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Abstract. In order to correct the errors present in our recent study (Savaryn V. et al.
Ukr. J. Phys. Opt. 13 (2012) 82), we have rederived the main phenomenological
relations describing the changes in optical anisotropy of crystalline disks loaded
along their diameters. Basing on the analysis of these relations, we have developed
an improved technique for determining the piezooptic coefficients 7, 755 and 74

for the crystals of almost all of the point symmetry groups. The technique is based
on studying the spatial distributions of optical birefringence and optical indicatrix
rotation angle induced along the chords and diameters of a crystalline disk
compressed along its diameter.
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1. Introduction
It is well known that piezooptic effect consists in changes of the optical impermeability

coefficients AB; (or the refractive indices B; = By = (1/n2)k) of a material medium, which

appear under the action of mechanical stresses o,; =0, . This is described by the
phenomenological relation

ABy, = 1y,,0,,, (1)
where 1, denotes a fourth-rank piezooptic tensor [1]. The effect is usually studied when

uniaxially loading parallelepiped-shaped samples. Unfortunately, this leads to appearance of
uncontrollable spatially inhomogeneous stresses inside a sample and, as a result, to dramatic
lowering of the accuracy for the piezooptic coefficients.

Recently we have demonstrated that application of inhomogeneous 2D stresses, which are
known in advance, yields in a novel technique for determination of the piezooptic coefficients.
Moreover, this technique offers a number of advantages, e.g. the piezooptic coefficients can be
determined with high enough accuracy, when applying torsion stresses [2, 3] or four-point bending
stresses [4] to crystalline samples. In particular, in our work [5] we have reported a specific
technique developed for measuring the piezooptic coefficients 7y, (k=4, 5, 6) for the crystals

that belong to almost all of the point groups of symmetry. It is based on the studies of spatial
distributions of optical birefringence and optical indicatrix rotation along different diameters of a
crystalline disk which is compressed along one of its diameter.

Besides, phenomenological relations have been presented in Ref. [S] that describe the
induced piezooptic changes occurring in the optical birefringence and the optical indicatrix
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rotation angle. Unfortunately, these relations have been derived using incorrect underlying

expressions for the shear stress tensor components o,, os and oy that appear due to

compression of the disks. The latter fact has also led to partially incorrect conclusions drawn in
Ref. [5]. First of all, this is the finding that the piezooptic coefficients 7, can be determined

when the optical beam is scanned along the disk’s diameters parallel or perpendicular to the
loading force. In the present work we have rederived the main theoretical relations that describe
the induced changes in the optical birefringence and the optical indicatrix rotation for the
crystalline disks loaded along their diameters. We have also verified and improved the main
conclusions of the work [5].

2. General phenomenological relations

It is known [6, 7] that loading of a disk along its diameter produces a non-uniform spatial
distribution of mechanical stresses. Let us introduce a coordinate system XYZ associated with the
eigenvectors of optical impermeability tensor that characterizes a given crystalline material.
Suppose that a Z-cut crystalline disk is loaded along its diameter parallel to Y axis. Then the
loading force has the only component P = P,, while the stress tensor components o}, o, and oy

will be equal to

2p | (R-Y)X? (R+Y)Xx? 1

+ PN B (2)

wd {X2+(R—Y)2}2 {X2+(R+Y)2}2 2R
o= 2P (R-Y)’ . (R+Y)’ 1 )
md {X2+(R—Y)2}2 {X2+(R+Y)2}2 2R
2 2
Gs—ﬁ (R-Y)'Xx  (R+Y)'X - @

- 2 2
md (e (R-vP {x2+(R7Y]
Here d denotes the thickness of the disk and R its radius.
The mechanical stresses appearing along the diameter parallel to X axis (i.e., in the case of
Y =0) and along the diameter parallel to Y axis (X = 0) are described respectively by the relations

2P| 2RX? 1 2P, 2R? 1
o(X)=——2| L | ()= -T2 | g(X)=0 (5)
d (X2+R2) 2R rd (X2+R2) 2R
and
P; 2P, 2R 1
01(Y)=$, Uz(Y)Z—ﬂ—;{W—E} os(¥Y)=0. (6)

As a consequence, we have the equality o, =0 along the both diameters mentioned above.
At the same time, the stress tensor components oy, o, and o remain nonzero along the chords

which are parallel to the X or Y axes (i.e., when Y or X coordinates are equal to R/2). These

components read as
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™ 4(X2+R2/4) 4(X2+9R2/4)
g (X) = P, R*X ~ 9R*X ©
2 2
2rd (X2+R2/4) (X2+9R2/4)
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R-Y)R? R+Y)R?
() =--2 R-1)E”, (R+Y) | ao
T2 (R-yY R 14 2{(Rey) R4
3 3
Gz(y):_& (R-Y) s (R+Y) 1 an
2 2 ?
wd {(R=YP 4R /4] {(R4Y) 4R /4 2R
2 2
P R-Y)R R+Y)VR
Ué(Y):j ( ) _ ( ) , (12)

{(R —Y) +R? /4}2 {(R +Y) +R? /4}2

respectively. Similar relations may easily be written for the X- and Y-cuts of the crystalline disk.
Using all of those formulae, we have rederived the expressions that describe the induced optical
birefringence and the angle of optical indicatrix rotation for the loaded disks made of crystals of all
point symmetry groups (see Table 1).

Using the above equations valid for the crystals of different symmetries, we will analyze
them and, in this way, find the experimental geometries for which the piezooptic coefficients 7y,

can be determined using the crystalline disks loaded along their diameters.

2.1. Cubic crystals
Basing on Egs. (13)—(24) for the optical birefringence and the optical indicatrix rotation angle, one
can determine the piezooptic coefficient 7,4, for the cubic crystals in the experimental geometries

where the shear stress tensor components o4, 05 and o4 are nonzero. As seen from Egs. (9) and

(12), these conditions are satisfied whenever the light beam is scanned along the chords parallel to
the principal axes. For example, the induced birefringence and the induced optical indicatrix
rotation are given by Egs. (17) and (18) if a Z-cut disk made of crystals of the symmetry groups
432, 43m and m3m is loaded along its diameter parallel to the ¥ axis. Employing Eq. (17) and the
distributions of the induced birefringence measured experimentally along the chords at the height
Y=R/2 and X =R/2, one can get the difference of the piezooptic coefficients 7;; —m, and

the coefficient 7,,. Notice that the coefficient 7,4, can also be determined from Eq. (18), using

the experimental dependences of optical indicatrix rotation angle on the coordinates read along the
directions of chords parallel to the X and Y axes. In addition, similar measurements can be carried
out for the X- and Y-cuts of crystalline disks.
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Under the same geometry (i.e., the Z-cut of a crystalline disk and the loading force P»), the relation
for the induced birefringence Anyj,(X,Y) for the cubic crystals belonging to the groups 23 and m3

follows from Eq. (23) respectively under the conditions of ¥ =0 and X = 0:

Any»(X,0) :—%nS [(7711 —1y1) 01 (X) = (71, —”12)02()()], (63)

An»(0,Y) = —%"3 [(7711 —7y1) 01 (Y) = (71, ‘”12)02()’)] : (64)

Here n denotes the initial (unperturbed) refractive index, and o(X),0,(X) and

0,(Y), 0, (Y) are defined respectively by Egs. (5) and (6). Then the induced birefringences along
the chords Y =R/2 and X = R/2 are as follows:

Anjp(X,R/2) :—%”3\/[(”11 — 1) 01 (X) = (71, —”12)02()()}2 +4mo0 (X)) (65)

and

Anjy(R/2,Y) = —%”3\/[(”11 —131)01(Y) = (4 —7712)0'2(Y)}2 +4n3,05(Y),  (66)

Here o7(X), 05(X), 04(X) and o07(Y), 0,(Y), o5(Y) are given respectively by Eqs. (7)—(9)
and Egs. (10)—(12).

Using these formulae, one can obtain the differences 7, —7,; and 7} —m, of the
piezooptic coefficients, as well as the piezooptic coefficient 4. Notice that similar

measurements can be performed in the other geometries, e.g. when the light propagates along the
X and Y directions and the only loading component is P;. Hence, the 744 coefficient can indeed be

easily measured for the cubic crystals. This agrees well with the conclusion drawn in Ref. [5],
though the relevant practical procedures differ from those suggested in that work. Namely, for this
aim one has to derive experimentally spatial distributions of the optical birefringence and the angle
of optical indicatrix rotation along the chords.

2.2. Hexagonal and tetragonal crystals

For all of hexagonal and tetragonal crystals, Eqgs. (27) and (28) (see Table 1) describe the
birefringence and the optical indicatrix rotation angle induced by the force component P; in the Y-
cut disks under the condition X =R/2 (i.e., along the chords). Taking into account that the
natural birefringence is relatively small (i.e., n, ~n, =n ), one can simplify these equations to the

following form:
1_
§(Anyy) = —5”3 [(7r1) = 731)01(2) + (713 — 733)03(Z)] , (67)

27m4405(2) .
(m1 = 731)01(2) +(m13 =733 ) 03 (2)

Let us insert the relation appearing in the square brackets of Eq. (67) into Eq. (68) and take into

tan2¢, = (68)

account that the mechanical stress component o5(Z) is given by the formula

P (R-Z)'R (R+Z) R
nd

os5(Z) = (69)

{(R ~Z)* +R? /4}2 {(R +Z) +R? /4}2
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Then the coefficient 74, can be obtained. Now we consider the disks that have their faces
perpendicular to the Z axis and are made of crystals belonging to the hexagonal symmetry groups
622, 6mm, 6m2 and 6/mmm. The spatial XY distribution of the induced birefringence known
from experiments enables determining the coefficient 74, with the aid of Eq. (29).

Now we proceed to the spatial birefringence distributions induced along the chords ¥ = R/2
and X = R/2 in the Z-cut disks of crystals that belong to the point groups 6, 6 and 6/m and are
loaded by the force P,. The appropriate relations may be derived using Eq. (31) and taking
Egs. (7)(12) into account. Then solving the system of equations for An,(X,R/2) and
An» (R/2,Y) facilitates experimental determination of the piezooptic coefficients 74, and 7.
This is also true for the point symmetries 422, 4mm, 42m and 4/mmm, for which the induced
birefringence is defined by Eq. (33). Then the coefficients 7, —m, and 74 can be also
determined.

For the crystals of tetragonal groups 4, 4 and 4/m, one can easily derive the birefringence
induced for the case of the Z-cut crystalline disk and the P, force. Considering the experimental
distributions of the induced birefringence along the four directions (¥ =0, X =0, Y =R/2 and
X =R/2) and solving the system of Egs.(35) for these directions (i.e., the relations for
Anj,(X,0), An»(0,Y), Anjp(X,R/2) and Anm»(R/2,Y)), one can find the coefficients 7,
e > e and the combination 77y — 75 .

Hence, one can determine the coefficient m,, for the crystals of hexagonal and tetragonal
systems after spatial distributions of the induced birefringence and the angle of optical indicatrix
rotation have been obtained along the chords but not the diameters as suggested in Ref. [5]. On the
other hand, the coefficient 744 can be determined using the experimental spatial distributions of
the optical indicatrix parameters obtained along the chords for the symmetry groups 422, 4mm,
42m, 4/mmm, 4, 4, 4/m, 6, 6 and 6/m, and along the diameters for the groups 622, 6mm, 6m2
and 6/mmm. Some additional coefficients and their combinations can be determined, too.

2.3. Trigonal crystals

As follows from Eqgs. (39) and (40), the coefficient 7,4, for the crystals of trigonal groups 32, 3m
and 3m becomes measurable in the same way as for the case of hexagonal or tetragonal crystals.
Here the birefringence and the optical indicatrix rotation induced by the force P; in the Y-cut disks
under the condition X = R/2 are described by Egs. (39) and (40), which are identical respectively
to Egs. (27) and (28) (see Table 1). In addition, one can determine the coefficient zq, from

Eq. (41) and experimental XY-distribution of the birefringence induced along the disk diameters.
Then the Z-cut crystalline disk should be employed and the force P, should be applied.

Let us consider the crystals of the trigonal groups 3 and 3. Here the 7,, coefficient can be
measured in the geometry given by k || ¥ and P = P;. The birefringence and the optical indicatrix

rotation angle induced by the force P; in the Y-cut disk are described by Egs. (45) and (46) (see
Table 1). Considering that n, ~n, = n , we simplify the corresponding equations yielding in

5(Any3) = —%’73 [(7r1) = 731)01(2) + (7013 — 733)03(Z) — ps505(Z)] (70)

Ukr. J. Phys. Opt. 2014, Volume 15, Issue 2 93
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2(74405(2) — 75,0,(Z))
(711 = 731)01(2) + (713 — 33)03(Z) — 713505 (2)

under the condition of X =R/2, or

tan2¢,(Z) = (71)

5(Any)= —%’73 [(71) = 731)01 (X)) + (713 = m33)03 (X) = mp505(X)],  (72)

2(4405(X) — 1507 (X))
(711 = 731)01(X) + (713 = 33)03(X) — 2505 (X)

when we have Z =R/2. Here the mechanical stress tensor component o5(Z) is given by

tan24,(X) = (73)

Eq. (69), whereas the components o;(Z), o7(X) and o5(X) are defined as

R-Z)R? R+Z)R?
2= RO, ReDR L] gy
T2 (R-2) B2 14 2{(Re2) R /4]
2 2
=2 R S, (75)
4 (xR 14) (X2 +9R* /4)
2 2
GS(X):2P3d R*X . 9R2X |, 6
IPERy S /4) (x> +9r?/4)

Inserting the expressions appearing in the square brackets of Egs.(70) and (72) into the
denominators of respectively Egs. (71) and (73), and solving the system of Egs. (71) and (73), one
can obtain the coefficients 744 and 75, .

Thus, the coefficient 74 for the symmetry groups 32, 3m and 3m can be found while

measuring spatial distributions of the optical indicatrix parameters along the disk diameters. It is
this statement that has just been made in Ref. [5]. However, the coefficient 7,, for the trigonal

crystals has to be derived using the same spatial distributions measured along the chords. The

latter is also true of the 744 coefficient for the symmetry groups 3 and 3.

2.4. Orthorhombic, monoclinic and triclinic crystals
Now let us analyze the crystals of orthorhombic and monoclinic symmetries. Here the coefficients
744 and 7mss can easily be determined. As an example, we consider a Y-cut disk and assume that

m ~ny =n under the condition X = R/2. The birefringence increment and the angle of optical

indicatrix rotation are readily obtained from Eqgs. (51) and (52):
1_
5(Any3) = —5”3 [(7m1, — 731)01(2) + (713 — 33)03(2)] (77)

275505(Z) _
(7711 —”31)01(Z)+(7T13 _”33)‘73(2)

The denominator of Eq. (78) is equal to the expression appearing in the square brackets of

tan 2§, = (78)

Eq. (77). Hence, solving the system of these equations would result in analytical expression of the

coefficient 755. The coefficient 74, for the orthorhombic and monoclinic groups and the
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coefficient ¢ for the orthorhombic groups can be evaluated using respectively X- and Z-cut
disks (i.e., the systems of Egs. (49) and (50) or Egs. (53) and (54), respectively) and employing the
same experimental procedures. As follows from Eqgs. (55) and (56), it is impossible to evaluate the
7ee coefficient itself for the case of monoclinic crystals. Finally, the coefficients 744, 755 and

7es for the triclinic crystals cannot be determined separately on the basis of our

phenomenological relations (see Table 1).

3. Conclusion

In the present work we have rederived the main phenomenological relations that describe the
changes occurring in the optical birefringence and the angle of optical indicatrix rotation of the
crystalline disks loaded along their diameters. The relations are derived for all of the point
symmetry groups. On this basis we have found that the piezooptic coefficients 7y, (k=4, 5, 6)

can be successfully determined for the crystals of almost all of the point groups. The
corresponding technique is based on experimental studies of the optical anisotropy parameters
induced along the chords of a crystalline disk compressed along its diameter. Only the crystals
belonging to the triclinic system are problematic in this respect.
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Anomayin. 3 memoro gunpasients NOMUIOK, NPUCYMHIX Y Hautill nonepeowii pobomi (Savaryn V.
et al. Ukr. J. Phys. Opt. 13 (2012) 82), mu nosmopno odepoicanu OCHOBHI (PeHOMEHON02iuHi
CRIBBIOHOWICHHS, WO ONUCYIOMb 3MIHY ONMUYHOI AHI30MPONIi CMUCHYMO20 830082 diamempda
Kpucmaniunoeo oucka. Ha ocnoei aunanizy yux cniggioHOweHb npeocmasieno 600CKOHALEHUl
Memoo BUSHAYEHHA N €300NMUYHUX KOeDiYieHmie Ty, Tss I Mgq ONA KpUCMANIE Malidice 6Cix
epyn cumempii. Memoo 6a3yemvcsi HA OOCHIONCEHHI NPOCMOPOBO2O PO3NOOILY IHOVKOBAHUX

ONMUYHO20 0BO3ANOMIECHHS | KYMa NOGOPOMY ONMUYHOL IHOUKAmMpPUCU 830082k X0pO i diamempis
KpUCManiuno2o OUcka, CMUCHymo20 6300624 1020 diamempa.
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