (9) 



Nonparaxial wave 

Ukr. J. Phys. Opt. 2009, V11, №1 47 

Eq. (9) shows that the wave beam has a new scale over the z axis ( 3z zε ε′ = ) and 

propagates with a new wave number ( 0 3ek k ε= ). We call this wave beam as a nonpar-

axial extraordinary generatrix beam. 
The other types of vector-potential results in non-symmetric solutions associated 

with deformed intensity distributions over the beam cross-section. 

3. Vortex beam propagating along the optic axis of crystals 
3.1. Mode fields 

A particular wave solution to the Helmholtz equation (5) in the spherical coordinates may 
be written as [4] 

( ) ( ) ( )1 cos expm
n o nj k R P imθ ϕΨ = ,    (10) 

where ( )nj x  stands for the spherical Bessel function of the first kind, ( )m
nP x  is the Leg-

endre polynomial, 2 2R r z= +  and cos
z

R
θ = . In order to form the wave function of 

the beam propagating along z axis, we make the transformation oz z iz→ + , where oz  is 

a characteristic parameter of the ordinary beam. The shift of a point light source to imagi-
nary region is equivalent to violation of spherical symmetry of the wave and its deforma-
tion along the z axis without breaking the axial symmetry, the solution given by Eq. (10) 
as before obeying the wave equation [6–9]. Then the wave function of the ordinary beam 
becomes 

( ) ( ) ( ) ( ),
1 cos expn m m

n o o n oj k R P imθ ϕΨ = ,    (11) 

with ( )22
o oR r z iz= + +  and cos o

o
o

z iz

R
θ += . 

Correspondingly, a particular solution to Eq. (9) for the extraordinary beams is  

( ) ( ) ( ) ( ),
2 cos expn m m

n e e n ej k R P imθ ϕΨ = ,    (12) 

with ( )22
e eR r z iz′= + +  and cos e

e
e

z iz

R
θ

′ += , where ez  stands for a characteristic 

parameter of the extraordinary beam. 
We choose the wave beams of the lowest order 

( ) ( ) ( )
( )

0,0 0
11

0
, , , o o

o
o o

j k R
x y z k

j ik z
Ψ = Ψ = ,    (13) 

( ) ( ) ( )
( )

0,0 0
22

0
, , , e e

e
e e

j k R
x y z k

j ik z
′Ψ = Ψ =     (14) 

as generatrix functions, while the lowest-order spherical Bessel function is given by 

( )0
sin x

j x
x

= .       (15) 
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The electric field of the lowest-order ordinary vortex beam may be found from 
Eq. (2). However, it makes a sense to use new variables ,u x iy v x iy= + = −  and a circu-

larly polarised basis ,x y x yE E iE E E iE+ −= − = + . In this case the electric field of the 

ordinary beam becomes 

1 1, , 0o o o
u v zE E E+ −= ∂ Ψ = −∂ Ψ = ,    (16) 

whereas the electric field of the extraordinary beam is given by the relations 

2 2
2 2

0 0
,u z v z

i i
E E

k kε ε+ −= − ∂ Ψ = − ∂ Ψ ,    (17) 

2
2 2

0 3 0 3
4z uv

i i
E

k kε ε⊥= ∇ Ψ = ∂ Ψ .    (18) 

Now let us form new extraordinary beam fields given by Eq. (8): 

20
1, 2 2
e

u z u
k

E E dz dz
i

ε
+ += − = ∂ Ψ =∂ Ψ∫ ∫ ,   (19) 

20
1, 2 2
e

v z v
k

E E dz dz
i

ε
− −= − = ∂ Ψ =∂ Ψ∫ ∫ ,    (20) 

2
3

4e
z uvE dz

ε
ε

= − ∂ Ψ∫ .     (21) 

These equations enable us to treat the ordinary and extraordinary beams in the same 
form. Notice that the components of the former magnetic field must be integrated, too.  

3.2. Vortex beam of the lowest order 

Our aim is to match the beam we can produce at the crystal input (z = 0) in an isotropic 

medium with the refractive index on  with the beam field inside a crystal (in the same 

z = 0 plane). Our requirement is that the left-hand polarised (LHP) component of the 

beam ( )0, 0E z− =  should vanish in the plane z = 0. We also assume the reflected wave to 

be negligibly small. Let us first verify whether the superposition 

1 1 1
o ea b= +E E E        (22) 

corresponds to our requirement for the transverse field components. Using Eqs. (13), 
(14), (16), (19) and (20), we write 

( ) ( )1, 1 2 1, 1 2,u vE E+ −= ∂ Ψ + Ψ = −∂ Ψ − Ψ ,   (23) 

where a and b are constants. Let us choose a new normalisation in the form 

( )
( )

( )
( )

0 0

0 1 0 1

2 2
,o o e eo e

o o o e e e

j ik z j ik ziz iz
a b

k w j ik z k w j ik z
= − = −    (23a) 

and obtain 

( )
( )

( )
( )

1 1
1,

0 1 1

o o e eo e

o o o e e e

j k R j k Riz izv
E

w R j ik z R j ik z+
 

= + 
  

,    (24) 
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( )
( )

( )
( )

1 1
1,

0 1 1

o o e eo e

o o o e e e

j k R j k Riz izu
E

w R j ik z R j ik z−
 

= − − 
  

,   (25) 

with 0w   being some constant a physical meaning of which will be defined later on. Be-

sides, we made use of the relation 

( ) ( ) ( )
1

m
mn n m

n n m

j x j xd

xdx x x

+
+

   = −  
   

.    (26) 

In fact, we superpose transverse electric and transverse magnetic fields in Eqs. (24) 
and (25). For convenience, we choose the normalisation coefficients a  and b  in 
Eq. (23a) inside the crystal so that they transform as a b=  before the crystal. Since we do 
not solve the boundary problem, such normalisation is justified. 

In this assumption, the wave field before the crystal has only the right-hand polarised 

(RHP) component, so that ( )1, 0,before thecrystal 0E z− = = . In the boundary plane z = 0 

the transverse electric field ( )
1
oE  before the crystal is converted into the same transverse 

electric field. The transverse magnetic field ( )
1

eE  is converted in the same manner, though 

with the refractive 

index 3n  and the 

other scale for the z 
coordinate. Naturally, 
in the z = 0 plane  
inside the crys 

tal, the (1, 0,E z− =  

)inside thecrystal    

field component is 
nonzero over all the 
z = 0 plane. Evanes-
cent waves in both 
the ordinary and ex-
traordinary beams do 
not permit the bound-
ary field in the LHP 
component to be 
compensated. The 
field distribution for 
this case is shown in 
Fig. 1a. Since the 
contribution of eva-
nescent waves is 
small, the ratio of 

 
Fig. 1. Normalised intensity distributions ( ),r z±ℑ  for the 

RHP and LHP components of nonparaxial vortex beam 
with 0 1µmw =  propagating in 3LiNbO  crystal 

( 32.3, 2.2,on n= =  and 0.6328µmλ = ): (a) z=0, (c) 
75 10 mz −= × , (d) 785 10 mz −= × , and (b) tail of the +ℑ  

component at z=0. 
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total intensities for the LHP and RHP components is about 0.01. As the crystal length 
increases, field oscillations are smoothed. However, a ripple seen in Fig. 1 on the enve-
lope curves for the nonparaxial beam inside the crystal testifies upon fast oscillations in 
the beam at the initial plane. Evolution of the intensity distribution and the wave front 
shape for the beam components near the initial plane are shown in Fig. 2. 

 

 

Fig. 2. Section in r0z plane of intensity distribution and phase front for the 
circularly polarised components of nonparaxial beam with 0 1µm, 1w l= = − . 

Let us now consider a paraxial approximation of the above field. Obviously, the fac-

tor in the brackets in 1,E −  is zero at 2 0, 0uv r z= = = . The complex radius oR  in the vi-

cinity of 0r ≈  may be found as 

( )

( )
( )

( ) ( )

2

2

2
1

2

o o o o

o
o o o o

oo

k R k uv z iz

k ruv
k z iz k z iz

z izz iz

= + +

= + + ≈ + +
++

,   (27) 

where 2 2 2uv r x y= = +  and we have taken into account that  

( )

2

2
1

o

r

z iz
<<

+
.       (28) 

However, the requirement given by Eq. (28) is nothing but the paraxial approxima-

tion for the wave beams, and  
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( )1 2

sin cosx x
j x

xx
= − .      (29) 

In our case, we make use of the relation ( )cos / 2ix ixx e e−= + , so that 

( ) ( ) ( ) ( )

( ) ( )

2

2

2
0

exp exp exp exp
2

exp exp exp

o o o o o o
o

o o o
o

r
ik R ik z k z ik

z iz

r
ik z k z

w σ

 
− ≈ − −  + 

 
≈ − −  

 

,  (30) 

with 0 2 /o ow z k=  being the beam waist at the z = 0 plane, 1 /o oiz zσ = − , and 

( ) ( )exp expo o o oik R ik R− >> . We obtain finally  

( ) ( ) ( ) 2

2
0

exp
cos exp exp

2
o o

o o o
o

k z r
k R ik z

w σ

 
≈ − −  

 
. 

Let us also use the approximation ( )o o o ok R k z iz≈ +  in the denominator of Eq. (29). 

Assuming that ( ) ( )
1 12

o o ok z iz z iz
− −

+ << +  in Eq. (29), we come to the expression 

( ) ( ) ( )
( )

2

1 2
0

exp exp
exp

2
o o o

o o
o o o

k z ik z r
j k R

k z iz w σ

 −
≈ − −  +  

.   (31) 

For the extraordinary beam we have 

( ) ( ) ( ) 2

2
0

exp
cos exp exp

2
e e

e e e
e

k z r
k R ik z

w σ

 
′≈ − −  

 
. 

At the same time, using the same relations and Eq. (9), we obtain the relation 

0 3 3 0/e ok z k z k z k zε ε ε ε′ = = = , implying that both the ordinary and the extraordi-

nary beams propagate with the same phase velocities along the z axis. Also, since we 

have ( )2
3 0 3 01 1 / / / 2 1e

e e

z z
i i z k w i

z z
σ ε ε ε

′
= − = − = −

′
 (with 2

0 / 2e ez k w′ ′=  and 

2
3 0 3 0/ /e ok k n n kε ε′ = = ), the complex amplitude of the paraxial extraordinary beam is 

characterised by its own wave number 2 2
3 /e o ok n n k′ = , contrary to the situation with the 

ordinary paraxial beam (the wave number ok ). Note also that 

( ) ( ) ( )
( ) ( )

2

0 12
0

exp
exp exp

2
o o

o o o o o
o o o

k z r
j k R i ik z ij k R

k z iz w σ

 
′≈ − − ≈  +  

.   (32) 

Thus, we arrive at the transverse electric field for the paraxial vortex beams of the 
lowest order in the following form: 

1, 1,
0 0

,o oik z ik zo e o e

o e o e

G G G Gv u
E e E e

w wσ σ σ σ
− −

+ −
   

+ −   
   

∼ ∼ ,    (33) 
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where ( )2 2
, 0 , ,exp / /o e o e o eG r w σ σ= − . 

Evolution of the beam profiles shown in Fig. 3 demonstrates gradual transition of the 
beam state from the nonparaxial to paraxial region of the beam’s parameters. 

3.3. Nonparaxial Gaussian beam 
3.3.1. Circular polarisation 

Generally speaking, wave fields with a smooth envelope lacking phase singularities do 
not represent mode beams with eigen polarisations, in contrast to the vortex-bearing 
beams which can be obtained by simple differentiation over u and v variables, as made in 
the previous section. Nevertheless, these fields may be found by means of integral opera-
tors. Indeed, let us integrate Eqs. (16) over the u variable: 

0, 1 1

0, 1

,

.

o
u

o
v

E du

E du

+

−

= ∂ Ψ = Ψ

= − ∂ Ψ

∫

∫
      (34) 

Choosing the generatrix function 1Ψ   in the form of Eq. (13) and using Eq. (32) for 

the paraxial approximation, we come to the Gaussian envelope for the RHP component: 

( ) ( )
( )

0
0,

0
, , , o oo

o
o o

j k R
E x y z k

j ik z+ = .     (35) 

With the aid of Eq. (26) we obtain  

( ) ( )0, 0
1o

o o o o o
u

E j k R j k R du
v v− = − + ∫  

for the LHP component. Taking into account Eq. (15), we find 

( ) ( ) ( )0, 0 02 2

2
cos /o

o o o o o o
o

u
E j k R k R j ik z

v k v
−

  = − − 
  

.  (36) 

 

Fig. 3. Radial intensity distribution +ℑ  in the RHP component for different beam 

waists 0w  in the z = 0 plane: curve 1 – w0 = 1.0 µm, curve 2 – w0 = 1.5 µm, and 

curve 3 – w0 = 3.0 µm. 
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Similarly we obtain the partial extraordinary field: 

( ) ( )
( )

0
0,

0
, , , e ee

e
e e

j k R
E x y z k

j ik z+ ′ = ,     (37) 

( ) ( ) ( ) ( )0, 0 02 2

2
, , , cos /e

e e e e e e e
e

u
E x y z k j k R k R j ik z

v k v
−

  ′ = − 
  

.  (38) 

However, the above partial ordinary and extraordinary beams cannot exist by them-

selves because they have amplitude singularities at the 0=r  axis. The partial beams 

produce a stable superposition 0 0 0
o e= +E E E  lacking amplitude singularities: 

( ) ( )
( )

( )
( )

0 0
0,

0 0
, , o o e e

o o e e

j k R j k R
E x y z

j ik z j ik z+ = + ,     (39) 

( )
( )

( )
( )

( )
( )

( )
( )

0 0
0, 2 2 2

0 0 0 0

cos cos2
( , , ) e e e eo o o o

o o e e o o o e e e

j k R j k R k R k Ru
E x y z

v j ik z j ik z v k j ik z k j ik z
−

    = − − − −    
        

.     (40) 

The expressions obtained above transform into typical paraxial ones under the parax-
ial condition given by Eq. (28): 

( ) ( )0, , , oik z
o eE x y z G G e−

+ +∼ ,      (41) 

[ ] [ ]
2
0

0, 2
oik z

o e o o e e
wu

E G G G G e
v v

σ σ −
−

  − − + − 
  

∼ .    (42) 

The field thus obtained describes propagation of the beam with the Gaussian enve-
lope in the initial plane z = 0. The RHP component has also the Gaussian envelope in 
each partial beam, whereas the LHP component has more complex shape of the envelope, 
bearing a doubly charged centred optical vortex. 

3.3.2. Linear polarisation 

A treatment of nonparaxial Gaussian beam with the initial linear polarisation needs a 
more detailed consideration of the structure of nonparaxial field. Any linearly polarised 
field may be presented as a sum of two circularly polarised ones, with the same field dis-
tributions in the RHP and LHP components at the crystal input. The beam with the initial 
field distribution like that given by Eqs. (30) and (31) may be formed when integration in 
Eq. (34) is performed over the v  variable rather than u  one. Then the field components 

may be written as 

( )
( )

( )
( )

( )
( )

( )
( )

0 0
0, 2 2 2

0 0 0 0

cos cos2
( , , ) e e e eo o o o

o o e e o o o e e e

j k R j k R k R k Rv
E x y z

u j ik z j ik z u k j ik z k j ik z
−

    ′ = − − − −    
        

,   (42a) 

( ) ( )
( )

( )
( )

0 0
0,

0 0
, , o o e e

o o e e

j k R j k R
E x y z

j ik z j ik z−
 

= + 
  

.                     (42b) 
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The components of the beam with the initial linear polarisation are ( )LE E E+ + += +  

and ( )LE E E− − −= + . This beam composition includes the beams with different vortices 

( 0l = , 2l =  and 2l = − ). Besides, the scales for the partial beams along the z axis are 

different. As a result, the projection of linearly polarised electric field onto the cross sec-
tion of the beam has also different scales along the x and y axes, unlike the circularly po-
larised beams. The pattern observed must be elliptically deformed. Fig. 4 illustrates the 

evolution of the conoscopic patterns for the field components xE  and yE  along the crys-

tal length, provided that the initial linearly polarised field at the crystal input has the cir-
cular symmetry. As the nonparaxial beam propagates along the crystal, a contour of the 
conoscopic pattern shows through a dark background. Although the Maltese cross for the 

yE  component has a standard shape, the pattern for the xE  component is slightly de-

formed even at a small propagation distance comparable with the light wavelength. The 
vortex positions in a set of topological quadruples forming “the white cross”, have differ-

ent coordinates along the x and y axes. Deformation of the conoscopic pattern for the xE  

component increases when the beam propagates further on. The elliptical deformation is 
nonuniformly distributed through the cross section of the beam. It grows quickly as the 
observation point moves away from the optic axis, vanishing in practice nearby this axis. 

However, the elliptical deformation cannot exceed the value 3/ /oa b n n= , with a and b 

being the axes of the intensity ellipse. Such a deformation effect represents geometrical 
manifestation of the interference between nonparaxial wave beams (ordinary and extraor-
dinary) having different spatial scales. 

 

Fig. 4. Evolution of conoscopic pattern for the xE  and yE  components of 

nonparaxial beam with the initial linear polarization directed along x and the 
waist radius 0 / 1w k = , which is observed along the crystal with 3/ 1.1on n = . 
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Notice that deformation of the pattern does not vanish even in the paraxial case [14, 
18, 24], being inherent to linearly polarised beams. The above results are consistent with 
the theoretical analysis [18, 25, 26] for paraxial beams propagating perpendicular or 
nearly perpendicular to the optic axis in crystals. At the same time, this deformation is 
very difficult to detect experimentally for the beams propagating along the optic axis of 
any real crystals, since it is proportional to the ratio of refractive indices for the ordinary 
and extraordinary beams. The effect is comparable with an astigmatic aberration imposed 
by lens systems in nonparaxial beams. Nevertheless, the elliptical deformation has been 
experimentally observed when the beam propagates nearly perpendicular to the optic axis 
[25]. In the latter case rotation of the crystal would entail a precession of the beam axis. 

3.4. High-order nonparaxial vortex beams 

High-order wave beams bearing optical vortices and ring dislocations in a uniaxial crys-
tal, which have standard analogues in the paraxial approximation, may be produced by 
means of the following procedure: 
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with the signs ( )∓  being associated with the ordinary and extraordinary beams, respec-

tively. Indeed, at first we will assume that n m≥  and find the function 
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where we have used Eq. (26). It is seen from Eq. (44) that the operator v∂  corresponds to 

an event of birth of the vortex with a positive topological charge, whereas the operator 
n
v∂  begets the n-charged optical vortex. Similarly, the operator u∂  corresponds to an 

event of birth of the vortex with a negative topological charge, whereas the operator m
u∂  

gives rise to the m-charged optical vortex. At the same time, the operator m m
v u∂ ∂  is topo-

logically neutral, being responsible for appearance of ring dislocations in the beam, at 
least in the z = 0 plane.  

The common action of the operators n m
u v∂ ∂  manifests itself as follows: 
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where ( 1)( 2)...( 1)ja n n n n m j= − − − + −  and we have employed the rules 
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∑  and 

( ), 2
,

1o e

o e

uv

z iz
ζ = +

+
. Thus, we obtain a wave 

beam bearing a centred optical vortex with the ( )n m− -topological charge, while a radial 

dependence of the wave beam is defined by a complex function 
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Let us derive some simple rules for transition from the nonparaxial to paraxial beams 
with the Gaussian envelope. A recurrence relation for the spherical Bessel functions is 

given by ( ) ( ) ( )1 1
2 1

n n n
n

j x j x j x
x− +
++ = . Then, taking into account the paraxial re-

quirement given by Eq. (28), we come to the relations for the paraxial transition [10]: 

( ) ( )2 , , 2 2 , ,p o e o e p o e o ej k R j k R−→ − ,    (47) 

( ) ( )2 1 , , 2 1 , ,p o e o e p o e o ej k R j k R+ −→ − ,    (48) 

as well as complimentary relations obtained from Eq. (32): 

( ) ( )1 , , , ,o e o e o o e o ej k R ij k R→ ,     (49) 

( ) ( )2 , , , ,o e o e o o e o ej k R j k R→ − ,     (50) 
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Finally, the radial function ( )Q r  in Eq. (46) may be transformed to a standard 

expression: 
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where we have made use of definition of the generalised Laguerre polynomial: 
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Thus, Eqs. (43) finally normalised for the high-order nonparaxial beams under the 
condition n m>  may be rewritten as 
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whereas for the case of n m<  we have 
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If n m> , the beam carries over a centred positively charged vortex with the topo-

logical charge ( )1n m− −  and n − ring dislocations (toroidal vortices in the z = 0 plane) 

in the RHP component, whereas the LHP component carries over a positively charged 

vortex with the topological charge ( )1n m− +  and 1n + − ring dislocations (toroidal vor-

tices in the z = 0 plane). If m n> , the beam carries over a negatively charged vortex with 

the topological charge ( )1m n− −  and m − ring dislocations (toroidal vortices in the z = 0 

plane) in the RHP component and the LHP component carries over a negatively charged 

vortex with the topological charge ( )1m n− +  and 1m + − ring dislocations (toroidal vor-

tices in the z = 0 plane). 

 

Fig. 5. Transformation of nonparaxial beam with m = 1 and l = 0 into a 
standard paraxial Laguerre-Gaussian beam under the condition of 
increasing beam waist 0w . 

 

Fig. 6. Transformation of intrinsic annular structure of the intensity for the 
RHP component of nonparaxial beam with l = 0 and m = 2 into a standard 
Laguerre-Gaussian beam under the condition of increasing beam waist 0w  

at the crystal input 0z = . 
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Fig. 7. Conversion of intrinsic annular structure of the RHP component of 
nonparaxial beam with l = 0 and m = 2 into a typical conoscopic pattern 
along the crystal length. 

Fig. 5 and Fig. 6 illustrate transformations of the beam profiles for the case of low 
orders 1 0l m n= − − = , n = 1 and 0, 2l n= =  and the nonparaxial beam into those typi-

cal for the paraxial Laguerre-Gaussian beam. Notice that the lateral oscillations of the 

beam intensity become nearly completely smoothed for the beam waist about 0 2w λ∼ , 

when the influence of evanescent waves even on higher-order nonparaxial beam profile is 
essentially weakened. When the nonparaxial beam of the highest order propagates along 
the crystal, an intrinsic annular pattern vanishes, being replaced by the typical conoscopic 
pattern. Fig. 7 shows a gradual transition of the annular picture into the conoscopic pat-
tern peculiar for divergent light in a uniaxial crystal. 

4. Conclusions 

We have treated the propagation of nonparaxial beams along the optic axis of a uniaxial 

crystal. We have chosen a shape of generatrix beam in such a way that it have a standard 

form of Laguerre-Gaussian beam in the paraxial approximation. We have revealed that 

the behaviour of nonparaxial beams may be described in the framework of complex-

source-point technique. The above method leads to nonparaxial beams with the eigen po-

larisations. This means that this mode beam propagates along the crystal without struc-

tural transformations of its field up to a scale factor. 

There are two types of those mode beams, the transverse electric (TE) and transverse 
magnetic (TM) fields, that propagate in the crystal with different wave parameters. The 
mode beams have different scales along the z axis. A beam with arbitrary field distribu-
tion at the crystal input is described as a superposition of the beams with eigen polarisa-
tions. These types of nonparaxial vortex beams have a circular symmetry through the 
beam cross section, being smoothly converted into their paraxial analogues. The centred 
optical vortices embedded in the beams do not lose their structural stability when either 
propagating or being focused tightly. The circular symmetry in the field distribution gets 
lost when the beam waist of the linearly polarised field becomes comparable with the 
light wavelength. Its cross section is deformed, i.e. the scales along the x and y axes be-
come different. The beam deformation diminishes, though does not vanish completely, 
for the paraxial linearly polarised beams. 
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Анотація. Отримані розв’язки векторного хвильового рівняння для не параксіального про-
меня, який поширюється вздовж оптичної осі в одновісному двозаломлюючому кристалі. 
Виявилось, що циркулярно поляризований не параксіальний промінь може бути представле-
ний, як набір поперечних електричних і магнітних хвиль, які при поширенні зберігають свою 
структуру з точністю до масштабного фактору. Промінь з довільним розподілом поля 
може бути записаний, як композиція таких хвильових полів. Показано, що циркулярно-
симетричний вихровий промінь з початково циркулярною поляризацією зберігає свою стру-
ктуру в кристалі, тоді як циркулярна симетрія не параксіального, вихрового променя з по-
чатково лінійною поляризацією втрачається при поширенні через кристал. Циркулярна 
симетрія не зберігається в параксіальному випадку, будучи природною властивістю ліній-
но-поляризованого променя.  
 
 

 


