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Abstract. We have developed a theory for the interaction of THz radiation with a 
sub-wavelength metallic grating. The structure of electric field of the electromag-
netic waves under the metallic grating has been studied for the near-field zone. Spa-
tial distributions of the electric field components and the electric energy density 
have been obtained for the wave transmitted through the grating. An effect of strong 
local enhancement of the electric field has been detected. Spatial dependence of po-
larisation of the transmitted wave has been analysed for the near-field zone. 
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1. Introduction  
In recent years, one of the priority directions in development of modern nanoelectronics and opto-
electronics is elaboration of solid-state sources, detectors and modulators of electromagnetic (EM) 
waves in terahertz (THz) spectral range. These researches have been inspired by numerous poten-
tial applications of THz optics, including communication technologies, wireless local area net-
works, spectral analysis of complex molecules and materials, time-domain spectroscopy, THz 
imaging (in particular, for medical applications), etc. [1, 2]. 

One of the most attractive directions in the development of THz optoelectronics is THz plas-
monics that investigates controlling of the corresponding radiation by using excitation of plasma 
oscillations (plasmons) in semiconductor microdevices. During the past decade, a lot of theoretical 
and experimental works have been devoted to the problems of detecting and emitting the THz 
radiation by means of excitation of plasma waves in 2D channel of field-effect transistors [3, 4]. 
Here better operation conditions have been achieved for the transistors with multi-gated structures. 
A periodic system of metallic gates (i.e., a metallic grating) plays a role of specific antenna ele-
ment that provides efficient coupling of relatively long-wavelength THz-range EM-radiation with 
short-wavelength plasmons. Resonant detection and amplification of the THz radiation have re-
cently been studied for the multi-gated field-effect transistors [5–8]. Moreover, similar multi-
contact devices can be utilised as modulators and polarisers for the THz radiation [9, 10]. In the 
experiments with transmission of the THz radiation one typically uses structures with a metallic 
grating of a sub-wavelength period ( a ) and a submicron distance ( D ) between the grating and a 
2D electron gas. Such a geometry is preferable for efficient excitation of plasmons with THz fre-
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quencies. The interaction of EM-waves with plasmons in these structures occurs in a near-field 
zone ( aD  ) near the metallic gratings, where the properties of the EM-fields are very different 
from those peculiar for the far-field zone.  

The present article addresses a detailed analysis of structure of the EM-field transmitted 
through the single metallic grating in the near-field zone. In Section 2 we describe a theoretical 
approach employed for solving the problem of interaction of the EM-waves with the periodic me-
tallic gratings. The results of calculations for the spatial distribution of the EM-field located under 
the grating and its polarisation characteristics are discussed in Sections 3 and 4. Finally, the con-
clusions are drawn in Section 5.  

 2. Theory of interaction of light with metallic gratings 
A typical geometry of structure of the grating is shown in Fig. 1. The grating consists of metallic 
strips, with the width b  and the thickness d , which are arranged along the x  direction with the 
period a . The system is assumed to be uniform and infinite along the y  direction. Let a plane 

monochromatic EM-wave be incident upon the grating along the z  axis, with the electric vector 
polarised in the x direction (i.e., perpendicular to the grating strips). We consider the case of a sub-
wavelength grating ( 0a ), with 0  denoting the wavelength of the incident EM-wave. The 

grating strips will be treated as conducting layers infinitely thin along the z direction. This assump-
tion is justified whenever a skin layer is much thicker than d  (e.g., the estimations for the gold 
strips yield in the skin layer thickness of about 80 nm at 1 THz). In order to satisfy the assumption 
mentioned above, all of our calculations will be carried out for the thickness of 20d  nm. Fi-
nally, the grating system is considered as being placed into uniform environment with the dielec-
tric constant  . 

 
Fig. 1. Illustration of geometry of a metallic grating. 

Being a result of interaction of the plane wave with the metallic grating, the total electric 
field obeys the Maxwell equation,  

2

2 2 2
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In Eq. (1), ),( trj


 is the conduction current induced by the EM-field in the metallic strips. 
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nent, respectively. Then the vector equation given by formula (1) may be rewritten as a system of 
two scalar equations: 
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According to the Ohm law, the current )(xjx  in the strips may be expressed in terms of the 

total electric field in the plane 0z :  
2 2( ) = ( ) ( ,0)D D
x xj x x E x ,     (3) 

\with )(2 xD  being the local 2D conductivity of the metallic strips. Structural periodicity of the 

grating along the x direction allows one searching for the solution of the system of Eqs. (2) in the 
form of Fourier series expansion:  

 ( , ) , ( , ),
=

( , ) = ( ) ( )
iq xi s m

x z x m x z m
m

E x z E z E z e



 ,  (4) 

where mq  is the wave number of the grating ( = 2 /mq m a ). Eq. (4) describes the total electric 

field as a sum of two contributions. The first one, ( )i
xE z , describes the external incident field. We 

choose this field to be a plane monochromatic wave ( 0
, ,0( ) ik zi i

x m mE z E e , with 0 /k c ). 

The second contribution, ( , ) ( )s
x zE z , is the scattered field which is a result of re-emission induced 

by the alternating current produced in the metallic strips.  
After inserting Eq. (4) into Eqs. (2), we obtain the equation for the mth Fourier coefficient of 

the x-component of the scattered field ,
s
x mE , 
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along with the relationship between the mth Fourier coefficients for the x- and z-components:  

,
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Eq. (5) has the solutions 

, ,( ) at 0 and ( ) at 0,
z zs sm m

m x m m x mE z A e z E z B e z
 

      (7) 

where 2 2
0=m mq k  . When 0m  , we have 0m ik    (here the sign minus is chosen such 

that the solutions would give radiating modes) and the constants 0A  and iEB 0  are amplitudes 

respectively of the reflected wave and the transmitted wave in the far-field zone.  
In the case of sub-wavelength grating, m  becomes purely real at 0m  and so the con-

stants mA  and mB  represent the amplitudes of evanescent waves. The evanescent waves are local-

ised near the grating and their intensity decreases exponentially with increasing distance from the 
grating. Due to translation symmetry of the grating along the x direction, the evanescent waves are 
equivalent for mq  and mq . Therefore, the EM-field in the near-field zone is nothing but a stand-



Interaction of terahertz 

Ukr. J. Phys. Opt. 2012, V13, №3 145 

ing wave. The unknown constants mA  and mB  may be found from the following boundary condi-

tions valid for the plane 0z :  
2
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 
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The conditions given by Eqs. (8) imply that m mA B  and 2
,2 /D

m m x mB i j    . Using the 

Ohm law (see Eq. (3)), one can express the mth Fourier coefficient of the current as a convolution 
product of the Fourier components of the 2D conductivity and the total electric field calculated at 

0z : 
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Thus, we have reduced the electrodynamic problem of light interaction with the periodic me-
tallic grating to an infinite system of algebraic equations. After solving numerically Eqs. (10), with 
large though finite number M  of the equations, one can obtain spatial distribution of all the com-
ponents of the electric field vector of the transmitted wave: 

, 0 , 0( , ) , ( , )m m m m

M M
z iq x z iq xm

x x m z z x m z
mm M m M

iq
E x z E e e E x z E e e 


 

 
 

   . (11) 

Good enough convergence of the solutions given by Eqs. (11) with increasing number M can 
be achieved while assuming that the metallic strip is described by some smoothed conductivity 
profile. In the present work, we make use of the profile defined by 

 2 2
0( ) = ( / ), [0, ] and 0, [ , ]sinD D px x b x b x b a     , 

where p  means a fractional number. This profile is convenient because its Fourier coefficients 

have the analytical form: 
2 2 1 1 1

0= 2 ( 1) exp( ) ( /2 1, /2 1)D D p
m f p i mf B p mf p mf          , (12) 

with = /f b a  being the filling factor of the grating and B  the Euler beta-function. 

Notice that another analytical approach to the grating-related problems is often used in the 
literature. In frame of this method, the system of Eqs. (10) is reformulated in terms of an integral 
equation in the coordinate space. The general scheme of its solution is based on expansion of the 

total field in a series of polynomials orthogonal with respect to the weight function 2 ( )D x . This 

procedure is again reduced to an infinite set of equations for the expansion coefficients. The ap-
proximate solution of the latter has somewhat better convergence when compared with our system 
(see Eqs. (10)). However, such a procedure can only be applied for specific profile shapes 

2 ( )D x . For instance, the authors of Ref. [11] have analysed plasma eigenmodes for the system 

consisting of a grating and a 2D electron gas, using a semi-elliptic profile of the strip conductivity. 

Meanwhile, our method is applicable for arbitrary profiles 2 ( )D x . Specific results obtained 

while solving directly Eqs. (10) are described in the next section. 
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3. Properties of the electric field located under the grating 
In Fig. 2 we illustrate instantaneous spatial distributions of the x- and z-components of the total 

electric field ,Re ( , ) i t
x zE x z e     of the wave transmitted below the grating. The coordinates 

]0.5,[0 ax  and ],[0.5 aax  correspond to the location of the metallic strip and the window 

between the strips, respectively. As seen from Fig. 2, the electric field has essentially non-uniform 
distribution in the near-field zone (see curves 1 and 2). This is a result of complicated superposi-
tion of the incident and scattered fields, the latter being induced by redistribution of charge in the 
metallic strips. Notice also that the scattered field is a superposition of the evanescent waves.  
 

 

Fig. 2. Instantaneous spatial distributions of fields , ( , , )x zE x z t  at 0t  : panels (a) and (b) correspond respec-

tively to the xE  and zE  components, and curves 1, 2 and 3 are calculated at / =z a 0.003, 0.03 and 0.3, 

respectively. The grating period is equal to 30 μma  , the filling factor 0.5f  , the strip conductivity is 

chosen as for the gold ( 2 12
0 8 10 cm/sD   ), the strip thickness 20 nmd  , the fractional number 

1/ 6p  , the frequency of the incident wave / 2 1    THz, and 1  . 

One can observe a strong enhancement of the electric field near the edges of the metallic 
strips. Both the x- and z-components exist in this narrow region and, moreover, each of them has 
the values much greater than the amplitude of the incident wave. It is worthwhile that the z-
component is equal to zero at the point 0.25x a  (i.e., in middle of the strip). This fact indicates 

that the spatial distribution of the scattered field is similar to that typical for the field of a dipole, 
with the corresponding electric charges induced on the opposite edges of the strip. The dipole has 
such an instantaneous polarity that its field almost totally screens the incident field under the strip. 
It is clearly seen from Fig. 2 that the total field has a very small x-component of the electric field in 
the main region under the metallic strip, though the z-component remains non-vanishing, except 
for in the very middle of the strip.  

However, we observe the opposite situation under the window (except for the edge regions). 
Here the incident field is not screened, but rather amplified by the scattered field, so that the for-
mer field mainly contributes to the total one. The total field has a vanishing z-component and a 
non-vanishing x-component, which remains practically uniform. The values of the x-component of 
the electric field are slightly larger than the amplitude of the incident wave. The spatial distribution 
of the total electric field becomes more and more uniform with increasing distance from the grat-
ing, since the contribution of the evanescent modes which have formed the scattered field de-
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creases exponentially. At the distance ~z a  (see curve 3 in Fig. 2) we deal with the case of far-
field zone, where the main contribution to the transmitted wave originates from the mode with 

0m  .  
The distribution of the electric field in the near-field zone also depends on the grating pa-

rameters. As shown in Fig. 3, the effect of enhancement of the electric field is more pronounced 
for the gratings with larger filling factors (i.e., narrower windows). For the case of 0.8f   (see 

curve 2 in Fig. 3), the field distribution under the window is stipulated by the charges induced at 
the right and left edges of the adjacent strips. Obviously, decreasing distance between these 
charges leads to increasing amplitudes of the electric fields.  

 

Fig. 3. Instantaneous spatial distributions of components xE  (a) and zE  (b) of the electric field transmitted 

under the grating: curves 1 and 2 are calculated for the filling factors = 0.4f  and = 0.8f , respectively. The 

calculations have been performed for / 0.0033z a   ( 0.1 μmz  ) and the other parameters are the same as 
in Fig. 2.  

In order to clarify the major features of the near-field zone, Fig. 4 depicts spatial mapping of 
the normalised time-averaged density of the electric energy, ( , )W x z , of the transmitted wave. 

This quantity is calculated as  2 2 2( , ) ( , ) ( , ) i
x zW x z E x z E x z E  , where ( , ), ( , )x zE x z E x z  

are given by Eqs. (11).  

 

Fig. 4. Counter plots of normalised time-averaged electric energy density ( , )W x z  of the transmitted wave 
calculated for the filling factors = 0.4f  (a) and = 0.8f  (b). All the other parameters are the same as in Fig. 2. 
Notice that the parameter ( , )W x z  has been normalised to the corresponding value for the incident wave. 
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The metallic grating produces a strong spatial redistribution of the energy of the (initially uni-
form) incident wave. Fig. 4 clearly demonstrates the existence of several zones with different en-
ergy concentrations. For relatively small distances from the grating, the energy of the transmitted 
wave is mainly concentrated near the edges of the strip. This corresponds to three hot zones (see 
white regions in Fig. 4). A cold zone is formed in the region under the metallic strip (see black 
region in Fig. 4). The lowest energy concentration corresponds to the middle of the strip where 
both the x- and z-components of the field are close to zero. While moving away from the grating, 
the EM-wave penetrates under the metallic strip and the energy is transferred from the hot zones to 
the cold one. An almost uniform distribution of the ( , )W x z  parameter is established at the dis-

tances from the grating plane as large as ~ / 2z a  (see Fig. 4a). When the grating has a structure 
with larger filling factors (see Fig. 4b), we get stronger redistribution of the energy and therefore 
the near-field zone becomes broader.  

Nowadays, there is a number of experimental techniques that allow obtaining object images 
beyond the diffraction limit, using special probes with sub-wavelength apertures [12]. Then a 
planar object scanned in front of this aperture could be imaged with a resolution determined by the 
aperture size rather than the radiation wavelength. A high-resolution technique for terahertz near-
field imaging, which employs a planar structure with a single sub-wavelength aperture and 2D 
electron gas as a detector, has recently been reported in Ref. [13]. In principle, the similar methods 
may be applied while visualising the THz fields in the near-field zone of the periodic metallic 
structures. 

4. Polarisation of the electromagnetic wave in the near-field zone  
As already mentioned above, the real vector of the total electric field in the near-field zone has the 

two components , ,( , , ) Re ( , ) i t
x z x zE x z t E x z e     . During one oscillation period, a terminus of 

the local electric field vector will circumscribe some polarisation ellipse in the  ,x zE E  plane. 

The ellipticity   and the azimuth angle   of the polarisation ellipse may be expressed as follows: 

     1/ 2
2 2 2 2 21 1 1 1 , tan 2 (1 ) 1 1 2rcos( )r r                        

, 

where 22 sin( ) /(1 )r r    , ( , ) / ( , )z xr E x z E x z , and   denotes the phase shift between 

the components ( , , )xE x z t  and ( , , )zE x z t . It is evident that these two polarisation parameters 

would depend upon the local point ( , )x z . 

The left panel of Fig. 5 illustrates the local polarisation ellipses observed at a fixed coordinate 
z  for different x  coordinates. They correspond to the regions under the strip, near the edge of the 
strip, and under the window. The right panel of Fig. 5 depicts evolution of the polarisation ellipses 
with increasing distance from the grating at a fixed coordinate x . Both the z- and x-components 
tend to zero very close to the middle of the strip and the polarisation ellipse degenerates into a 
point. While moving towards the edge of the strip, the z-component rapidly increases though the x-
component remains small ( 1r  ). Thus, we observe increase in both the length of the major axis 
of the ellipse and the azimuth angle   (see curves 1 and 2 in Fig. 5a). Large parameters r  also 
induce small ellipticities of the polarisation ellipses. Near the edge of the strip (see curve 3 in 
Fig. 5a), the x- and z-components oscillate practically in-phase ( ~ 0 ), with very close ampli-

tudes ( ~ 1r ). As a consequence, the polarisation ellipse degenerates into a straight line, with 
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~ 45  . In the region under the window ( 1r  ), we have the ellipse with a small azimuth angle 
and, again, a small ellipticity (see curve 4 in Fig. 5). The parameter r  decreases with increasing 
distance from the grating and we observe a monotonic decrease in the   parameter (see Fig. 5b). 
The polarisation ellipses degenerate into horizontal straight lines far from the grating, so that the 
transmitted EM-wave becomes linearly polarised.  

 
 

Fig. 5. Local polarization ellipses for (a) /z a = 0.033, 1 μmz   (curves 1, 2, 3 and 4 correspond to 

/x a  0.3, 0.4, 0.5 and 0.6, respectively) and (b) /x a  0.4 (curves 1, 2, 3 correspond to /z a  0.03, 0.3 
and 1, respectively). The other parameters are taken the same as in Fig. 2. 

Summarising the results obtained in this section, we note that the metallic grating produces a 
complicated wave field in the near-field zone, which is characterised with strong spatial depend-
ences of both the local energy and the polarisation characteristics. Such a property in the near-field 
can be used for selective THz-photoexcitation of various types of nanostructures and nanoobjects, 
as well as molecules, especially in case if the excitation mechanisms are sensitive to both the po-
larisation and the amplitudes of the EM-field. 

5. Conclusion  
We have presented procedures capable of solving the problem of interaction of THz-range EM-
waves with the metallic gratings having sub-wavelength periods. We have shown that the EM-
wave in the near-field zone under the metallic grating has a complicated vector structure, which is 
a result of superposition of the two fields, one of them being a field of dipoles with the charges 
induced at the edges of the metallic strips, and the second representing a field of the incident plane 
wave. It has been demonstrated that the total electric field of the transmitted wave has the two 
components along the directions parallel to the axis of grating and perpendicular to the grating 
plane. In the near-field zone, the amplitude ratio and the phase difference of these components 
vary depending on the local point under the grating. We have derived the time-averaged density of 
the electric energy for the spatial region under the grating. The effect of strong concentration of the 
electric energy of the THz wave near the edges of the metallic strips has been found. Some appli-
cations of the effects mentioned have been suggested for controlling THz-excitation of various 
nanostructures and nanodevices. 
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Анотація. Побудовано теорію взаємодії ТГц-випромінювання з субхвильовою металічною 
ґраткою. Проведено дослідження структури електричного поля електромагнітної хвилі в 
близькій зоні цієї ґратки. Одержано просторовий розподіл компонент вектора електрич-
ного поля та густини електричного енергії електромагнітної хвилі, що пройшла крізь ґрат-
ку. Зазначено ефект істотного локального підсилення електричного поля. Проаналізовано 
просторові залежності поляризації електромагнітної хвилі в близькій зоні ґратки. 


