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Abstract. We have shown that some special configurations of electric field created
in electrooptic crystals can lead to appearance of orbital angular momentum in the
outgoing light beam, provided that the incident circularly polarised beam propagates
along the optic axis direction. It has been found that the topological charge of
outgoing helical mode is equal to unity. We have also demonstrated on the canonical
examples of electrooptic crystals LiNbO; and LiTaOj; that the efficiency of SAM-to-
OAM conversion can be gradually operated by the electric field, using the Pockels
effect.
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1. Introduction

In recent years, real-time operation by angular momentum of an optical beam has become one of
hot topics in quantum optics. The interest to this branch of singular optics [1] is stipulated by novel
possibilities for applications of quantum properties of photons, e.g. in quantum computing,
cryptography, and even quantum teleportation [2—4]. Possible utilisation of qubits and qudits in
processing of information in quantum computers has given rise to increasing information content
which can be simultaneously processed. In fact, these possibilities appear if one uses spin and
orbital angular momenta of optical beams, which represent quantum quantities. Spin angular
momentum (SAM) for the orthogonal circular polarisations of light acquires only two values
expressed in the units of 7 (s =+1 and s =—1 [5]), while the value of orbital angular momentum
(OAM) can, in principle, follow to infinity (/=0,+1,+£2,...) [6]. Hence, the OAM has some

advantages in the information processing, when compare with the SAM, since a single photon has
only two distinct spin states and infinitely many distinct OAM states. In such a case the
information can be encoded by multiplying a number of distinguishable states, because a photon
can carry an arbitrarily large amount of information distributed over its spin and orbital quantum
states [7]. A problem which should still be solved for realisation of quantum photonic encoding
consists in developing efficient methods for real-time SAM-to-OAM conversion.

It has been shown [8—10] that so-called g-plates which in fact represent liquid-crystalline
plates revealing a structural defect in the geometrical centre of the plate, with a topological charge
equal to unity, facilitate an efficient SAM-to-OAM conversion performed with the aid of
temperature tuning or electrooptic operation of orientation of a director. In case of propagation of
nearly plane circular wave through such a plate, the outgoing helical mode acquires the OAM
equal to +2. Notice that liquid crystals have a number of disadvantages, when compared with their
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solid analogues. For instance, they (i) manifest low response speeds due to their viscosity, (ii) are
relatively unstable, (iii) cannot be used for operation of powerful laser radiation, and (iv) often
reveal unnecessary nonlinear responses.

Recently we have suggested a method of SAM-to-OAM conversion that employs solid
crystalline materials subjected to torsion stresses [11, 12]. Then the emergent light beam should
have the OAM equal to +1, whereas the topological defect strength associated with optical
indicatrix orientation is equal to £1/2, in terms used for the liquid crystals. As a consequence the

OAM quantum number would result in a row of even quantum numbers /=0, £2,+4... in the
case of g-plates with unit topological defects [8] and a row of discrete values /=0,£1,+2,... in

the case of solid crystals. Then utilisation of solid crystals should increase twice the number of
states in which information can be encoded. On the other hand, piezooptic effect associated with
the torsion stresses is rather difficult to realise in practice when designing relevant devices and,
moreover, some additional piezoelectric transducers are necessary in order to convert electrical
signals to mechanical stresses. Hence, developing of direct, electrically driven, operation of the
OAM on the basis of solid crystalline materials represents an important problem. The present work
is aimed to solve this problem on the basis of electrooptic Pockels effect in solid crystals.

2. Basic relations and results of simulations

As already mentioned, we have earlier demonstrated that a spatial distribution of optical
birefringence induced by the torsion stresses possesses a singular point of zero birefringence,
which belongs to a torsion axis. In general, coordinate distribution of the torsion-induced
birefringence has a conical shape. Due to this distribution, the outgoing wave acquires a helical
phase and an OAM. While searching electrooptic analogues of the torsion-induced birefringence
distributions, one should proceed from the following requirements: a crystal should be
noncentrosymmetric and optically uniaxial, while an electric field should be spatially distributed in
a special manner, with a singular value at the line parallel to optic axis Z of a crystal which crosses
a geometrical centre of its XY cross section (here the axes of the coordinate system XYZ are
parallel to the eigenvectors of the Fresnel ellipsoid).

Let us consider a ‘conical’ spatial distribution of the electric field (see Fig. 1) in crystals that
belong to the point symmetry group 3m (e.g., LiNbO; and LiTaO; crystals). Such a distribution
can be produced by two circular electrodes attached to front and back XY faces of a sample. When
the electrodes essentially differ by their radiuses (e.g., the radius of one of them tends to zero), the
projections £, = E, and E, = E, of the electric field will appear. The electric field components are
determined by relations

Fig. 1. Schematic view of a crystalline plate with
circular electrodes e; and e, and a conical spatial
distribution of electric field created by those
d electrodes.

128 Ukr. J. Phys. Opt. 2011, V12, Ne3



Skab I.P. et al

where
U Z
T2 v2 . 2 )
d X*+Y*+Z

In the spherical coordinate system defined by X = psin®cos@, Y = psin®@sing and

Z = pcos® we obtain

U tan®

| =5 -C0s9, 3)
d 1+tan“ O
U tan® .

2= T osing, 4)
d 1+tan” ©®

B U )
d(1+tan” ®)

where U is the applied voltage, d the crystalline plate thickness, and £, =U/d . One can see
that the £, and E, components are equal to zero when ® =0 (a case of homogeneous field, with
the field lines parallel to the Z axis) and they increase with increasing ® and decreasing d. Notice
that we have neglected the electric field appearing behind the cone limited by the filed lines
presented in Fig. 1.

The electrooptic Pockels effect is described by the relation AB; =r;E;, with r; being the

electrooptic tensor components and AB; the increment of optical impermeability tensor. The
electrooptic tensor for the point group 3m (m L X ) has the following form:

E, E, E;

ABy | 0 -mp 13

AB, | 0 2 N3

ABy | 0 0 n3. 6)
AB, | 0O rsp 0

ABs | 15, 0 0

ABg | -1 0 0

Since the optical beam propagates along the Z axis, further on we can consider only the XY
cross section of the Fresnel ellipsoid. The equation of the XY cross section of optical indicatrix
perturbed by the given field configuration reads as

(B =1 By + i3 E3) X2 + (B + 1By +113E3)Y? = 2rp E XY =1, (7
Then the relations for the refractive indices and the induced birefringence are readily
obtained as

1 1
ny =n, —5”3(F13E3 + 1oy EL +E22)= n, —Engk(VBZirzz Vx? +Y2), (®)

Anlz = —ngl’zz\'Elz +E22 = —ngrzzk VX2 +Y2 , Or
ZNX?+Y? '

P
Anlz = _n3r22E0 ——= = _n3r22E0 —7 N (9)
’ x2+vi+z2 7 0’

where p’:\/)(2+Y2 is the polar coordinate (X =p’'cosep and Y =p’'sing) and n, the
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ordinary refractive index.
Contrary to the torsion-induced birefringence [13, 14], the birefringence caused by the
electric field reveals nonlinear dependences on the both coordinates X and Y, which in general are

defined by the ratio %Z . However, the dependence of the optical indicatrix rotation angle on the

polar angle ¢ is the same as that appearing due to torsion in the crystals of the symmetry group

3m:
tan2¢3 = E|/E, =X/Y =cotp,or §3=n/4—¢/2. (10)
The only difference with the optical indicatrix rotation induced by torsion applied around the
Z axis is that the initial angle is equal to &y = 7/4 in the present case, while in the case of the
torsion it is equal to zero. As seen from Egs. (10), the angle of the optical indicatrix rotation
depends on neither the Z coordinate nor the electrooptic coefficient. One can easily simulate this
angular dependence, which should be the same for all of the crystals belonging to the symmetry
group 3m (see Fig. 2).
When considering the central point of

10
& d?go the XY cross section as a defect on the
165 spatial map of optical indicatrix orientation
122 and using definitions proper for the liquid
120 crystals, one can see that the topological
E 105 strength of this defect is equal to g=%1/2
> 3(5) and the angle ¢, amounts to half the angle
60 ¢ . It is obvious that the sign of the optical
-6 45 o .
. 30 indicatrix rotation would reverse whenever
10 15 the sign of the applied electric field does so.
- T T T T T T 0

1086 4202 46 810 This corresponds to a change in the sign of
Amm the induced birefringence and a rotation of

Fig. 2. Spatial distribution of electrooptically induced  the optical indicatrix by 90 deg. In fact,
optical indicatrix rotation for the crystals that belong to . .
the point symmetry group 3m. Any, has opposite signs when, e.g. E;
change the sign, while £, = 0 (see Eq. (9)).
Now let us analyse spatial distribution of the phase difference induced in the XY plane. Since
the birefringence depends on all the coordinates X, Y and Z, it is convenient to divide a sample by
n homogeneous layers perpendicular to the Z direction. In its turn, each of the layers is divided by

ix j homogeneous elementary cells in the XY plane. In practice, we have used the division given

by =200, j=200, and n,, =1+100. One can use a standard Jones matrix approach for
simulating the electrically induced phase difference. The resulting Jones matrix may be written as

Minax =
J =110 (1D
n=1
where J” are the matrices of the homogeneous elementary cells given by
- iy . . . ) .
) (e’Ar"/2 cos? ¢ 472 gin? Z) isin(Al'” /2)sin 2¢7
T = jj jj ATV /2 . 2 f | —iATY /2 2 | (12)
isin(AT'Y /2)sin2¢) (el " sint ¢+ e 7 cos Z)
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2ndy U ZVX?+Y? i1 X
2o —miry ————"" 1 and (7 =—arctan>- represent the phase
d X*+y?+27? 2 Y

while AT =

difference and the angle of optical indicatrix rotation within the elementary cells, respectively, and
df{ is the thickness of the cell along the direction of light propagation. The resulting phase

difference for each of the elementary beams that crosses the ix j array becomes as follows:
ATY = 2arccos(Re[J],,,), (13)

where the subscript pp corresponds to diagonal components of the Jones matrix. The XY maps of
the phase difference thus obtained for LiNbO; and LiTaOs; crystals are shown in Fig. 3. In our
simulations, we have used the following data: d =5 mm, the electrode radius of R =10 mm,

Fyy =34x1072m/V, n, =2286 for LiNbO; [15], 7, =20.0x10"2m/V, n, =2.176 for
LiTaOj; crystals [16], and A =632.8 nm.
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Fig. 3. XY maps of phase difference induced by the electrical voltages 2 kV (a, d), 5 kV (b, €) and 7 kV (c, f) in
LiNbO; (a, b, ¢) and LiTaOs (d, e, f) crystals.
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As seen from Fig. 3, the induced phase difference reveals a circular distribution in the XY
plane, being equal to zero at the geometrical centre of the XY cross section. A typical spatial
distribution of the phase difference along the X axis is presented in Fig. 4.

As evident from Fig. 4, the
module of the phase difference

04

-50- . . . .
increases with increasing |X |

-100 1 . :
coordinate, following from a zero

-150 - value at X=0 to its maximum at
X,=+2.06 mm. Note that the X,
value is the same for all the cases

AT, deg

-200 4

250 presented in  Fig.3, being

-300 1 independent ~ of  either  the

10 5 0 5 10 electrooptic figure of merit or the

X, mm electrical voltage applied. Further
Fig. 4. Dependence of phase difference induced by the electrical increase in X leads to decrease of
voltage 7 kV on the X coordinate for LiTaOj; crystals. the induced phase difference to zero

at |X | =R=10mm. The coordinate dependence of the phase difference mentioned above is
caused by the two mechanisms: (i) increase in |AF| occurring with increasing |X |, due to
increasing £ and E, projections, and (ii) decrease in |AF | occurring with increasing |X | , due to
decreasing effective optical path (i.c., the optical path in that part of crystal which is subjected to
the electric field).

In order to analyse this dependence in a more detail, one should derive the appropriate
analytical relationship. We have found that the mean value of the function describing the phase
difference,

5 2 d2 R2
A= _TH" " Eop’ .[ —2dZ_ _In o"2E0p' 2 EIR (14)

P4z (R2+d)p?’
R

result in a distribution of phase difference in the XY plane, which is the same as in case of Jones
matrix calculation. As a consequence, using the minimising procedure,

2( 02, g2
8AF__7m8r22E0 (1 (R (P +d )\ 2d? JZO (15)

op' A Lan’z(Rerdz) Pl rd?
and solving the equation
(R*p?+d)) 242
n p'z(R2+d2) _p’2+d2

=0, (16)

yield the relation for the radius that corresponds to the extreme AI' value:

J_W/ RN e )
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w
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2,2
where W| -5 implies the LambertW function.
L R*+d ZJ

Solving Eq. (17) numerically, we have found that the radius corresponding to the maximum
phase difference module is equal to p'=2.06 mm for R=10 mm and d =15 mm. This value
agrees well with that obtained on the basis of Jones matrix calculations. Under these conditions
(e.g., for LiTaOs; crystals and U = 7 kV), the phase difference calculated using Eq. (14) is equal to

AT . = —288.9 deg . Again, it is perfectly correlated with that calculated with the Jones matrix

max
approach.

Using Egs. (14) and (17), we have computed dependences of the maximum phase difference
appearing at the radius pJ,, on the radius R and the thickness d, along with the dependences of

Prax Darameter on the radius R and the thickness d (see Fig. 5). The phase difference A,
increases with decreasing distance d and radius R, while the parameter p;,, increases with
increasing d and R. It follows from these results that the complete conversion of a right-handed
incident light into a left-handed outgoing one at p/,. would occur when the induced phase

difference equals to AI',,, =—180deg. The minimal voltage needed for inducing this phase

max
difference under the condition of typical radius of laser beam equal to p ., =1.5 mm corresponds

to the sample thickness of d =3.4 mm, and the electrode radius of R =10 mm. This voltage is
equal to 4.083 kV and ~ 20 kV for LiTaO; and LiNbO; crystals, respectively.

P
mm
Armax’
deg
0
50
~100
~150
~200 Z
o 20
0 = 0
s =
JL: 10 d, mm
,mm 15 15
20 20 R, mm
(a) (b)

Fig. 5. Dependences of maximum phase difference appearing at the radius pI’mlx on the radius R and the

thickness d (a), and dependences of ,or'naX parameter on the radius R and the thickness d (b).

Finally, let us analyse the appearance of the OAM in the emergent light beam having passed
through an optical system that consists of a right-handed circular polariser, a crystalline sample
subjected to the electric field of conical configuration, and a left-handed circular polariser. Notice
that the incident beam can be represented by nearly plane wave, with the beam radius equal to

p' =R and the SAM equal to S = —# . The electric field of the emergent light can be written as
Al'(p")| 1 AT(p") 4 i 1
Eout(p,’(o) = E, cos (P |+iE, sin (p )ei12q<pi12a0 1, (18)
2 +i 2 Fi

where 2g =m =1 is the helicity number and £, the wave amplitude. The first term in Eq. (18)
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describes the plane wave with the same SAM as in the incident one (i.e., —# ), while the second
summand — the wave with the helical wavefront which carries the OAM (see [17]). Taking into
account that the angular momentum must be conserved, one can write the following relation for
the SAM-to-OAM conversion:

J"C = g0 M (19)
where J™ =8™ =_p is the total angular momentum of the incident photon,

JOM ="+ 8 = 2gqh+h=0 the total angular momentum of the emergent photon

(S = 4R, 17 = 2gh), and [° the OAM of the emergent photon. Thus, the mechanical
q g p

angular momentum transferred to the crystalline sample due to the Beth effect is equal to
M = —h . However, this relation which reflects the fact of conservation of the angular momentum
has been written for the condition A" = 7 , though the phase difference depend on the module p’.

In this case one should take into account that the plane wave described by the first term of
Eq. (18), with the SAM equal to —7, also emerges from the sample. Then the efficiency of the
SAM-to-OAM conversion can be defined by a ratio

out

n=-1—. (20)

inc
Ir

where I is the intensity of the right-handed incident wave and I/ the intensity of the left-

handed outgoing wave. The XY intensity distribution for the outgoing beam can be calculated
using the Jones matrices (for more details see Ref. [11]). The appropriate spatial intensity
distributions calculated for different voltages are presented in Fig. 6, while the dependences of the
efficiency 1 on the electrical voltage are given in Fig. 7. It is seen from Fig. 7 that the efficiency

reaches ~ 30% at ~ 4 kV for LiTaO; crystals and at ~ 20 kV for LiNbOj crystals. This efficiency
can be further increased by decreasing the light beam radius.

U = 5.0kv U =10.0kv U =20.0kV

(b)
U = 4.083kV/

(d) (e) (f)

Fig. 6. Spatial distributions of intensity for the beam of 1.5 mm radius emergent from the system consisting of
orthogonal circular polarisers and a sample of LiNbO; (a — 5.0 kV, b — 10.0 kV, and ¢ — 20.0 kV) or LiTaO3;
(d-1.0kV,e—-2.0kV, and f — 4.083 kV) in between.
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Fig. 7. Dependences of efficiency of SAM-to-OAM conversion on the electrical voltage applied to LiTaO; (a) and
LiNbO; (b) crystals.

3. Conclusions

In this work we have performed computer simulations of the Pockels effect taking place in trigonal
crystals of the point symmetry group 3m, which is caused by a ‘conical’ configuration of electric
field. We have shown that such a field leads to appearance of OAM in the outgoing light beam,
whenever the incident circularly polarised beam propagates along the optic axis direction. The
corresponding theoretical relations describing spatial distribution of the birefringence and the
angle of optical indicatrix rotation have been found. It has been demonstrated that the topological
charge of the outgoing helical mode in this system is equal to unity. Using the examples of
canonical electrooptic crystals LiNbO; and LiTaOs;, we have revealed that the efficiency of SAM-
to-OAM conversion can be gradually operated, owing the Pockels effect, by changing the electric
field applied to a sample.
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Anomayia. B pobomi nokazano, wo neeHa KOHicypayis eneKmpuyHoz2o Nojisd, CMBOpeHd 8
eeKMPOONMUYHOMY KPUCMALL MOXdCe NpUsooumu 00 YMEOPeHHs OpOIimaibHO20 KYMO08020
MOMeHmY BUXIOHO20 NPOMEHs, AKWO NAOao4ull ONMUYHUL NPOMIHb 80]00Ii€ YUPKYIAPHOK
NOAAPUIAYIEIO | NOUUPIOEMBCA 8300801C onmuuHoi oci kpucmany. Ilpu ybomy 6cmanoéneHo, o
MONOAOSTUHULL 3apsi0 GUXIOHOI 2enikoidanvHoi Moou OopisHioe oounuyi. Ha npuxnadi eioomux
enexkmpoonmuynux kpucmanie maxux sk LINbO; i LiTaO; nokasano, wo egexmusHicmo
nepemeopentst CHIH0B020 KYMO0B020 MOMEHMY 6 OpOIMmANbHUll KymoGuti MOMEHM MOodice
NOCMYNOBO 3MIHIOBAMUCH NIO OICI0 eNeKMPUYHO20 NOJSL 3 8UKOpucmanHam egpexmy Iokenvca.
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