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Abstract. Basing on the analysis of parameters of the optical waves that propagate
in optically uniaxial crystals possessing a weak and ordinary optical activity we have
shown that the polarisation characteristics of the outgoing wave should differ for the
azimuth of the incoming wave which correspond to the orthogonal eigen compo-
nents. This fact can be used while measuring the weak optical activity with po-
larimetric methods.
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1. Introduction
Optical activity is associated with inhomogeneity of electric displacement field, which leads to the
following relationship between the electric induction D, and the electric field E; of optical wave

that propagates in a material medium:

D, = (&) +i8,85m)E; . (1)

Here 83 is the tensor of dielectric permittivity in the absence of spatial dispersion, &;; the

unit antisymmetric tensor of Levi-Civita, gy the gyration tensor represented by an axial second-
rank tensor, m= (c/ w)l; s k the wave vector, ¢ the speed of light in vacuum, and @ the angular
frequency of the electromagnetic wave. In general, non-symmetric gyration tensor g; may be
decomposed in its symmetric and antisymmetric parts:
8k = ik + 8l - @)
Usually the effect of optical activity is associated with the symmetric part of the gyration ten-
sor (a so-called ordinary optical activity). On the other hand, somewhat different effect is linked to
the antisymmetric part of this tensor, which is dual to a polar vector A4, (a so-called weak optical
activity) [1-5]:
gik = Oy - A3)
Taking into account the Neumann symmetry principle, we have /. # 0 in the point symmetry
groups 1, 2, m, mm2, 3, 3m, 4, 4mm, 6, 6mm, o, and comm . Among these, only the point groups
3m, 4mm, 6mm and comm do not manifest the ordinary optical activity (g, =0). Moreover, the
following conditions are satisfied for those groups :
g =0;h=0; h=h=0. 4
Recent theoretical studies of the weak optical activity have in particular revealed the follow-
ing:
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o if the ordinary and weak optical activity are simultancously present, the polarisation state of
light in crystals becomes complex, having a longitudinal-transverse elliptical character [6];

o the weak optical activity should manifest itself as a change in both the refractive indices and
optical birefringence [7];

o the Pointing vector of the optical waves that propagate in crystals possessing the weak optical
activity has a transverse component, which describes a lateral displacement of the optical
beam [8].

Notice that the behaviour of the refractive indices, the optical birefringence and the Pointing
vector in the crystalline media revealing the weak optical activity have been analysed for the case
of crystals characterised by the point symmetries 3m, 4mm and 6mm which, in view of the condi-
tion given by Eq. (4), seem to be the most suitable for any future experimental studies of the weak
optical activity effect.

It is worthwhile that the problems of detection and quantitative studies of the weak optical
activity in crystalline media have not yet been solved. In this respect we are to notice that the ex-
perimental measurements of the Pointing vector or the refractive indices (eventually, the same
refers to the optical birefringence) changed by the weak optical activity can hardly be performed
with the aid of existing optical methods, at least due to smallness of the appropriate effects. As a
consequence, in the present work we will attempt to develop a theoretical basis necessary for em-
ploying standard polarimetric techniques while studying the weak optical activity.

2. Results of analysis

We consider an electromagnetic wave propagating through a transparent anisotropic, magnetically
disordered medium with accounting of the first-order spatial dispersion phenomena. The following
system of equations may be obtained from the Maxwell equations for an electromagnetic wave:

2 2
(Sll—mz ) €12 +m1m2 €13 +m1m3 \(El\
2 2
&1 + mymy, Eyp —My — Ny &3 + mymy Ez =0. (5)
&31 + mynis &3p + myniy &33 — m12 - m22 E3

A nontrivial solution of this system is represented by the normal waves
) o )
C
EZ e
E5

(6)

propagating in a crystal along a certain direction (with ¢ denoting the time variable and 7 the

radius vector). These waves correspond to the m; values for which the determinant of Eq. (5) is

equal to zero:

2 2
& —my —my & +mymy &3 +mymg
2 2
&y tmymy & —mi —m3y &y +mymy |=0. (7
2 2
&3ty Exp tmpmy &3z — My —m;

2.1. Crystals belonging to the point symmetry groups 3m, 4mm and 6mm
For the crystals that belong to the point groups of symmetry 3m, 4mm and 6mm, the dielectric
permittivity tensor &; may be represented as
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8101 0 ihymy
gi=| 0 e ihymy |. 8)
—ihym;  —ihym, 893
Then Eq. (7) may be rewritten to
&l —m; —m3 mmy (ms3 +ih3)m
mymy efy —mi —m3  (my+ihy)my |=0. ©)

. , 0o 2 2
(my—ihy)my  (my=ihy)my  &33—mi —m)

Here we consider the case of light propagation along the x axis (m, =m3; =0). For this case

the determinant of the matrix given by Eq. (9) becomes

8101 0 ih3m1
0 &\-m 0 |[=0. (10)
—ih3ml 0 85)3 — m12

It is easy to prove that the solutions of Eq. (10) correspond to the following m; values:

0 0
E €
(my), =&l 5 (my), = |12 (11)

Inserting the parameters given by Eq. (11) into Eq. (5), one can obtain the relations for the
normal waves:

0 ( 1
ia] tf_m)
lle ¢ for my :\[8101 , (12)
0
( 1 3
0 ( 00 \ 0.0
. 1 &11633 &€
o t“,\} o for m; = 11733 (13)
, 5101(5101+h32) e e V&t + 45
jl—a
0,2
&3l

Since an arbitrary electromagnetic wave propagating in crystal along a given direction can be
represented as a superposition of the normal waves for this direction, the electromagnetic wave
propagating along the x-axis can be expressed as

( 1 )
(El (xat)\ (0\ iw(t—l\/ng 0 ( 1 [ee \
iy I LlJe C "k & (80 +h2) Ol (14)
Ey(x,1) 0 TS (:‘ _ S ’
e333

where A, A; = const. Excluding the time variable from Eq. (14) and considering only the trans-
verse components of the electromagnetic wave, we obtain
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E ( ) 1 o ( 0 \ i 51“15;‘3 x
X ——VEénX TN L0 g2
( : ):Al[)e | e (eh+mg) e VO (15)

11

E3(x) 0 i
523}132
Let the input wave at x =0 be given by
( 0 )
£y (O)J (1] 0 (0 2
=4 +4 enlen+n) |- (16)
[E3(0) e 2 ; 11(;12 3)
&33h3

Then we get
eii:) e 0
(Ez (x)j _ (Ez (0>] ' )

E5(x) o [l |\ E(0)
0 e © &+

When the input light is linearly polarised along the y axis, one can rewrite Eq. (17) as

io
— & X
E e ¢ 0 E, (0
( 2(x)j: - ( 2 ( )]’ (18)
E3(x) _lo 81|8337X 0
0 e c\el+n
or
o 5
—JEnx
Ey(x)=e ¢ Ey(0). (19)

Quite similarly, when the input light is linearly polarised along the z axis, one can rewrite
Eq. (17) as

0 [
Ey(x)) |€ ¢ 0 0 20)
Ey(x)) _io [ahen [\ E5(0))
0 e c 8101+h3Z

or

_io [ e .
Ey(x)=e <V £(0). @1

In the both cases, the input linearly polarised light remains linearly polarised after having
passed through the crystal.

In other words, the state of light polarisation in the yz plane is not changed in the crystals be-
longing to the point groups 3m, 4mm and 6mm, whenever the linearly polarised light passes
through the crystalline medium under the condition & || x. This fact renders impossible any stud-

ies for the weak optical activity in crystals, based on the polarimetric techniques.

2.2. Crystals belonging to the point symmetry groups 3, 4 and 6
The crystals that belong to the symmetry groups 3, 4, and 6 possess both the weak and ordinary

optical activities. The dielectric permittivity tensor ¢; is as follows:
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0 . .
& ig33m3 ~i(gyymy —hymy)
. 0 .
&j = —1g33M3 en i(grimy +hsmy) |. (22)
. . 0
i(gumy —hymy)  —i(gymy +hsmy) €33

Then Eq. (7) may be written as

0 2 2 . .
& —my —m;3 mymy +ig33my myms —i(gyymy —hymy)
. 0 2 2 .
mlm2 —lg33m3 811 —ml —WI3 m2m3 +l(g11ml +h3m2) = 0 . (23)
. . 0 2 2
mym 3 +i(gyymy —hymy ) mym3—i(gymy +hymy ) &33 —my —my

Let us consider again the same case of light propagation along the x axis (m, =m3 =0), for
which Eq. (23) becomes
810 1 0 ihymy
0 &-mi igym |=0. (24)
—ihymy  —igyymy £33 —mi

The solutions of Eq. (24) are given by the following m; values:

2
0.0 0 2 ;2 0,0 2 ;2 0, 72).0
311{811+533+g11+h3 +\/(311+533+g11+h3) —4(511+h3)533J

2+ 1) @

(ml)l =M, =

2
0.0 0 2 ;2 0,0 2 ;2 0, 22,0
311{311“333 +eit+h —\/<511+€33 +g11+h3) —4(811+h3 )533J

2(8101 + h32)

(my)y =M = (26)

Inserting the parameters given by Egs. (25) and (26) into Eq. (5), one can obtain the relations
for the normal waves:

e , 27

where M =M, M, . Hence, we get the following relation for the electromagnetic wave propagat-

ing along the x axis:

( ihM, ) ([ ihM; )
0 0

11 a1

E (x,t ) M, ) M,
(Ei(x0) ignM, ”"(t__x) ignM, “"[’__”“)

Ey(x,0) | =4 |~ —5|e * ¢ Hd| (5] 7, (28)
E5(x,1) & — M & —M;

1 1

where 4;, A, =const. Dropping the time variable and considering only the transverse compo-

nents of the electromagnetic wave, we rewrite Eq. (28) as
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_ignM,

E,(x —UL 2y, - e
( 2( )j=A1 e -MZle ¢ +4| e-M3le ©

E5(x) | 1

In particular, at x =0 we have

ignM, ignM,
£,(0)) _ y ) 2|,y ) 2
=4 e My |[+A| e —-M; |,
E5(0)
1 1
and so the relation
[Ez (x)j _ (Tzz Ty j[Ez (O))
E5(x) Ty T35 )\E5(0))
holds true, with the parameters
-iZum, ~iZMx

Ml(glol—Mf)e ¢ x—Mz(glol—Mlz)e ¢

T, =
” M1(5101—M22)—M2(3101—M12)
ig 1M, e_[%M‘x

T3 =T -
0 2
e — M

>

i(5101—M12)(5101—M22)

71'2M,x
Iy = 0 5 0 3 {e ¢
g11(M1(€11—M2)—M2(811—M1 ))

being components of the appropriate Jones matrix.
When the input light is linearly polarised along the y axis, we obtain

{Ez (x) =15 E5(0)
E3(x) =Ty E»(0)

Then the polarisation ratio y, may be easily found as
_BH0 _Ty
Ey(x) Ty
When the input light is linearly polarised along the z axis, we have
{Ez (%) = T3 E5(0)
E3(x) =T33E5(0)

X2

The corresponding polarisation ratio ys is given by

(o}
1 —i—M x
ig M, e ¢

Iy -
01,2
_EM) Dy _ &1 —M;

CEy(x) T &M x
Iyte ¢

X3 X2 -

29)

(30)

(€2))

(32)

(33)

71'2M2x
-e ¢ ,(34)

(35)

(36)

(37

(38%)

(39)

It is known that the polarisation ratio y is related to the ellipticity R and the azimuth g of

the polarisation ellipse as follows:
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o 1A =) 4 (= )

= , (40)
L+ 2D + (- 24
%
ﬁ:larctg)H—Z2 . 4n
2 1A

Therefore, the input linearly polarised light becomes elliptically polarised after having passed
through the crystals that belong to the point groups of symmetry 3, 4 and 6 under the condition

k || x . Moreover, the parameters characterising the output polarised light differ for different input
polarisations. Since the parameters R and B can, in principle, be easily determined with the po-

larimetric techniques, the weak optical activity in the crystals of the point groups 3, 4 and 6 can be
detected and measured quantitatively using these techniques.

3. Conclusion

We have shown that, for the crystals belonging to the point symmetry groups 3m, 4mm and 6mm,
the polarisation state in the yz plane experiences no changes whenever the input linearly polarised

light passes through the crystalline medium in the case of & || x. This does not enable studies of

the weak optical activity using the standard polarimetric methods. On the other hand, the input
linearly polarised light becomes elliptically polarised after having passed through the crystals that
belong to the point symmetry groups 3, 4 and 6, under the same additional condition & || x. As a
matter of fact, the parameters of the output polarised light depend on the azimuth of linear polari-
sation of the light entering the crystal. The latter can be used while studying the weak optical ac-
tivity, e.g., with the aid of the polarimetric methods.
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Anomauia. Ha ocnogi ananizy noasapuzayiinux napamempie ONMUYHUX XGUNb, WO NOWUPIOIOMbCA
Kpi3b 00HOBICHI Kpucmanu, siKi 60100il0ms CIAOKO0I0 I 36UYAlIHOI0 ONMUYHOIO AKIMUBHICMIO, NOKA3AHO,
WO Xapaxmepucmuky noaspuzayii Xeuni Ha 6uxoodi GIOPIZHAMUMYMbCs Ol A3UMyma 6XiOHOI Xeull,
KUl 8i0N06I0AE OPMOZOHANLHUM 61ACHUM KOMNOHenmam. Jlanuii paxm ModCHA 8uxopucmamu y
BUMIPIOBAHHSAX CIAOKOT ONMUYHOL AKMUBHOCI 3a NOISAPUMEMPUYHUMU MEMOOAMU.
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