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Abstract. We have shown that some special configurations of electric field created 
in electrooptic crystals can lead to appearance of orbital angular momentum in the 
outgoing light beam, provided that the incident circularly polarised beam propagates 
along the optic axis direction. It has been found that the topological charge of 
outgoing helical mode is equal to unity. We have also demonstrated on the canonical 
examples of electrooptic crystals LiNbO3 and LiTaO3 that the efficiency of SAM-to-
OAM conversion can be gradually operated by the electric field, using the Pockels 
effect. 
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1. Introduction 
In recent years, real-time operation by angular momentum of an optical beam has become one of 
hot topics in quantum optics. The interest to this branch of singular optics [1] is stipulated by novel 
possibilities for applications of quantum properties of photons, e.g. in quantum computing, 
cryptography, and even quantum teleportation [2–4]. Possible utilisation of qubits and qudits in 
processing of information in quantum computers has given rise to increasing information content 
which can be simultaneously processed. In fact, these possibilities appear if one uses spin and 
orbital angular momenta of optical beams, which represent quantum quantities. Spin angular 
momentum (SAM) for the orthogonal circular polarisations of light acquires only two values 
expressed in the units of   (s = +1 and s = –1 [5]), while the value of orbital angular momentum 
(OAM) can, in principle, follow to infinity ( 0, 1, 2,...l    ) [6]. Hence, the OAM has some 

advantages in the information processing, when compare with the SAM, since a single photon has 
only two distinct spin states and infinitely many distinct OAM states. In such a case the 
information can be encoded by multiplying a number of distinguishable states, because a photon 
can carry an arbitrarily large amount of information distributed over its spin and orbital quantum 
states [7]. A problem which should still be solved for realisation of quantum photonic encoding 
consists in developing efficient methods for real-time SAM-to-OAM conversion.  

It has been shown [8–10] that so-called q-plates which in fact represent liquid-crystalline 
plates revealing a structural defect in the geometrical centre of the plate, with a topological charge 
equal to unity, facilitate an efficient SAM-to-OAM conversion performed with the aid of 
temperature tuning or electrooptic operation of orientation of a director. In case of propagation of 
nearly plane circular wave through such a plate, the outgoing helical mode acquires the OAM 
equal to ±2. Notice that liquid crystals have a number of disadvantages, when compared with their 



On the possibility 

Ukr. J. Phys. Opt. 2011, V12, №3 128 

solid analogues. For instance, they (i) manifest low response speeds due to their viscosity, (ii) are 
relatively unstable, (iii) cannot be used for operation of powerful laser radiation, and (iv) often 
reveal unnecessary nonlinear responses. 

Recently we have suggested a method of SAM-to-OAM conversion that employs solid 
crystalline materials subjected to torsion stresses [11, 12]. Then the emergent light beam should 
have the OAM equal to ±1, whereas the topological defect strength associated with optical 
indicatrix orientation is equal to ±1/2, in terms used for the liquid crystals. As a consequence the 
OAM quantum number would result in a row of even quantum numbers 0, 2, 4...l     in the 

case of q-plates with unit topological defects [8] and a row of discrete values 0, 1, 2,...l     in 

the case of solid crystals. Then utilisation of solid crystals should increase twice the number of 
states in which information can be encoded. On the other hand, piezooptic effect associated with 
the torsion stresses is rather difficult to realise in practice when designing relevant devices and, 
moreover, some additional piezoelectric transducers are necessary in order to convert electrical 
signals to mechanical stresses. Hence, developing of direct, electrically driven, operation of the 
OAM on the basis of solid crystalline materials represents an important problem. The present work 
is aimed to solve this problem on the basis of electrooptic Pockels effect in solid crystals. 

2. Basic relations and results of simulations 
As already mentioned, we have earlier demonstrated that a spatial distribution of optical 
birefringence induced by the torsion stresses possesses a singular point of zero birefringence, 
which belongs to a torsion axis. In general, coordinate distribution of the torsion-induced 
birefringence has a conical shape. Due to this distribution, the outgoing wave acquires a helical 
phase and an OAM. While searching electrooptic analogues of the torsion-induced birefringence 
distributions, one should proceed from the following requirements: a crystal should be 
noncentrosymmetric and optically uniaxial, while an electric field should be spatially distributed in 
a special manner, with a singular value at the line parallel to optic axis Z of a crystal which crosses 
a geometrical centre of its XY cross section (here the axes of the coordinate system XYZ are 
parallel to the eigenvectors of the Fresnel ellipsoid). 

Let us consider a ‘conical’ spatial distribution of the electric field (see Fig. 1) in crystals that 
belong to the point symmetry group 3m (e.g., LiNbO3 and LiTaO3 crystals). Such a distribution 
can be produced by two circular electrodes attached to front and back XY faces of a sample. When 
the electrodes essentially differ by their radiuses (e.g., the radius of one of them tends to zero), the 
projections E1 = Ex and E2 = Ey of the electric field will appear. The electric field components are 
determined by relations 

 

Fig. 1. Schematic view of a crystalline plate with 
circular electrodes e1 and e2 and a conical spatial 
distribution of electric field created by those 
electrodes. 
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1E kX , 2E kY , 3E kZ ,    (1) 

where 
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In the spherical coordinate system defined by sin cosX    , sin sinY     and 
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where U  is the applied voltage, d  the crystalline plate thickness, and 0 /E U d . One can see 

that the E1 and E2 components are equal to zero when 0   (a case of homogeneous field, with 
the field lines parallel to the Z axis) and they increase with increasing   and decreasing d. Notice 
that we have neglected the electric field appearing behind the cone limited by the filed lines 
presented in Fig. 1. 

The electrooptic Pockels effect is described by the relation i ij jB r E  , with ijr  being the 

electrooptic tensor components and iB  the increment of optical impermeability tensor. The 

electrooptic tensor for the point group 3m ( m X ) has the following form: 
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Since the optical beam propagates along the Z axis, further on we can consider only the XY 
cross section of the Fresnel ellipsoid. The equation of the XY cross section of optical indicatrix 
perturbed by the given field configuration reads as 

2 2
1 22 2 13 3 1 22 2 13 3 22 1( ) ( ) 2 1B r E r E X B r E r E Y r E XY       .   (7) 

Then the relations for the refractive indices and the induced birefringence are readily 
obtained as 
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where 2 2X Y    is the polar coordinate ( cosX     and sinY    ) and on  the 
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ordinary refractive index. 
Contrary to the torsion-induced birefringence [13, 14], the birefringence caused by the 

electric field reveals nonlinear dependences on the both coordinates X and Y, which in general are 

defined by the ratio 2 Z

 . However, the dependence of the optical indicatrix rotation angle on the 

polar angle   is the same as that appearing due to torsion in the crystals of the symmetry group 

3m: 

3 1 2tan 2 / / cotE E X Y    , or 3 / 4 / 2    .   (10) 

The only difference with the optical indicatrix rotation induced by torsion applied around the 
Z axis is that the initial angle is equal to 0 / 4   in the present case, while in the case of the 

torsion it is equal to zero. As seen from Eqs. (10), the angle of the optical indicatrix rotation 
depends on neither the Z coordinate nor the electrooptic coefficient. One can easily simulate this 
angular dependence, which should be the same for all of the crystals belonging to the symmetry 
group 3m (see Fig. 2). 

When considering the central point of 
the XY cross section as a defect on the 
spatial map of optical indicatrix orientation 
and using definitions proper for the liquid 
crystals, one can see that the topological 
strength of this defect is equal to q=±1/2 
and the angle 3  amounts to half the angle 

 . It is obvious that the sign of the optical 

indicatrix rotation would reverse whenever 
the sign of the applied electric field does so. 
This corresponds to a change in the sign of 
the induced birefringence and a rotation of 
the optical indicatrix by 90 deg. In fact, 

12n  has opposite signs when, e.g. E1 

change the sign, while E2 = 0 (see Eq. (9)). 
Now let us analyse spatial distribution of the phase difference induced in the XY plane. Since 

the birefringence depends on all the coordinates X, Y and Z, it is convenient to divide a sample by 
n homogeneous layers perpendicular to the Z direction. In its turn, each of the layers is divided by 
i j  homogeneous elementary cells in the XY plane. In practice, we have used the division given 

by i = 200, j = 200, and nmax = 1 100. One can use a standard Jones matrix approach for 
simulating the electrically induced phase difference. The resulting Jones matrix may be written as 

max

1

n
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n
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
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where ij
nJ  are the matrices of the homogeneous elementary cells given by 

 
 

/ 2 / 22 2

/ 2 / 22 2

cos sin sin( / 2)sin 2

sin( / 2)sin 2 sin cos

ij ij
n n

ij ij
n n

i iij ij ij ij
n n n nij

n i iij ij ij ij
n n n n

e e i
J

i e e

  

  

  

  

 


 
, (12) 

 
Fig. 2. Spatial distribution of electrooptically induced 
optical indicatrix rotation for the crystals that belong to 
the point symmetry group 3m. 
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while 
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   represent the phase 

difference and the angle of optical indicatrix rotation within the elementary cells, respectively, and 
ij
nd  is the thickness of the cell along the direction of light propagation. The resulting phase 

difference for each of the elementary beams that crosses the i j  array becomes as follows: 

ΔΓ 2arccos(Re[ ] )ij ij
ppJ ,      (13) 

where the subscript pp corresponds to diagonal components of the Jones matrix. The XY maps of 
the phase difference thus obtained for LiNbO3 and LiTaO3 crystals are shown in Fig. 3. In our 
simulations, we have used the following data: d = 5 mm, the electrode radius of R = 10 mm, 

12
22 3.4 10 m/Vr   , 2.286on   for LiNbO3 [15], 12

22 20.0 10 m/Vr   , 2.176on   for 

LiTaO3 crystals [16], and 632.8 nm  . 

 (a)   (d)  

 (b)   (e) 

 (c)   (f) 
Fig. 3. XY maps of phase difference induced by the electrical voltages 2 kV (a, d), 5 kV (b, e) and 7 kV (c, f) in 
LiNbO3 (a, b, c) and LiTaO3 (d, e, f) crystals. 
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As seen from Fig. 3, the induced phase difference reveals a circular distribution in the XY 
plane, being equal to zero at the geometrical centre of the XY cross section. A typical spatial 
distribution of the phase difference along the X axis is presented in Fig. 4. 

As evident from Fig. 4, the 
module of the phase difference 
increases with increasing X  

coordinate, following from a zero 
value at X = 0 to its maximum at 
Xm = ±2.06 mm. Note that the Xm 
value is the same for all the cases 
presented in Fig. 3, being 
independent of either the 
electrooptic figure of merit or the 
electrical voltage applied. Further 
increase in X leads to decrease of 
the induced phase difference to zero 

at X  = R = 10 mm. The coordinate dependence of the phase difference mentioned above is 

caused by the two mechanisms: (i) increase in   occurring with increasing X , due to 

increasing E1 and E2 projections, and (ii) decrease in   occurring with increasing X , due to 

decreasing effective optical path (i.e., the optical path in that part of crystal which is subjected to 
the electric field). 

In order to analyse this dependence in a more detail, one should derive the appropriate 
analytical relationship. We have found that the mean value of the function describing the phase 
difference, 

2 2 2
3 3

22 0 22 02 2 2 2 2
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result in a distribution of phase difference in the XY plane, which is the same as in case of Jones 
matrix calculation. As a consequence, using the minimising procedure, 

 
 

2 2 23 2
0 22 0

2 22 2 2
2ln 0

R dn r E d
dR d


  

  
     

      
,  (15) 

and solving the equation 
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yield the relation for the radius that corresponds to the extreme   value:  
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Fig. 4. Dependence of phase difference induced by the electrical 
voltage 7 kV on the X coordinate for LiTaO3 crystals. 
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where 
2 2

2 2
2R eW
R d

 
  

 implies the LambertW function. 

Solving Eq. (17) numerically, we have found that the radius corresponding to the maximum 
phase difference module is equal to 2.06 mm    for R = 10 mm and d = 5 mm. This value 

agrees well with that obtained on the basis of Jones matrix calculations. Under these conditions 
(e.g., for LiTaO3 crystals and U = 7 kV), the phase difference calculated using Eq. (14) is equal to 

max 288.9 deg   . Again, it is perfectly correlated with that calculated with the Jones matrix 

approach. 
Using Eqs. (14) and (17), we have computed dependences of the maximum phase difference 

appearing at the radius max  on the radius R and the thickness d, along with the dependences of 

max  parameter on the radius R and the thickness d (see Fig. 5). The phase difference max  

increases with decreasing distance d and radius R, while the parameter max  increases with 

increasing d and R. It follows from these results that the complete conversion of a right-handed 
incident light into a left-handed outgoing one at max  would occur when the induced phase 

difference equals to max 180deg   . The minimal voltage needed for inducing this phase 

difference under the condition of typical radius of laser beam equal to max 1.5 mm   corresponds 

to the sample thickness of d = 3.4 mm, and the electrode radius of R = 10 mm. This voltage is 
equal to 4.083 kV and ~ 20 kV for LiTaO3 and LiNbO3 crystals, respectively. 

 
(a)    (b) 

Fig. 5. Dependences of maximum phase difference appearing at the radius max  on the radius R and the 

thickness d (a), and dependences of max  parameter on the radius R and the thickness d (b). 

Finally, let us analyse the appearance of the OAM in the emergent light beam having passed 
through an optical system that consists of a right-handed circular polariser, a crystalline sample 
subjected to the electric field of conical configuration, and a left-handed circular polariser. Notice 
that the incident beam can be represented by nearly plane wave, with the beam radius equal to 

   = R and the SAM equal to incS   . The electric field of the emergent light can be written as 

02 21 1( ) ( )( , ) cos sin
2 2

i q iout
a aE E iE e

i i
  

                
,  (18) 

where 2 1q m   is the helicity number and aE  the wave amplitude. The first term in Eq. (18) 
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describes the plane wave with the same SAM as in the incident one (i.e.,  ), while the second 
summand – the wave with the helical wavefront which carries the OAM (see [17]). Taking into 
account that the angular momentum must be conserved, one can write the following relation for 
the SAM-to-OAM conversion: 

inc outJ J M       (19) 

where inc incJ S    is the total angular momentum of the incident photon, 

2 0out out outJ L S q        the total angular momentum of the emergent photon 

( outS  , 2outL q   ), and outL  the OAM of the emergent photon. Thus, the mechanical 

angular momentum transferred to the crystalline sample due to the Beth effect is equal to 
M   . However, this relation which reflects the fact of conservation of the angular momentum 
has been written for the condition   , though the phase difference depend on the module   . 

In this case one should take into account that the plane wave described by the first term of 
Eq. (18), with the SAM equal to  , also emerges from the sample. Then the efficiency of the 
SAM-to-OAM conversion can be defined by a ratio 

out
l
inc
r

I
I

h .     (20) 

where inc
rI  is the intensity of the right-handed incident wave and out

lI  the intensity of the left-

handed outgoing wave. The XY intensity distribution for the outgoing beam can be calculated 
using the Jones matrices (for more details see Ref. [11]). The appropriate spatial intensity 
distributions calculated for different voltages are presented in Fig. 6, while the dependences of the 
efficiency   on the electrical voltage are given in Fig. 7. It is seen from Fig. 7 that the efficiency 

reaches ~ 30% at ~ 4 kV for LiTaO3 crystals and at ~ 20 kV for LiNbO3 crystals. This efficiency 
can be further increased by decreasing the light beam radius. 
 

(a)  (b)  (c) 

(d)  (e)  (f) 

Fig. 6. Spatial distributions of intensity for the beam of 1.5 mm radius emergent from the system consisting of 
orthogonal circular polarisers and a sample of LiNbO3 (a – 5.0 kV, b – 10.0 kV, and c – 20.0 kV) or LiTaO3  
(d – 1.0 kV, e – 2.0 kV, and f – 4.083 kV) in between. 
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(a) (b) 

Fig. 7. Dependences of efficiency of SAM-to-OAM conversion on the electrical voltage applied to LiTaO3 (a) and 
LiNbO3 (b) crystals. 

3. Conclusions 

In this work we have performed computer simulations of the Pockels effect taking place in trigonal 
crystals of the point symmetry group 3m, which is caused by a ‘conical’ configuration of electric 
field. We have shown that such a field leads to appearance of OAM in the outgoing light beam, 
whenever the incident circularly polarised beam propagates along the optic axis direction. The 
corresponding theoretical relations describing spatial distribution of the birefringence and the 
angle of optical indicatrix rotation have been found. It has been demonstrated that the topological 
charge of the outgoing helical mode in this system is equal to unity. Using the examples of 
canonical electrooptic crystals LiNbO3 and LiTaO3, we have revealed that the efficiency of SAM-
to-OAM conversion can be gradually operated, owing the Pockels effect, by changing the electric 
field applied to a sample. 
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Анотація. В роботі показано, що певна конфігурація електричного поля, створена в 
електрооптичному кристалі може приводити до утворення орбітального кутового 
моменту вихідного променя, якщо падаючий оптичний промінь володіє циркулярною 
поляризацією і поширюється вздовж оптичної осі кристалу. При цьому встановлено, що 
топологічний заряд вихідної гелікоїдальної моди дорівнює одиниці. На прикладі відомих 
електрооптичних кристалів таких як LiNbO3 і LiTaO3 показано, що ефективність 
перетворення спінового кутового моменту в орбітальний кутовий момент може 
поступово змінюватись під дією електричного поля з використанням ефекту Покельса. 

 
 


