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Abstract. Singular light beams with optical vortices (OVs) are often generated by
means of thin binary gratings with groove bifurcation (‘fork’ holograms), which
produce a set of diffracted beams with different OV charges. Though a single
separate beam is usually employed and studied, here we consider a whole set of
diffracted OV beams which, under certain conditions, are involved in efficient
mutual interference to form a characteristic pattern where the ring-like structure of
separate OV beams is replaced by a series of bright and dark lines between the
adjacent diffraction orders. This pattern, which is well developed for high diffraction
orders, reflects the main spatial properties of the diffracted beams as well as those of
a ‘fork’ grating used for their generation. In particular, this confirms a theoretical
model for the diffracted beams, a so-called Kummer beam model, and enables one
to determine the sign and the absolute value of the phase singularity embedded in
the hologram.
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Light beams with optical vortices (OVs), or screw wavefront dislocations, have been attracting a
great attention of researchers for several decades [1-5]. Numerous researches and practical
applications of OVs have given rise to diverse methods for their generation. A thin holographic
grating with groove bifurcation (a ‘fork’) is one of the simplest and the most universal practical
means designed for this purpose [6—10]. Usually, when an incident paraxial beam with regular
(non-vortex) wavefront (e.g., a monochromatic Gaussian laser beam with a wavenumber k)
intersects the central part of such a ‘fork’ grating (FG) along the normal to its plane, a set (or a
‘fan’) of diffracted beams with directions determined by the angles

0,=n" 1)
which depend on the diffraction order n and the grating period d, is formed behind the grating (see
Fig. 1). The nth-order diffracted beam carries the OV with the topological charge

Ly =nq, 2
where ¢ is a fixed topological charge of the phase singularity ‘embedded’ in the grating. In this
report we restrict ourselves to the case of integer ¢, where the ‘central’ vertical groove is divided
into (Jg| + 1) branches (in particular, we have ¢ = 1 in Fig. 1).

In general practice, only one of the diffracted beams with a desired OV charge is used; all the

other diffracted orders are filtered out and take no part in further manipulations. However,
simultaneous observation and analysis of the multiple diffracted beams may provide some
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important information and give a unique possibility for analyzing the spatial structure of the
separate diffracted beams. Besides, this can enable diagnosing the properties of the generating
diffraction element.
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Fig. 1. Multiple OV beams produced by an FG. The Cartesian coordinate system (x, y, z) is associated with the
grating so that the z axis is normal to the FG plane and intersects it exactly in the bifurcation point (the FG
‘centre’), while the y axis is parallel to the grooves far from the centre. All of the axes of diffracted beams belong
to the diffraction plane xz.

A characteristic pattern displayed in Fig. 2 can easily be observed when dealing with a
‘simple’ binary FG which has no special groove profiling aimed at removing some diffraction
orders or, at least, at minimizing their numbers available. Normally it cannot be seen in the
vicinity of the incident beam axis where the diffracted beams of the several first orders are
concentrated, which are the most intense and so convenient for observation. But at the periphery of
the diffracted ‘fan’, the diffracted beams start overlapping. This manifests itself in characteristic
interference fringes that ‘stretch’ between the adjacent diffracted OV beams so that the expected
ring-like beam spots are completely replaced by the quasiperiodic patterns of bright and dark strips
(see Fig. 2).

Quite unexpectedly, we have not been able to find any description or interpretation of such
patterns in the current literature. This is why the main purpose of this work is to explain the pattern
and inspect how it can be used for investigating the spatial structure of the diffracted beams and
for diagnosing the FG structure.
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Fig. 2. Pattern of multiple OV beams formed after diffraction of a Gaussian laser beam with the waist radius
bo = 0.2 mm at the FG with g = 2, as observed in the 3™—7" diffracted orders on a screen z = 100 cm distanced
from the FG. Expected topological charges of the generated OV beams are indicated above the OVs; figures
below indicate the diffraction orders; distance x is measured from the zero-order beam centre; white line is a
trace of the diffraction plane. The other parameters of the experiment are as follows: d = 1/16 mm, k ~ 10° cm™
(He-Ne laser), and 6; = 0.01 rad.

We start with noticing that the spatial distribution of the complex amplitude of the nth-order
diffracted beam in the screen plane can be expressed in the form

. .k k
u, (x,3,2)=U, (r,)exp(il, @, )exp{z%(x—an )+z;aﬁ} , 3)

th

where a, =nz0, is the position of the ™ diffracted beam axis on the screen (the condition ) << 1

is implied). Here we have

1 (x,3,2)=4/(x—a, )2 +y%, exp[igo,, (x,y,z)]:m, 4)

T

with o=sgn(q) ==x1 being the sign of the phase singularity embedded in the FG. The last
exponential term in Eq. (3) expresses the additional phase of slightly inclined nth-order beam in
the observation plane normal to the nominal axis z (see Fig. 1). Then the resulting observed field

pattern may be expressed as

N 2

2 un(%.7,2)

n=M

Iy n (x,y,z)= , ©)

where M and N are the minimal and maximal numbers of the diffraction orders whose influence
cannot be neglected. Note that simultaneous replacements x — —x, n - —n and o0 - —c do not
modify Eq. (3) and, consequently, Eq. (5), so that the resulting field pattern is symmetric with
respect to the y axis. In full agreement with the experimental observation, this permits us to restrict
our consideration to the positive x only. For this reason, only positive diffraction orders, n > 0, will
be considered below.

In the most cases one can expect that the field pattern in the region a, < x < a,,; may be ev-

aluated via Eq. (5) by substituting M =n and N =n+1, i.e. allowance for only two adjacent dif-

fracted beams is satisfactory. However, Eq. (5) gives a possibility to take into account the influ-

ence of long-distanced members of the sequence of diffracted beams, besides of the nearest ones.
The function U, (r,) describes the details of the diffracted beam shape, which depend on the

model used for its characterization. In many cases, when the main attention is paid to the screw
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wavefront dislocation and the vortex properties of the FG-generated diffracted beam, it is suitable
to describe it with a standard OV beam model supplied by the Laguerre—Gaussian (LG) mode [1,
3,4]:

I 2 2
Un(rn)EU,fG(m){%j exp[—;]’;]exp{ik%—i(llnlﬂ)x}, (6)

where the beam radius b, the wavefront curvature radius R and the additional phase shift (Gouy
phase) y are conveniently fitted [11]. These are associated with the ‘conventional’ beam waist

radius b, and the corresponding ‘conditional’ Rayleigh range zp, = kbl2 chosen so that Eq. (8)
could supply the best fitting to the real diffracted OV beam:

2 2 2 2
R(z):ﬂ, b (z):ﬂ, )((z):arctan(i} (7)
z kzg Zp

The LG approximation given by Eq. (6) can be useful while describing the spatial profile of a
single diffracted beam, at least in its separate cross sections [3, 6, 7, 11, 12]; however, it becomes
invalid when applied to the ‘fan’ of diffracted OV beams simultaneously produced by a single FG.
Fig. 3 demonstrates that, even in the situation where the beams efficiently overlap, the interference
pattern calculated via the LG representation is quite different from that observed in practice: the
fringes are almost rectilinear and strictly localized inside the bright rings. Although the
calculations illustrated in Fig. 3 have been performed for the values M = 3 and N = 7 in Eq. (5),
exactly the same picture could be obtained by combining the interference patterns calculated for
each pair of the nearest diffracted beams: this is a consequence of very rapid exponential decay of
the LG beam intensity with growing 7, .

Fig. 3. Pattern of multiple OV beams formed by FG (q = 2) in the 37" diffracted orders under conditions
corresponding to Fig. 2, as calculated with Eq. (5) (M = 3 and N = 7) for the LG model given by Egs. (6) and (7).
‘Conventional’ waist radius is bs = 0.08 mm, vertical lines correspond to the middle distance between the axes
of diffracted beams, and horizontal line is a trace of the diffraction plane (see Fig. 1). Topological charges are
indicated near the OV centers and corresponding diffraction orders are indicated as in Fig. 2, and distance x is
measured from the zero-order beam centre.

In this situation, one should resort to a more accurate model of the diffracted OV beam. As

known for the case of a simple binary FG, the most adequate is a model of Kummer (or
hypergeometric Gaussian) beam [10, 11, 13]:

. ik
U, (r,)=UK (rn)=(—z)l””eXP[;—Zmzjﬁx/Zexp(—An) Ly (4y) =Ly (4,) | (D)
iz fi-t AR}

2 2
where
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zp = kbg ()
is the Rayleigh range of the incident Gaussian beam waist of which is supposed to coincide with
the FG plane (with b, being the waist beam radius at the level e ' of the maximum intensity), and

2
4, = (ﬂj b.—z- )
z ) 4(1-izg/z)

The results of calculations based on Egs. (7)—(9) and (5) for M =3 and N = 7 are presented in
Fig. 4, which should be compared to Fig. 2. Since the diffracted beams with n <3 and n > 7 are not
taken into account, Fig.4 is expected to represent the correct results only in the region
3 cm <x <7 cm, including the 4™-, 5™ and 6"-order diffracted beams. Confronting this pattern
with the relevant area shown in Fig. 2, we conclude that the calculated pattern is qualitatively
similar to the experimental one and so the Kummer beam model of the diffracted beams indeed

explains the actual observations.
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Fig. 4. Pattern of multiple OV beams formed by FG (q =2) in the 3"—7" diffracted orders under conditions
corresponding to Fig. 2, as calculated for the Kummer beam model given by Egs. (7)-(9) with by =0.2 mm.
Topological charges, diffraction orders, and distances x and z are the same as in Fig. 2 and Fig. 3. The meaning
of white lines is the same as in Fig. 3.

Egs. (3), (7) and (5) describe fairly well the field structure observed, though they are not
suitable for analytical quantitative analysis. To make the latter more feasible, we remark that the
main details of the interference pattern, e.g. the locations of the dark and bright lines, are
determined by the phase of the field given by Eq. (7), whereas the field amplitude specifies only
their relative brightnesses. Therefore, we consider the ‘purely phase’ part of Eq. (7) which can be
treated as a version of a more general Eq. (3), with

U, (1) = U7 (1) = ()" exp(;irf) : (10)
z

In this case one can easily find the ‘intensity distribution’, taking only the two nearest diffraction
orders into account:

In,n+1 (x> y,Z) = 2{1 +cos I:(ln+1(0n+1 _ln¢n ) _%(Vn-%-l | - |ln |):|} > (1 1)

where Egs. (4) have been employed. Just at the middle distance between the axes of the nth and
(n+1)th diffracted beams with the topological charges /, and /,.4,
Api1 Ty

X=T, (12)
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the angular parameters @, and @,.; in Eq. (11) are determined by the relations
2y

Ayl —ap

¢, =¢, =arctan s Pl =T =P (13)

In view of Eq. (2), we have 1, .,¢p.1 —1,0, =q(n+1)m—q(2n+1)gp," and so we get

In,n+1 =2+2cos (Zn+1 +ln)(p;n _%(|ln+l|+|ln|):|
() o ~ 5200

=2+ 2cos :|q|(2n +1)(¢Z’ —%Sgn(Q)ﬂ

(_l)q/z COS[|‘]|(2H+1)¢,T], if ¢ iseven;
=2+2

(_l)n+(‘1—l)/2 sin |:|q|(2n +1)(0:ln:|, if ¢ isodd.

=2+2cos

(14)

For a known 7, this gives the absolute value and the sign of g. The absolute value |g| can be
determined from the number of intensity zeros or maximums situated along the vertical line given

Z:“q| 2n2+1J’ (15)

where LJ implies the integer part of a number, whereas the number of the maximums is the same

by Eq. (12). The number of zeros is

for odd ¢ and equals to Z —1 for even g.
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Fig. 5. Intensity distributions along the middle line specified by Eq. (12) between the diffracted beams n = 3 and
n = 4. Solid lines correspond to positive g and dashed lines to negative q. Black lines correspond to |q| = 1, grey
to |g| = 2 and light grey to |q| = 3. Solid and dashed grey lines coincide with each other.

The above situation is illustrated by Fig. 5. The |g| value can be readily determined from the
number of minima or maxima observed, using Eq. (15). In addition, the cases of positive and
negative ¢ differ in a distinct way: the positions of the maxima for ¢ > 0 turn into those of the
minima for ¢ <0, and vice versa. This does not work in case of even g: the solid and dashed grey
lines in Fig. 5 coincide and, therefore, the sign of even g cannot be determined from the positions
of intensity minima and maxima in the middle line given by Eq. (12). However, the situations with

the positive and negative ¢ are rather different at the other points located between x=a, and
X =a,,; : a comparison of Figs. 2, 3, 4 and 6 shows that the sign of ¢ can readily be identified via

a slight inclination of the interference fringes near the x axis. Due to combined action of the screw
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and spherical components of wavefronts of the diffracted orders, the interference lines are not
parallel to the x axis: they go slightly “up’ (or ‘down’) for the positive (or negative) g with
increasing x. Of course, this rule is also valid for the odd ¢, and, again, it can be used for detecting
the g sign. The latter solution may appear to be more suitable in practice than tracing alteration of
the minima and maxima along the middle line defined by Eq. (12).
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Fig. 6. Pattern of multiple OV beams formed by FG (g = —2) in the 3"~7" diffracted orders. The other conditions
are the same as in Fig. 4.

Additional helpful rules can be seen from incremental growth in the numbers of interference
fringes occurring with increasing diffraction order. According to Eq. (15), the total number of
zeros or maxima for consecutive orders n and n+ 1 increases by |g|. Under conditions
corresponding to Fig. 4 and Fig. 6 for the lines x = 3.5 (between the 3™ and 4™ orders, n = 3), 4.5
(n=4) and 5.5 (n=5), ..., the number of zeros amounts respectively to 7, 9, 11,..., i.e. the
increment is 2 = |g|. Likewise, in Fig. 7 this increment expectedly equals to 1 and in Fig. 8 it is 3.

In 6 7 8 9 10
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Fig. 7. Pattern of multiple OV beams formed by FG (g = 1) in the 6"—10" diffracted orders, as calculated for the
Kummer beam model given by Egs. (7)—(9) with by = 0.2 mm. Distance z is the same as in Figs. 2-4 and 6, and
distance x is measured from the zero-order beam axis. The meaning of white lines is the same as in Fig. 3.

The regularities discussed above can be used, e.g., for express diagnostics of the FGs, if one
needs to learn on the topological charge ¢ of the phase singularity embedded. However, detection
of some intensity minima or maxima located far from the x axis can be difficult in practice because
of low diffracted beam intensities at large y. For example, following from Eq. (15) the number of
zeros along the vertical lines x =3.5 cm (n=3) and x =4.5 cm (n =4) in Fig. 4 and Fig. 6 (¢ =2)
should be equal to 7 and 9, while only 5 and 7 minima are really seen: the intensity minima
situated at high |y| are hardly discernible in practice because of the low local intensity and
inevitable noise contamination. In such cases, observation of the interference pattern within a
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limited vertical segment can be purposeful. If one takes only the brightest interference lines into
account, their numbers in Fig. 2 are 3, 5 and 7 (between the 3™ and 4™, the 4™ and 5™, and the 5™
and 6™ orders); in Fig. 4 and Fig. 6 one sees 4, 6 and 8 lines, thus clearly testifying the value
lgl =2. This criterion seems to be the most stable against practically inevitable noises and
distortions: in practical experiments, due to the presence of many orders, it is usually not difficult
to find several of those orders for which the incremental growth in the fringe numbers can be
reliably identified.

In more accurate measurements, the positions of the bright lines near the x axis can also be
helpful. According to Eq. (14), the regularities are different for the even and odd |g|. In case of
even |g|, the interference pattern for every n reveals an extremum at y = 0: a minimum for |g| = 2,
6, 10, ... and a maximum for |¢| =4, 8, 12,... (cf. Fig. 1, Fig. 4 and Fig. 6). In case of odd |g|, the
maxima and minima are situated just above or just below the horizontal axis y = 0, and, for |g| = 1,
5, 9, ..., the intensity above the x axis is maximal at even n and minimal at odd n (cf. the
interference lines between the diffracted beams of the 6 and 7, 7" and 8™, 8" and 9", and 9" and
10™ orders in Fig. 7). For |g| =3, 7, 11, ..., the vertical intensity distribution along the middle line
given by Eq. (12) shows the opposite behaviour: one can see the minima above the x axis at even n
and the maxima at odd 7 (cf. the interference lines between the diffracted beams of the 2™ and 3",
3" and 4™ 4™ and 5™, and 5™ and 6™ orders in Fig. 8).

In 6 9 12 15 18
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Fig. 8. Pattern of multiple OV beams formed by FG (g = 3) in the 2"°-6" diffraction orders, as calculated for the
Kummer beam model given by Egs. (7)—(9) with b, = 0.2 mm. Distance z is the same as in Fig. 7 and distance x
is measured from the zero-order beam axis. The meaning of white lines is the same as in Fig. 3.

The other possible approaches to diagnosing the FGs can employ the apparent fact visible in
all of the above figures: due to superposition of the beams of different diffraction orders, an
expected ring-like structure in each order is ‘fractioned’ into a ‘necklace’ of bright spots, whose
number systematically increases with increasing » and |g|. However, the considered examples
show no distinct quantitative regularity in this increase: while the rings corresponding to n =4, 5
and 6 in Fig. 4 and Fig. 6 are split respectively into 8, 10 and 12 spots, the rings n =8 and n =9 in
Fig. 7 are both split into 10 spots. In the situation observed in Fig. 8, the rings of the orders n =3,
4 and 5 are decomposed into 10, 14 and 18 spots. Here a sort of regularity seems to be restored,
though the increment value 4 is not quite understandable. Besides, the experimental identification
of the separate spots within the presumed rings is sometimes difficult. For instance, in Fig. 6 and
Fig. 7 there are ‘doubtful’ bright spots within the expected 6™- and 9™-order ‘rings’ which are
marked by asterisks. They are positioned at larger distances from the beam axis than the other
ones, for which reason they have not been taken into account when reckoning the number of the
ring ‘fragments’ a few lines above. However, inevitable distortions of the theoretical pattern in real
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experiments can make these maxima visually equivalent to the others so that calculations of the
number of bright spots may be ambiguous. Probably, for this reason the numbers of the bright
spots in the ‘necklaces’ seen in Fig. 2 differ from the theoretical predictions illustrated in Fig. 4
and Fig. 6.
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Anomayia. Cuneyisapui onmuuni nyuku, WO NEPeHoOCAMb ONMUYHI BUXOPU, 30e0iNbUlo20
2eHEPYIOMb 3a 0ONOMO20K MOHKUX OIHapHUX Ipamok 3 Oigyprayicto wmpuxie (“6unkonoodiouni”
2onoepamu), AKi nPOOYKyromyv HAOIp Ou@pazo8anux nyuKie 3 uxopamu pisHux 3apsois. 3azeuuail
BUKOPUCIMOBYIOMb | OOCTIONCYIOMb Huule 0OUH OKPEMO G3AMutl ny4ox. Y yiti pobomi posensanymo
6ecv Habip Ou@pazosanux BUXPOBUX NYUKI6, AKI 3G NEGHUX YMOB8 B3AEMHO IHmepgepyroms i
Gopmyroms  xapaxmepui cmyau, Ol AKUX Kilbyeea CMPYKmMypa OKpPeMux 6GUXPOGUX NYUKIG
3AMIHAEMbCSL CePIeio SACKPABUX | MEMHUX JIHIU MIJC CYCIOHIMU Ou@paryitinumu nopsaokamu. L
cmyau, 0obpe po3suHymi O GUCOKUX OUPPAKYILIHUX NOPAOKIE, 8UABNAIOMb OCHOBHI NPOCMOPOEi
enacmusocmi Ouppazosanux NyuKie i GUIKONOOIOHOI epamKu, UKOPUCTAHOT 0151 IXHbOI eeHepayi.
3okpema, ye niomeepoicye meopemuuny mooens ougpazosanux nyuxie (moodensv nyuxie Kymmepa)
i dae 3mo02y GusHauumMu 3HAK | abCOMOmMHY 8enuyuny hazoeoi cuneynaprocmi, 80yY008aHOI &
201102paAMmy.
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