On the acoustooptic efficiency of Pb₂P₂Se₆ crystals. Acoustic and thermal studies: Errata

 1 Mys O., 1 Martynyuk-Lototska I., $^{1,\,2}$ Kostruba A. M., 3 Grabar A. and 1 Vlokh R.

¹ Institute of Physical Optics, 23 Dragomanov Steet, 79005 Lviv, Ukraine, e-mail: vlokh@ifo.lviv.ua

² Lviv Academy of Commerce, 9 Samchuk Street, 79011 Lviv, Ukraine, e-mail: amkostr@lac.lviv.ua

³ Institute for Solid State Physics and Chemistry, Uzhgorod National University, 54 Voloshyn Street, 88000 Uzhgorod, Ukraine, e-mail: inpcss@univ.uzhgorod.ua

Received: 25.09.2013

Abstract. We address the errors found in our article [Mys O, Martynyuk-Lototska I, Kostruba A M, Grabar A and Vlokh R, 2012. On the acoustooptic efficiency of Pb₂P₂Se₆ crystals. Acoustic and thermal studies. Ukr. J. Phys. Opt. 13: 177–182].

Keywords: acoustooptic figure of merit, acoustic wave velocities, thermal expansion

PACS: 78.20.hb, 62.65.+k, 65.40.De **UDC**: 535.42

We have found a number of technical errors appearing in the text of our recent article [1].

The captions of Fig. 1 and Fig. 2 should be written as follows: Fig. 1. Temperature dependences of relative elongations for the Pb₂P₂Se₆ crystals measured along the principal crystallographic axes *b* (open triangles), *a* (open circles), and *c* (open squares); Fig. 2. Temperature dependences of thermal expansion coefficients for the Pb₂P₂Se₆ crystals calculated for the principal crystallographic axes *b* (panel a, α_{22}), *a* (panel b, α_{11}), and *c* (panel c, α_{33}); solid lines are linear fits.

Page 179. The sentence "The lowest velocity ($v_{5\overline{5}} = 1426 \pm 70 \text{ m/s}$) is peculiar for the quasitransverse wave that propagates along the [101] direction and has polarisation parallel to [$\overline{101}$]" should be read as "The lowest velocity ($v_{4\overline{4}} = 1426 \pm 70 \text{ m/s}$) is peculiar for the quasi-transverse wave that propagates along the [011] direction and has polarisation parallel to [$\overline{011}$]".

Line 11 in Table 1 should be read as follows:

[011]	$[0\overline{1}1]$	1426±30	_	2184
Page 179.	In the sente	ence "Their mean	values are C_{22}	$_2 = 43.59 \times 10^9 \text{ N/m}^2$,
$C_{66} = 23.37 \times 10^9$	N/m^2 , $C_{44} = 14.8$	$8 \times 10^9 \text{ N/m}^2$, and C_4	$_{46} = 2.0 \times 10^9 \text{ N/m}^{2}$	the value of the
coefficient C_{46} should be read as $ C_{46} = 2.0 \times 10^9 \text{ N/m}^2$."				

Page 180. The sentence "As already mentioned for the case of $Pb_2P_2Se_6$, here the slowest transverse acoustic wave propagates in the *ac* plane along the crystallographic direction [101] and has the polarisation parallel to $[\overline{101}]$. The relevant acoustic wave velocity is equal to 1426 ± 30 m/s" should be read as follows: "As already mentioned for the case of $Pb_2P_2Se_6$, here

the slowest transverse acoustic wave propagates in the *bc* plane along the crystallographic direction [011] and has the polarisation parallel to $[0\overline{1}1]$. The relevant acoustic wave velocity is equal to 1426 ± 30 m/s ".

References

 Mys O, Martynyuk-Lototska I, Kostruba A M, Grabar A and Vlokh R, 2012. On the acoustooptic efficiency of Pb₂P₂Se₆ crystals. Acoustic and thermal studies. Ukr. J. Phys. Opt. 13: 177–182.

Mys O., Martynyuk-Lototska I., Kostruba A.M., Grabar A. and Vlokh R. 2013. On the acoustooptic efficiency of $Pb_2P_2Se_6$ crystals. Acoustic and thermal studies: Errata. Ukr.J.Phys.Opt. 14: 210 – 211.

Анотація. У нашій нещодавній статті [Mys O, Martynyuk-Lototska I, Kostruba A M, Grabar A and Vlokh R, 2012. On the acoustooptic efficiency of $Pb_2P_2Se_6$ crystals. Acoustic and thermal studies. Ukr. J. Phys. Opt. 13: 177–182] виявлені помилки, які виправлені у цій публікації.