
 

Ukr. J. Phys. Opt. 2012, V13, №2  67 

Polarisation characteristics of optical waves in crystals in the 
presence of weak optical activity 

Adamenko D., Kostyrko M. and Vlokh R. 

Institute of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine,  
e-mail vlokh@ifo.lviv.ua 

Received: 09.04.2012 

Abstract. Basing on the analysis of parameters of the optical waves that propagate 
in optically uniaxial crystals possessing a weak and ordinary optical activity we have 
shown that the polarisation characteristics of the outgoing wave should differ for the 
azimuth of the incoming wave which correspond to the orthogonal eigen compo-
nents. This fact can be used while measuring the weak optical activity with po-
larimetric methods. 
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1. Introduction 
Optical activity is associated with inhomogeneity of electric displacement field, which leads to the 
following relationship between the electric induction iD  and the electric field jE  of optical wave 

that propagates in a material medium: 
0( )i ij ijl lk k jD i g m E   .    (1) 

Here 0
ij  is the tensor of dielectric permittivity in the absence of spatial dispersion, ijl  the 

unit antisymmetric tensor of Levi-Civita, lkg  the gyration tensor represented by an axial second-

rank tensor,  m c k
 

, k


 the wave vector, c  the speed of light in vacuum, and   the angular 
frequency of the electromagnetic wave. In general, non-symmetric gyration tensor lkg  may be 
decomposed in its symmetric and antisymmetric parts: 

s as
lk lk lkg g g  .     (2) 

Usually the effect of optical activity is associated with the symmetric part of the gyration ten-
sor (a so-called ordinary optical activity). On the other hand, somewhat different effect is linked to 
the antisymmetric part of this tensor, which is dual to a polar vector rh  (a so-called weak optical 
activity) [1–5]: 

as
lk lkr rg h .     (3) 

Taking into account the Neumann symmetry principle, we have 0rh   in the point symmetry 
groups 1, 2, m, mm2, 3, 3m, 4, 4mm, 6, 6mm,  , and mm . Among these, only the point groups 
3m, 4mm, 6mm and mm  do not manifest the ordinary optical activity ( 0lkg  ). Moreover, the 
following conditions are satisfied for those groups : 

0lkg  ; 3 0h  ; 1 2 0h h  .    (4) 

Recent theoretical studies of the weak optical activity have in particular revealed the follow-
ing: 
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 if the ordinary and weak optical activity are simultaneously present, the polarisation state of 
light in crystals becomes complex, having a longitudinal-transverse elliptical character [6]; 

 the weak optical activity should manifest itself as a change in both the refractive indices and 
optical birefringence [7]; 

 the Pointing vector of the optical waves that propagate in crystals possessing the weak optical 
activity has a transverse component, which describes a lateral displacement of the optical 
beam [8]. 
Notice that the behaviour of the refractive indices, the optical birefringence and the Pointing 

vector in the crystalline media revealing the weak optical activity have been analysed for the case 
of crystals characterised by the point symmetries 3m, 4mm and 6mm which, in view of the condi-
tion given by Eq. (4), seem to be the most suitable for any future experimental studies of the weak 
optical activity effect. 

It is worthwhile that the problems of detection and quantitative studies of the weak optical 
activity in crystalline media have not yet been solved. In this respect we are to notice that the ex-
perimental measurements of the Pointing vector or the refractive indices (eventually, the same 
refers to the optical birefringence) changed by the weak optical activity can hardly be performed 
with the aid of existing optical methods, at least due to smallness of the appropriate effects. As a 
consequence, in the present work we will attempt to develop a theoretical basis necessary for em-
ploying standard polarimetric techniques while studying the weak optical activity. 

2. Results of analysis 
We consider an electromagnetic wave propagating through a transparent anisotropic, magnetically 
disordered medium with accounting of the first-order spatial dispersion phenomena. The following 
system of equations may be obtained from the Maxwell equations for an electromagnetic wave: 

2 2
11 2 3 12 1 2 13 1 3 1

2 2
21 1 2 22 1 3 23 2 3 2

2 2 331 1 3 32 2 3 33 1 2

0

m m m m m m E
m m m m m m E

Em m m m m m

  

  

  

      
                 

.  (5) 

A nontrivial solution of this system is represented by the normal waves 
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c
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E e
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     (6) 

propagating in a crystal along a certain direction (with t  denoting the time variable and r  the 
radius vector). These waves correspond to the im  values for which the determinant of Eq. (5) is 

equal to zero: 
2 2

11 2 3 12 1 2 13 1 3
2 2

21 1 2 22 1 3 23 2 3
2 2

31 1 3 32 2 3 33 1 2

0

m m m m m m

m m m m m m

m m m m m m

  

  

  

   

    

   

.   (7) 

2.1. Crystals belonging to the point symmetry groups 3m, 4mm and 6mm  
For the crystals that belong to the point groups of symmetry 3m, 4mm and 6mm, the dielectric 
permittivity tensor ij  may be represented as 
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.    (8) 

Then Eq. (7) may be rewritten to 
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.  (9) 

Here we consider the case of light propagation along the x axis ( 2 3 0m m  ). For this case 

the determinant of the matrix given by Eq. (9) becomes 
0
11 3 1

0 2
11 1

0 2
3 1 33 1

0

0 0 0

0

ih m

m

ih m m







 

 

.    (10) 

It is easy to prove that the solutions of Eq. (10) correspond to the following 1m  values: 

  0
1 111m  ;  

0 0
11 33

1 2 0 2
11 3

m
h

 





.    (11) 

Inserting the parameters given by Eq. (11) into Eq. (5), one can obtain the relations for the 
normal waves: 
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.  (13) 

 

Since an arbitrary electromagnetic wave propagating in crystal along a given direction can be 
represented as a superposition of the normal waves for this direction, the electromagnetic wave 
propagating along the x-axis can be expressed as 
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(14) 

 

where A1, A2 = const. Excluding the time variable from Eq. (14) and considering only the trans-
verse components of the electromagnetic wave, we obtain 
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.  (15) 

Let the input wave at 0x   be given by 
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Then we get 
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.   (17) 

When the input light is linearly polarised along the y axis, one can rewrite Eq. (17) as 
0
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,   (18) 

or 
0
11

2 2( ) (0)
i x
cE x e E



 .    (19) 

Quite similarly, when the input light is linearly polarised along the z axis, one can rewrite 
Eq. (17) as 
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,   (20) 

or 
0 0
11 33

0 2
11 3

3 3( ) (0)
i x
c hE x e E

 



 .    (21) 

In the both cases, the input linearly polarised light remains linearly polarised after having 
passed through the crystal. 

In other words, the state of light polarisation in the yz plane is not changed in the crystals be-
longing to the point groups 3m, 4mm and 6mm, whenever the linearly polarised light passes 
through the crystalline medium under the condition   k x


 . This fact renders impossible any stud-

ies for the weak optical activity in crystals, based on the polarimetric techniques. 

2.2. Crystals belonging to the point symmetry groups 3, 4 and 6  
The crystals that belong to the symmetry groups 3, 4, and 6 possess both the weak and ordinary 
optical activities. The dielectric permittivity tensor ij  is as follows: 
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Then Eq. (7) may be written as 
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.  (23) 

Let us consider again the same case of light propagation along the x axis ( 2 3 0m m  ), for 

which Eq. (23) becomes 
0
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.   (24) 

The solutions of Eq. (24) are given by the following 1m  values: 
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Inserting the parameters given by Eqs. (25) and (26) into Eq. (5), one can obtain the relations 
for the normal waves: 
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,     (27) 

where 1 2,M M M . Hence, we get the following relation for the electromagnetic wave propagat-

ing along the x axis: 
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where 1A ,  2A  = const. Dropping the time variable and considering only the transverse compo-

nents of the electromagnetic wave, we rewrite Eq. (28) as 
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In particular, at 0x   we have 
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and so the relation 
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holds true, with the parameters 
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being components of the appropriate Jones matrix.  
When the input light is linearly polarised along the y axis, we obtain 

2 22 2
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.     (36) 

Then the polarisation ratio 2  may be easily found as 
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When the input light is linearly polarised along the z axis, we have 
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The corresponding polarisation ratio 3  is given by 
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.   (39) 

It is known that the polarisation ratio   is related to the ellipticity R  and the azimuth   of 

the polarisation ellipse as follows: 
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Therefore, the input linearly polarised light becomes elliptically polarised after having passed 
through the crystals that belong to the point groups of symmetry 3, 4 and 6 under the condition 

  k x

 . Moreover, the parameters characterising the output polarised light differ for different input 

polarisations. Since the parameters R  and   can, in principle, be easily determined with the po-
larimetric techniques, the weak optical activity in the crystals of the point groups 3, 4 and 6 can be 
detected and measured quantitatively using these techniques. 

3. Conclusion 
We have shown that, for the crystals belonging to the point symmetry groups 3m, 4mm and 6mm, 
the polarisation state in the yz plane experiences no changes whenever the input linearly polarised 
light passes through the crystalline medium in the case of   k x


 . This does not enable studies of 

the weak optical activity using the standard polarimetric methods. On the other hand, the input 
linearly polarised light becomes elliptically polarised after having passed through the crystals that 
belong to the point symmetry groups 3, 4 and 6, under the same additional condition   k x


 . As a 

matter of fact, the parameters of the output polarised light depend on the azimuth of linear polari-
sation of the light entering the crystal. The latter can be used while studying the weak optical ac-
tivity, e.g., with the aid of the polarimetric methods. 
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Анотація. На основі аналізу поляризаційних параметрів оптичних хвиль, що поширюються 
крізь одновісні кристали, які володіють слабкою і звичайною оптичною активністю, показано, 
що характеристики поляризації хвилі на виході відрізнятимуться для азимута вхідної хвилі, 
який відповідає ортогональним власним компонентам. Даний факт можна використати у 
вимірюваннях слабкої оптичної активності за поляриметричними методами. 


