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Abstract. We have obtained phenomenological relation for the Poynting vector of 
electromagnetic wave propagating in crystals that possess a so-called weak optical 
activity. The appearance of transverse component of the Poynting vector and a 
transverse shift of the optical beam due to spin-orbit interaction are discussed. 
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1. Introduction 
It is well known that optical activity is described by accounting for inhomogeneity of electric 

induction jD  appearing in the relation for electric field iE  of an optical wave that propagates 

through a medium: 
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where 0
ijB  denotes the optical-frequency impermeability tensor, ijk  the third-rank antisymmetric 

polar tensor ( ijk jik   ), and kx  the coordinate. Using the known duality relation, 

2
ijk ijl lkg

 


 ,      (2) 

one can reduce the tensor ijk  to a (generally nonsymmetric) second-rank axial gyration tensor 

lkg  (with ijl  being the unit antisymmetric Levi-Civita tensor). Then Eq. (1) may be rewritten as 

0( )i ij ijl lk k jE B i g m D  ,     (3) 

where 2
k kk m


  denotes the wave vector of light and km  the unit vector parallel to kk . In its 

turn, the nonsymmetric gyration tensor can be decomposed into symmetric and antisymmetric 
parts: 

s as
lk lk lkg g g  ,      (4) 

A common point of view is that the optical activity effect is purely associated with the 
symmetric part of the gyration tensor. Scarce experimental data is available on manifestations of a 
kind of optical activity concerned with the antisymmetric part of the gyration tensor which is dual 
to some polar vector rh , 
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as
lk lkr rg h ,      (5) 

while the results of relevant theoretical analysis are very poor [1–5]. 
Recently, we have shown that this effect known as a weak optical activity should manifest 

itself in some changes of refractive indices and optical birefringence [6]. Moreover, if both the 
common optical activity and the weak one are simultaneously present, the polarisation state of one 
of the eigenwaves in crystal acquires a complicated longitudinally-transverse elliptical polarisation 
[7]. This novel polarisation eigenstate comprises two elliptical states, one of which is transversely 
elliptical and the other longitudinally elliptical. 

Due to the Neumann’s symmetry principle, the point symmetry groups for which 0rh   are 

1, 2, m, mm2, 3, 3m, 4, 4mm, 6, 6mm,  , and mm . Among these groups, only four reveal no 

common optical activity ( 0s
lkg  ): 3m, 4mm, 6mm, and mm . Eq. (3) for these media may be 

written as 

 0
i ij ijl lkr r k jE B i h m D   .     (6) 

It is obvious that only a single component of the rh  vector remains nonzero for the crystals 

that belong to the point groups 3m, 4mm, 6mm (namely, we have 3 0h  ). 

2. Results of analysis 
Let a plane electromagnetic wave propagate through a transparent, anisotropic, magnetically non-
ordered, though spatially dispersive, medium. Consider the Poynting vector represented in the 
usual form [8, 9] 

0 1
k k kS S u W  ,     (7) 

where ku W  is the total electromagnetic energy flow, W  the energy density, 0
kS  the energy flow 

without accounting for the spatial dispersion effect, 1
kS  the extra energy flow that appears if the 

spatial dispersion is present, /k ku k    means the group velocity, and   the frequency of 

wave. The relations for the energy density and the time-averaged Poynting vector components are 
given by 
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where ij  stands for the dielectric permittivity, 0  the dielectric permittivity of vacuum, *
0 0,j iE E  

the amplitudes of electric field components, *
0 0,B B  the amplitudes of the magnetic induction, and 

0  the magnetic constant. When specifying Eq. (10), one needs equations for the dielectric 

permittivity tensor components and their wave-vector derivatives for the media that possess the 
weak optical activity. 
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Let us consider a particular case of optically uniaxial crystals, for which the following 
conditions are satisfied: 

0 0 0
3 1 2 11 22 33 2 3 10; 0; ; 0; 1h h h B B B m m m        .   (11) 

The matrix that couples the components of the electric field and electric displacement vectors 
becomes 
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0
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so that we get a system of equations 
0
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.     (13) 

The corresponding relations that describe the electric induction of electromagnetic wave as a 
function of its electric field may be found as 

   

 
 

  

0
33 3 1

1 1 32 20 0 0 0
11 33 3 1 11 33 3 1

2 20
11

2
3 13 1

3 1 32 0 20 0 0 0 0
3311 33 3 1 33 11 33 3 1

1

1

B h m
D E i E

B B h m B B h m

D E
B

h mh m
D i E E

BB B h m B B B h m




 
 

 

  

       

.  (14) 

Thus, the dielectric permittivity tensor is as follows: 
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Taking into account the relation 3 1 3 1 3 1/ 2 /h m h k h k с    , one can rewrite the matrix 

given by Eq. (15) as 
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Then the wave-vector derivatives of the dielectric tensor components reduce to 
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Using Eqs. (17)–(20), one can represent Eq. (10) as 
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In the assumptions that *
01E  and *

03E  are real, Eq. (21) for the component 1
1S  of the Poynting 

vector consists only of real part. The real part appearing in Eq. (21) is associated with some 
changes in the group velocity of electromagnetic wave caused by the weak optical activity. 

As follows from Eqs. (14), the component 1D  is a pure result of the weak optical activity. 

Due to the condition 1 2 3D B k  , the component 3k  of the wave vector has to arise, too. This 

means that Eqs. (17)–(20) should also include the derivatives of 3k , thus inevitably leading to 

appearance of the component 1
3S  of the Poynting vector. In fact this implies that the light beam 

should ‘drift’ along Z direction while propagating in crystals with the weak optical activity. This 
effect can be easily explained when taking into account that the elliptically polarised photon, with 
its polarisation ellipse belonging to XZ plane, should possess a spin-orbit momentum component 

2s . The existence of this component of spin angular momentum would lead to the drift of photon 

mentioned above, as a result of a spin-orbit interaction and an optical Magnus effect [10–12]. 

Now let us derive the relation for the 1
3S  component of the Poynting vector. As already 

mentioned, the weak optical activity leads to inclination of the D


 component of electric induction 
of the electromagnetic wave propagating along X direction, with appearance of 1D  component. 

The ratio of these components can be expressed as 
0
33 1 3 1 3 31

0
3 13 1 1 11 3

B E ih m E kD
D kih m E B E


  


.    (22) 

Taking into account that 1 1 /m k c  , one can rewrite Eq. (22) in the form of quadratic 

equation with respect to the wave vector 1k : 

   2 0 0
3 1 3 1 1 33 3 3 11 3 3 0ih k cE k E B ih k c B k E     ,  (23) 
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with the solutions 
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of which derivatives can be represented as 
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Considering Eq. (22), one can rewrite Eq. (25) as 
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Since the 1
3S  vector is defined by the relation 

/ /
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one can write out the final expression for the Z component of the Poynting vector: 
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In the assumptions *
01 01 1E E E   and *

03 03 3E E E  , Eq. (28) reads as 
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Now one can extract the real part of the Z component of the Poynting vector basing on 
Eq. (29). It is equal to 
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Neglecting the smallest second and third terms in the r. h. s. of Eq. (31), one can represent 
this equation in the following form: 
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When accounting that      22 42 0 0 4 0 0
11 33 3 1 3 1 11 338 4 4B B h k c h k c B B    , one gets 
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Finally, if a small optical anisotropy is assumed ( 0 0
33 11B B ), Eq. (33) reduces to 

     21 7 11 1
3 0 3 1Re Re3 3

1
4 tot

E ES n h c I S
E E

   ,   (34) 

where n  is the mean refractive index and totI  the total light intensity propagating in crystal. As 

seen from Eqs. (33) and (34), the Z component of the real part of the Poynting vector does not 
depend on the sign of vector 3h , though it is dependent on the module of the latter, as well as the 

total intensity of light, the refractive index, and the ratio 1 3/E E . Notice that the condition 

1 3E E  gives rise to the relation    1 1
3 1Re Re

S S . 

3. Conclusions 
In the present work we have obtained a relation for the Poynting vector of electromagnetic wave 
that propagates in crystals possessing a so-called weak optical activity. It has been revealed that 
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the Poynting vector has some transverse component that describes transverse shift of the optical 
beam. Such a beam drift could be explained following from the quantum properties of photon. 
Namely, longitudinal elliptical polarisation of electromagnetic wave caused by the weak optical 
activity corresponds to a transverse spin of photon. Due to spin-orbit interaction, the transverse 
spin results in the transverse drift of that photon. 
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Анотація. Одержано співвідношення для вектора Пойнтінґа електромагнітної хвилі, яка 
поширюється в кристалах зі слабкою оптичною активністю. У роботі обговорено появу 
поперечної компоненти вектора Пойнтінґа та поперечного зміщення оптичного променя 
внаслідок спін-орбітальної взаємодії. 


