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Abstract 

In the present work we describe a high-accuracy torsion method for measuring 
piezooptic coefficients π14 and π25 in trigonal crystals. Spatial distributions of the 
optical indicatrix orientation and the optical birefringence induced by torsion 
stresses are quantitatively evaluated and analysed. It is shown that a crystal  
subjected to torsion stresses works as an optical lens, with the characteristics  
operated by a torque moment. 
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1. Introduction 
It is known that experimental determination of piezooptic coefficients yields high enough 
errors (~ 30%) caused by non-uniform stresses appearing in crystalline samples under 
their uniaxial loading [1]. This problem becomes more important in case if one measures 
the coefficients associated with shear stresses. Then each of the piezooptic coefficients 
under interest is coupled with the other coefficients by very complicated relationships [2]. 
For example, the stress-induced optical retardation measured with interferometric tech-
niques along a principal axis Y in crystals belonging to the point symmetry 3 is deter-
mined as 

3
2 1 2 11 13 25 5

1 ( )
4

n d         ,    (1) 

where 5  is the uniaxial stress component along the bisector between X and Z axes, 1n  

the refractive index of a stress-free sample, and 2d  the sample thickness along the direc-
tion of light propagation. It is evident that determination of the coefficient π25 based on 
Eq. (1) is possible only when the coefficients π11 and π13 are known in advance, i.e. de-
termined in the other independent experiments. 

In our recent papers [3–5] we have shown that the piezooptic coefficients mentioned 
can be determined with high enough accuracy, when applying torsion stresses to a sam-
ple. As an example, we have also measured the piezooptic coefficient π14 for the lithium 
niobate crystals with the error not exceeding ~ 3%. In our work [5] we have developed 
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the method for measuring different piezooptic coefficients under torsion stresses, which is 
valid for the crystals of all point groups of symmetry. However, in some cases this me-
thod assumes very complicated experimental geometries, e.g. those involving incident 
light beams propagating oblique to sample surfaces. Besides, it follows from the work [5] 
that the particular π14 and π25 coefficients should be determined in the geometry where the 
light propagates along the optic axis (i.e., the crystallographic axis c) and the torsion mo-
ment is applied around the same axis, whereas the orientation of a and b axes should be 
known in advance. In the present work we describe a simpler method for determination of 
the piezooptic coefficients π14 and π25 in trigonal crystals belonging to the point symmetry 
groups 3 or 3 . 

2. Results and discussion 

Let us consider a matrix of piezooptic tensor for the symmetry groups 3 and 3 : 
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When a torsion deformation around Z axis is applied to a cylindrical sample, the 
stress tensor components are defined as [6] 

4 54
2 ( )zM X Y

R    


  ,    (3) 

where  z
S

M r P dS  , 4 5,    are the Kronecker deltas, R the cylinder radius, S the 

square of the cylinder basis, and P the mechanical loading. Then we deal with the two 
shear components of the stress tensor, 32  and 31 : 

4 4
2 zM X

R



      (4) 

and 

5 4
2 zM Y

R



 ,     (5) 

which depend linearly on the coordinates. The latter dependences enable one to determine 
unambiguously a spatial distribution of the shear stress components inside a sample under 
study. Moreover, application of torsion moments can provide pure tangential displace-
ments (or shear stress components) alone, which otherwise (i.e., under other geometries 
of sample loading) are usually accompanied by normal displacements, thus leading to 
appearance of complementary compression and/or extension stress components. 
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The equation of optical indicatrix perturbed by the two shear stresses reads as  
2 2 2
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( ) ( )
2( ) 2( ) 2( ) 1
B X B Y B Z

YZ XZ XY
       

           
     

      
  (6) 

The refractive indices in the cross section XY of optical indicatrix may be written as 
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Then the distribution of the birefringence in the XY plane is given by 
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while the angle of optical indicatrix rotation around the Z axis may be represented as 
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Taking definitions cos , sinX Y      into account, we rewrite Eqs. (9) and (10) as 
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and 
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It is evident that the birefringence would have a conical spatial distribution under the 
condition of π25 = 0 and so would be dependent only on the distance from the centre of XY 
cross section. In other words, the birefringence induced by the torsion moment Mz be-
comes 

3 2 2 3
12 14 144 4( ) 2 2z z

o o
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   
 

    ,  (13) 

while the optical indicatrix rotation angle is determined only by the angle  , being twice 
as less: 

tan 2 tanZ
Y
X

   .     (14) 

In fact, here we deal with the case of LiNbO3 crystals (the symmetry group 3m) for 
which 25 0   [7]. Therefore spatial distributions of the birefringence and optical indica-
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trix rotation for those crystals are determined by Eqs. (13) and (14). 
Let us analyse Eq. (10) for the optical indicatrix rotation in crystals belonging to the 

symmetry groups 3 and 3 . As follows from Eq. (10), one has 
tan 2 , 45Z Z          (15) 

at X = 0 and 

25

14
tan 2 Z





  or tan 2 Z K      (16) 

at Y = 0. Here K  is a parameter determined by the ratio of the piezooptic coefficients 
( 25 14K  ). Thus, the angle of optical indicatrix rotation under the condition Y = 0 is 

determined by the ratio of piezooptic coefficients ( 25 14arctan /  ). A similar conclusion 
has earlier been drawn [8] when analysing a torsion method for orientation of crystals 
belonging to the middle-symmetry systems. A zero optical indicatrix rotation is reached 
under the condition 25 14cos sin 0     , i.e. at the angle arctan( )K   . Depend-
ences of the optical indicatrix rotation on the angle of clockwise rotation calculated for 
different  ratios 25 14/K    are shown in Fig. 1. It is seen from Fig. 1 that a gradual 
change in the K parameter leads to changes from a linear dependence peculiar for the case 
of K = 0 to a step-like behaviour observed at 100K   (i.e., 14 0  ). 

-45 0 45 90 135 180 225 270 315 360 405

0

50

100

150

200

250

 K=100
 K=10
 K=3
 K=0.2
 K=0
 K=1
 K=

z, deg

deg  

Fig. 1. Dependences of optical indicatrix rotation angle for the crystals of 
point symmetry groups 3 and 3  on the angle of clockwise rotation calcu-
lated for different ratios 25 14/K   . 

Spatial distributions of the optical indicatrix rotation in the XY plane calculated for 
the crystals belonging to the symmetry groups 3 and 3  are presented in Fig. 2. 

As seen from Fig. 2, the optical indicatrix rotation at K = 0 starts from zero and in-
creases linearly up to 180   with increasing angle  . However, the starting value of the 

optical indicatrix rotation at K = 1 is equal to 22.5  and Z  reaches the value 200.5 at 
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360   . In this case the dependence of Z  on   is periodic. An interesting situation 
happens in the case of K = 100. In fact, a sample is divided into two parts, with the orien-
tations of optical indicatrix given by the angles 45 and 135 . 
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Fig. 2. Spatial distributions of optical in-
dicatrix orientation angle in the XY plane 
calculated for the crystals belonging to 
the symmetry groups 3 and 3  at differ-
ent ratios 25 14/K   : (a) 0K  , (b) 

1K  , and (c) 100K  . 
  
Now let us analyse a particular case of spatial distribution of the birefringence in-

duced in the XY plane by the torsion moment Mz = 0.049 N m, while the rest of the pa-

rameters are taken to be no = 2.0, R = 2 mm, and 12 2
14 10 m / N  . As follows from 

Eq. (11), this distribution is presented by an elliptical cone rotated in the XY plane. The 
angle   of rotation of the cone is given by the relation 

14

25

1 1 1arc tan arc tan
2 2 K





  .    (17) 

In particular, we have the angle 22.5    at K = 1 (see Fig. 3b) and 0   at 

14 0   (see Fig. 3c). In general, the angle β decreases with increasing K, as predicted by 
Eq. (17). The ellipticity of the cross section of the elliptical cone is determined by the ra-
tio of its semi-axes a and b:  

2 2 4 2 2
14 25 25 14 25
2 2 4 2 2
14 25 25 14 25

2 4

2 4

a
b

    

    

  


  
,    (18) 

or 
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2 2 2

2 2 2

2 4

2 4

a K K K
b K K K

  


  
.    (19) 

It is seen from the above formulae that the ellipticity is equal to unity if 25 0  , 
which corresponds to a circular cross section of the cone (see Fig. 3a), and it tends to in-

finity if 14 0   (see Fig. 3c). This ellipticity is equal to (3 5) /(3 5)   at K = 1. As 
seen from Fig. 4, the birefringence distribution along the X axis is linear in the case of 

100K  , though the birefringence does not change its sign at X = 0, being equal to zero 
instead. In fact, the conical surface of the birefringence distribution in this case degener-
ates into two planes defined by the relation 

3 3
12 25 254 4( ) 2 2 cosz z

o o
M Mn n X n
R R

   
 

     .  (20) 

On either side of the line X = 0, the optical indicatrix is rotated by the same angle 
45  in the opposite directions (see Fig. 2c). Notice that the induced birefringence in the 
case of K=100 can reach very high values (~ 310–3 – see Fig. 3c and Fig. 4), while in the 
other cases depicted in Fig. 3a and Fig. 3c we have the birefringences as small as 10–5 in 
the order of magnitude. 
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Fig. 3. Distributions of birefringence in-
duced by the torsion moment 
Mz = 0.049 N m in the XY plane of crys-
tals that belong to the point groups of 
symmetry 3 and 3  for different ratios 

25 14/K   : (a) 0K  , (b) 1K  , and 
(c) 100K  .  
 

 

Hence, one can easily determine the coefficients 14  and 25  with high enough ac-
curacy, using experimental mapping of spatial distributions of the birefringence and the 
optical indicatrix orientation and solving the system of Eqs. (11) and (12). One can esti-
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mate the errors for the both coefficients as being close to that declared in the study [4] 
(i.e., ~ 3%). 
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Fig. 4. Distribution of birefringence in the 
XY plane for the case of 100K   (a) and 
dependence of birefringence on the X co-
ordinate (b) along the yellow line at Y = 0. 

 

Let us finally emphasise that, due to a radial distribution of the refractive indices (see 
Fig. 3a), a sample subjected to torsion stresses will act on a bundle of light beams as a flat 
lens. Depending on azimuths of linear polarisation of the incident light and the sign of 
mechanical torque, this lens can work as either convex or concave one (see Eqs. (7) and 
(8) under the condition 25 0  ). Reversal of the torque moment will transform a concave 
lens into convex one, and vice versa, whereas changing module of the torque moment 
will enable controlling the focal length. The birefringence distributions shown in Fig. 3c 
and Fig. 4 correspond to a cylindrical lens with flat faces. This lens will reveal all the 
properties mentioned above, i.e. its characteristics can be controlled by the torsion 
stresses. 

3. Conclusion 
In the present work we have described the high-accuracy method based on torsion loading 
of crystal samples and aimed at measuring the piezooptic coefficients 14  and 25  in the 

crystals that belong to the point symmetry groups 3 and 3 . The spatial distributions of 
the birefringence and the angle of optical indicatrix rotation have been calculated theo-
retically and analysed. We have demonstrated that the spatial distribution of the birefrin-
gence in the sample subjected to torsion around the Z axis represents in general an ellipti-
cal cone, with a zero birefringence value in the centre of its cross section by the XY plane. 
The parameters of the cone have been evaluated. We have demonstrated that the elliptical 
cone is transformed into a circular one if 25 0  , or degenerates into two planes if 

14 0  . We have also shown that a crystal sample subjected to torsion stresses could 
work as a flat lens, of which parameters can be controlled by changing the torque mo-
ment. 
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Анотація. В даній роботі описано високоточний торсійний метод вимірювання 
п’єзооптичних коефіцієнтів π14 і π25 в тригональних кристалах. Отримано і проаналізовано 
просторовий розподіл орієнтації оптичних індикатрис та двозаломлення, індуковані тор-
сійними напруженнями. Показано, що кристали під дією торсійних напружень поводяться, 
як оптичні лінзи, керовані торсійним моментом. 
 


