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Abstract. Singular light beams with optical vortices (OVs) are often generated by 
means of thin binary gratings with groove bifurcation (‘fork’ holograms), which 
produce a set of diffracted beams with different OV charges. Though a single 
separate beam is usually employed and studied, here we consider a whole set of 
diffracted OV beams which, under certain conditions, are involved in efficient 
mutual interference to form a characteristic pattern where the ring-like structure of 
separate OV beams is replaced by a series of bright and dark lines between the 
adjacent diffraction orders. This pattern, which is well developed for high diffraction 
orders, reflects the main spatial properties of the diffracted beams as well as those of 
a ‘fork’ grating used for their generation. In particular, this confirms a theoretical 
model for the diffracted beams, a so-called Kummer beam model, and enables one 
to determine the sign and the absolute value of the phase singularity embedded in 
the hologram. 
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Light beams with optical vortices (OVs), or screw wavefront dislocations, have been attracting a 
great attention of researchers for several decades [1–5]. Numerous researches and practical 
applications of OVs have given rise to diverse methods for their generation. A thin holographic 
grating with groove bifurcation (a ‘fork’) is one of the simplest and the most universal practical 
means designed for this purpose [6–10]. Usually, when an incident paraxial beam with regular 
(non-vortex) wavefront (e.g., a monochromatic Gaussian laser beam with a wavenumber k) 
intersects the central part of such a ‘fork’ grating (FG) along the normal to its plane, a set (or a 
‘fan’) of diffracted beams with directions determined by the angles 

2
n n

kd


  ,      (1) 

which depend on the diffraction order n and the grating period d, is formed behind the grating (see 
Fig. 1). The nth-order diffracted beam carries the OV with the topological charge  

nl nq ,      (2) 

where q is a fixed topological charge of the phase singularity ‘embedded’ in the grating. In this 
report we restrict ourselves to the case of integer q, where the ‘central’ vertical groove is divided 
into (|q| + 1) branches (in particular, we have q = 1 in Fig. 1). 

In general practice, only one of the diffracted beams with a desired OV charge is used; all the 
other diffracted orders are filtered out and take no part in further manipulations. However, 
simultaneous observation and analysis of the multiple diffracted beams may provide some 
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important information and give a unique possibility for analyzing the spatial structure of the 
separate diffracted beams. Besides, this can enable diagnosing the properties of the generating 
diffraction element.  

 

Fig. 1. Multiple OV beams produced by an FG. The Cartesian coordinate system (x, y, z) is associated with the 
grating so that the z axis is normal to the FG plane and intersects it exactly in the bifurcation point (the FG 
‘centre’), while the y axis is parallel to the grooves far from the centre. All of the axes of diffracted beams belong 
to the diffraction plane xz. 

A characteristic pattern displayed in Fig. 2 can easily be observed when dealing with a 
‘simple’ binary FG which has no special groove profiling aimed at removing some diffraction 
orders or, at least, at minimizing their numbers available. Normally it cannot be seen in the 
vicinity of the incident beam axis where the diffracted beams of the several first orders are 
concentrated, which are the most intense and so convenient for observation. But at the periphery of 
the diffracted ‘fan’, the diffracted beams start overlapping. This manifests itself in characteristic 
interference fringes that ‘stretch’ between the adjacent diffracted OV beams so that the expected 
ring-like beam spots are completely replaced by the quasiperiodic patterns of bright and dark strips 
(see Fig. 2).  

Quite unexpectedly, we have not been able to find any description or interpretation of such 
patterns in the current literature. This is why the main purpose of this work is to explain the pattern 
and inspect how it can be used for investigating the spatial structure of the diffracted beams and 
for diagnosing the FG structure.  
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Fig. 2. Pattern of multiple OV beams formed after diffraction of a Gaussian laser beam with the waist radius 
b0 = 0.2 mm at the FG with q = 2, as observed in the 3rd–7th diffracted orders on a screen z = 100 cm distanced 
from the FG. Expected topological charges of the generated OV beams are indicated above the OVs; figures 
below indicate the diffraction orders; distance x is measured from the zero-order beam centre; white line is a 
trace of the diffraction plane. The other parameters of the experiment are as follows: d = 1/16 mm, k  105 cm–1 
(He-Ne laser), and 1 = 0.01 rad. 

We start with noticing that the spatial distribution of the complex amplitude of the nth-order 
diffracted beam in the screen plane can be expressed in the form 

        2, , exp exp
2
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where 1na nz  is the position of the nth diffracted beam axis on the screen (the condition 1 << 1 

is implied). Here we have 
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with = sgn(q) = 1 being the sign of the phase singularity embedded in the FG. The last 
exponential term in Eq. (3) expresses the additional phase of slightly inclined nth-order beam in 
the observation plane normal to the nominal axis z (see Fig. 1). Then the resulting observed field 
pattern may be expressed as 

   
2

, , , , ,
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

  ,   (5) 

where M and N are the minimal and maximal numbers of the diffraction orders whose influence 
cannot be neglected. Note that simultaneous replacements x x  , n n   and     do not 
modify Eq. (3) and, consequently, Eq. (5), so that the resulting field pattern is symmetric with 
respect to the y axis. In full agreement with the experimental observation, this permits us to restrict 
our consideration to the positive x only. For this reason, only positive diffraction orders, n > 0, will 
be considered below. 

In the most cases one can expect that the field pattern in the region 1n na x a    may be ev-

aluated via Eq. (5) by substituting M n  and 1N n  , i.e. allowance for only two adjacent dif-
fracted beams is satisfactory. However, Eq. (5) gives a possibility to take into account the influ-
ence of long-distanced members of the sequence of diffracted beams, besides of the nearest ones. 

The function  n nU r  describes the details of the diffracted beam shape, which depend on the 

model used for its characterization. In many cases, when the main attention is paid to the screw 
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wavefront dislocation and the vortex properties of the FG-generated diffracted beam, it is suitable 
to describe it with a standard OV beam model supplied by the Laguerre–Gaussian (LG) mode [1, 
3, 4]: 

     
2 2

2exp exp 1
22
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where the beam radius b, the wavefront curvature radius R and the additional phase shift (Gouy 
phase)  are conveniently fitted [11]. These are associated with the ‘conventional’ beam waist 

radius b1 and the corresponding ‘conditional’ Rayleigh range 2
1 1Rz kb  chosen so that Eq. (8) 

could supply the best fitting to the real diffracted OV beam: 
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The LG approximation given by Eq. (6) can be useful while describing the spatial profile of a 
single diffracted beam, at least in its separate cross sections [3, 6, 7, 11, 12]; however, it becomes 
invalid when applied to the ‘fan’ of diffracted OV beams simultaneously produced by a single FG. 
Fig. 3 demonstrates that, even in the situation where the beams efficiently overlap, the interference 
pattern calculated via the LG representation is quite different from that observed in practice: the 
fringes are almost rectilinear and strictly localized inside the bright rings. Although the 
calculations illustrated in Fig. 3 have been performed for the values M = 3 and N = 7 in Eq. (5), 
exactly the same picture could be obtained by combining the interference patterns calculated for 
each pair of the nearest diffracted beams: this is a consequence of very rapid exponential decay of 
the LG beam intensity with growing nr . 

 

Fig. 3. Pattern of multiple OV beams formed by FG (q = 2) in the 3rd–7th diffracted orders under conditions 
corresponding to Fig. 2, as calculated with Eq. (5) (M = 3 and N = 7) for the LG model given by Eqs. (6) and (7). 
‘Conventional’ waist radius is b1 = 0.08 mm, vertical lines correspond to the middle distance between the axes 
of diffracted beams, and horizontal line is a trace of the diffraction plane (see Fig. 1). Topological charges are 
indicated near the OV centers and corresponding diffraction orders are indicated as in Fig. 2, and distance x is 
measured from the zero-order beam centre.  

In this situation, one should resort to a more accurate model of the diffracted OV beam. As 
known for the case of a simple binary FG, the most adequate is a model of Kummer (or 
hypergeometric Gaussian) beam [10, 11, 13]: 
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2
0Rz kb       (8) 

is the Rayleigh range of the incident Gaussian beam waist of which is supposed to coincide with 
the FG plane (with b0 being the waist beam radius at the level e–1 of the maximum intensity), and  

 

2 2

4 1
n

n
R

kr bA
z i z z

     
.    (9) 

The results of calculations based on Eqs. (7)–(9) and (5) for M = 3 and N = 7 are presented in 
Fig. 4, which should be compared to Fig. 2. Since the diffracted beams with n < 3 and n > 7 are not 
taken into account, Fig. 4 is expected to represent the correct results only in the region 
3 cm < x < 7 cm, including the 4th-, 5th- and 6th-order diffracted beams. Confronting this pattern 
with the relevant area shown in Fig. 2, we conclude that the calculated pattern is qualitatively 
similar to the experimental one and so the Kummer beam model of the diffracted beams indeed 
explains the actual observations. 
 

 

Fig. 4. Pattern of multiple OV beams formed by FG (q = 2) in the 3rd–7th diffracted orders under conditions 
corresponding to Fig. 2, as calculated for the Kummer beam model given by Eqs. (7)–(9) with b0 = 0.2 mm. 
Topological charges, diffraction orders, and distances x and z are the same as in Fig. 2 and Fig. 3. The meaning 
of white lines is the same as in Fig. 3. 

Eqs. (3), (7) and (5) describe fairly well the field structure observed, though they are not 
suitable for analytical quantitative analysis. To make the latter more feasible, we remark that the 
main details of the interference pattern, e.g. the locations of the dark and bright lines, are 
determined by the phase of the field given by Eq. (7), whereas the field amplitude specifies only 
their relative brightnesses. Therefore, we consider the ‘purely phase’ part of Eq. (7) which can be 
treated as a version of a more general Eq. (3), with 
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In this case one can easily find the ‘intensity distribution’, taking only the two nearest diffraction 
orders into account: 
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where Eqs. (4) have been employed. Just at the middle distance between the axes of the nth and 
(n+1)th diffracted beams with the topological charges ln and ln+1, 
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the angular parameters n and n+1 in Eq. (11) are determined by the relations 
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For a known n, this gives the absolute value and the sign of q. The absolute value |q| can be 
determined from the number of intensity zeros or maximums situated along the vertical line given 
by Eq. (12). The number of zeros is 

2 1
2

nZ q     
,    (15) 

where ...    implies the integer part of a number, whereas the number of the maximums is the same 

for odd q and equals to 1Z   for even q. 

 
Fig. 5. Intensity distributions along the middle line specified by Eq. (12) between the diffracted beams n = 3 and 
n = 4. Solid lines correspond to positive q and dashed lines to negative q. Black lines correspond to |q| = 1, grey 
to |q| = 2 and light grey to |q| = 3. Solid and dashed grey lines coincide with each other. 

The above situation is illustrated by Fig. 5. The |q| value can be readily determined from the 
number of minima or maxima observed, using Eq. (15). In addition, the cases of positive and 
negative q differ in a distinct way: the positions of the maxima for q > 0 turn into those of the 
minima for q < 0, and vice versa. This does not work in case of even q: the solid and dashed grey 
lines in Fig. 5 coincide and, therefore, the sign of even q cannot be determined from the positions 
of intensity minima and maxima in the middle line given by Eq. (12). However, the situations with 
the positive and negative q are rather different at the other points located between nx a  and 

1nx a  : a comparison of Figs. 2, 3, 4 and 6 shows that the sign of q can readily be identified via 

a slight inclination of the interference fringes near the x axis. Due to combined action of the screw 
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and spherical components of wavefronts of the diffracted orders, the interference lines are not 
parallel to the x axis: they go slightly ‘up’ (or ‘down’) for the positive (or negative) q with 
increasing x. Of course, this rule is also valid for the odd q, and, again, it can be used for detecting 
the q sign. The latter solution may appear to be more suitable in practice than tracing alteration of 
the minima and maxima along the middle line defined by Eq. (12). 

 
Fig. 6. Pattern of multiple OV beams formed by FG (q = –2) in the 3rd–7th diffracted orders. The other conditions 
are the same as in Fig. 4. 

Additional helpful rules can be seen from incremental growth in the numbers of interference 
fringes occurring with increasing diffraction order. According to Eq. (15), the total number of 
zeros or maxima for consecutive orders n and n + 1 increases by |q|. Under conditions 
corresponding to Fig. 4 and Fig. 6 for the lines x = 3.5 (between the 3rd and 4th orders, n = 3), 4.5 
(n = 4) and 5.5 (n = 5), …, the number of zeros amounts respectively to 7, 9, 11,…, i.e. the 
increment is 2 = |q|. Likewise, in Fig. 7 this increment expectedly equals to 1 and in Fig. 8 it is 3. 

 

Fig. 7. Pattern of multiple OV beams formed by FG (q = 1) in the 6th–10th diffracted orders, as calculated for the 
Kummer beam model given by Eqs. (7)–(9) with b0 = 0.2 mm. Distance z is the same as in Figs. 2–4 and 6, and 
distance x is measured from the zero-order beam axis. The meaning of white lines is the same as in Fig. 3. 

The regularities discussed above can be used, e.g., for express diagnostics of the FGs, if one 
needs to learn on the topological charge q of the phase singularity embedded. However, detection 
of some intensity minima or maxima located far from the x axis can be difficult in practice because 
of low diffracted beam intensities at large y. For example, following from Eq. (15) the number of 
zeros along the vertical lines x = 3.5 cm (n = 3) and x = 4.5 cm (n = 4) in Fig. 4 and Fig. 6 (q = 2) 
should be equal to 7 and 9, while only 5 and 7 minima are really seen: the intensity minima 
situated at high |y| are hardly discernible in practice because of the low local intensity and 
inevitable noise contamination. In such cases, observation of the interference pattern within a 
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limited vertical segment can be purposeful. If one takes only the brightest interference lines into 
account, their numbers in Fig. 2 are 3, 5 and 7 (between the 3rd and 4th, the 4th and 5th, and the 5th 
and 6th orders); in Fig. 4 and Fig. 6 one sees 4, 6 and 8 lines, thus clearly testifying the value 
|q| = 2. This criterion seems to be the most stable against practically inevitable noises and 
distortions: in practical experiments, due to the presence of many orders, it is usually not difficult 
to find several of those orders for which the incremental growth in the fringe numbers can be 
reliably identified. 

In more accurate measurements, the positions of the bright lines near the x axis can also be 
helpful. According to Eq. (14), the regularities are different for the even and odd |q|. In case of 
even |q|, the interference pattern for every n reveals an extremum at y = 0: a minimum for |q| = 2, 
6, 10, … and a maximum for |q| = 4, 8, 12,… (cf. Fig. 1, Fig. 4 and Fig. 6). In case of odd |q|, the 
maxima and minima are situated just above or just below the horizontal axis y = 0, and, for |q| = 1, 
5, 9, …, the intensity above the x axis is maximal at even n and minimal at odd n (cf. the 
interference lines between the diffracted beams of the 6th and 7th, 7th and 8th, 8th and 9th, and 9th and 
10th orders in Fig. 7). For |q| = 3, 7, 11, …, the vertical intensity distribution along the middle line 
given by Eq. (12) shows the opposite behaviour: one can see the minima above the x axis at even n 
and the maxima at odd n (cf. the interference lines between the diffracted beams of the 2nd and 3rd, 
3rd and 4th, 4th and 5th, and 5th and 6th orders in Fig. 8). 

 
Fig. 8. Pattern of multiple OV beams formed by FG (q = 3) in the 2nd–6th diffraction orders, as calculated for the 
Kummer beam model given by Eqs. (7)–(9) with b0 = 0.2 mm. Distance z is the same as in Fig. 7 and distance x 
is measured from the zero-order beam axis. The meaning of white lines is the same as in Fig. 3. 

The other possible approaches to diagnosing the FGs can employ the apparent fact visible in 
all of the above figures: due to superposition of the beams of different diffraction orders, an 
expected ring-like structure in each order is ‘fractioned’ into a ‘necklace’ of bright spots, whose 
number systematically increases with increasing n and |q|. However, the considered examples 
show no distinct quantitative regularity in this increase: while the rings corresponding to n = 4, 5 
and 6 in Fig. 4 and Fig. 6 are split respectively into 8, 10 and 12 spots, the rings n = 8 and n = 9 in 
Fig. 7 are both split into 10 spots. In the situation observed in Fig. 8, the rings of the orders n = 3, 
4 and 5 are decomposed into 10, 14 and 18 spots. Here a sort of regularity seems to be restored, 
though the increment value 4 is not quite understandable. Besides, the experimental identification 
of the separate spots within the presumed rings is sometimes difficult. For instance, in Fig. 6 and 
Fig. 7 there are ‘doubtful’ bright spots within the expected 6th- and 9th-order ‘rings’ which are 
marked by asterisks. They are positioned at larger distances from the beam axis than the other 
ones, for which reason they have not been taken into account when reckoning the number of the 
ring ‘fragments’ a few lines above. However, inevitable distortions of the theoretical pattern in real 
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experiments can make these maxima visually equivalent to the others so that calculations of the 
number of bright spots may be ambiguous. Probably, for this reason the numbers of the bright 
spots in the ‘necklaces’ seen in Fig. 2 differ from the theoretical predictions illustrated in Fig. 4 
and Fig. 6. 
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Анотація. Сингулярні оптичні пучки, що переносять оптичні вихори, здебільшого 
генерують за допомогою тонких бінарних ґраток з біфуркацією штрихів (“вилкоподібні” 
голограми), які продукують набір дифрагованих пучків з вихорами різних зарядів. Зазвичай 
використовують і досліджують лише один окремо взятий пучок. У цій роботі розглянуто 
весь набір дифрагованих вихрових пучків, які за певних умов взаємно інтерферують і 
формують характерні смуги, для яких кільцева структура окремих вихрових пучків 
заміняється серією яскравих і темних ліній між сусідніми дифракційними порядками. Ці 
смуги, добре розвинуті для високих дифракційних порядків, виявляють основні просторові 
властивості дифрагованих пучків і вилкоподібної гратки, використаної для їхньої генерації. 
Зокрема, це підтверджує теоретичну модель дифрагованих пучків (модель пучків Куммера) 
і дає змогу визначити знак і абсолютну величину фазової сингулярності, вбудованої в 
голограму. 


