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Abstract. We have shown that the errors of experimental determination of 
piezooptic coefficients, which are caused by friction appearing between sample 
surfaces and substrates can be eliminated by choosing properly geometrical 
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smaller than 1:3. In this case the error caused by a barrel-shaped distortion is 
reduced approximately to 1%.  
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1. Introduction 
Piezooptic (or photoelastic) effect is a well-known phenomenon of parametric optics [1–4]. The 
effect is successfully utilized in a lot of technical branches, e.g. in stress control and optical 
photoelastic tomography [4–10]. Perhaps the most important application of the piezooptic effect 
consists in operation of optical radiation via acoustooptic perturbation of refractive indices of an 
optical material [11, 12]. As shown in our recent works (see e.g. [13]), the complete analysis of 
acoustooptic interaction and determination of the most efficient experimental geometries may be 
accomplished only when all of photoelastic tensor components are known. What is more, these 
components should be determined with high enough accuracies. The photoelastic coefficients 
( p ) can be directly determined in experiments using an acoustooptic Dixon–Cohen technique 

[14, 15]. In spite of its high precision, this technique cannot reveal the sign of the photoelastic 
coefficients. The latter could be determined only after those coefficients are recalculated on the 
basis of relations p C    (with C  being the elastic stiffness tensor components and   

the piezooptic tensor components), provided that the piezooptic coefficients and the elastic 
modules are known in advance. Though the elastic modules are usually determined with a 
sufficient precision with the aid of a Papadakis technique [16], there remain notable problems with 
the accuracy of piezooptic coefficients.  

Usually the piezooptic effect is studied with polarimetric or interferometric techniques. The 
both techniques are accurate enough with respect to the optical phase difference or the optical 
retardation. A problem appears only when one tries to determine mechanical stresses inside a 
loaded sample. As shown earlier in Ref. [17], the stress tensor components are non-uniformly 
distributed in the parallelepiped-shaped sample, even if a uniaxial compressing load is applied to a 
sample. The reason why a complicated spatial distribution of the stress components appears is 
misalignments of sample loading and a barrel-shaped distortion of a rectangular sample (see 
Fig. 1). So, the error in determination of the stress component 3  is about 30% if the sample is 
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loaded, e.g., along its X3 axis. This error can be reduced down to ~ 14% by accurately aligning the 
sample in a pressure setup and carefully complying the condition of parallelism of the opposite 
sample surfaces. However, the barrel-shaped distortion, which appears due to friction forces 
arising between the upper and lower sample surfaces and the appropriate substrates, cannot be 
eliminated completely.  

  
 

Fig. 1. Scheme of application of 
compressive loading, and a 
barrel-shaped distortion of 
sample appearing due to friction 
force F. 

 
To increase the accuracy of piezooptic experiments, we have suggested a number of methods 

of sample loading producing spatially inhomogeneous distributions of the stress tensor 
components, of which coordinate dependences are known in advance. A four-point bending 
[18,19] and a torsion of a crystalline bar [20, 21] are among these methods. They have turned out 
to be precise enough when determining the piezooptic coefficients. Moreover, some of them (e. g., 
a method of four-point bending) allow determining all of the piezooptic tensor components, at 
least in the easiest cases of isotropic or optically uniaxial crystals.  

Nonetheless, the latter methods reveal a substantial practical disadvantage: they require a lot 
of samples with predetermined sizes and various crystallographic orientations. This necessitates 
growing of many (and large enough) crystalline boules. If one considers a possibility for turning 
again to simpler loading methods, the following questions appear: (i) Could the loading-related 
errors of the piezooptic experiments be minimized by optimizing a geometrical shape of a sample? 
and (ii) Which are those optimal geometrical parameters of the sample, first of all, the ratio of its 
width to its length, that make the errors caused by stress inhomogeneity inside a sample small, at 
least smaller than the errors typical for polarimetric or interferometric experiments themselves? 
The present work is devoted to solving of this problem on the basis of stress tensor distribution 
simulations in the isotropic glass samples. 

2. Simulations of stress distribution and optical phase difference in a sample 
Let us consider a parallelepiped-shaped isotropic BK7-glass sample with a square cross-section 
and different ratios of its width to height (1:1, 1:3 and 1:5). Let the compression load be applied 
along an X3 axis (see Fig. 1). Assume that the loading force is uniformly distributed over the upper 
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and lower surfaces and the substrates are covered by a layer of paper. Then the coefficient of 
friction between the glass and the paper is equal to k = 0.22 (see Ref. [22]). Obviously, the friction 
forces appearing between the upper and lower sample faces and the substrates covered by paper 
should lead to a barrel-shaped distortion of the sample.  

The maximum friction force maxdF  is proportional to the loading stress, i.e. max 3dF k dS , 

where dS  is the small element of square of the surface of the sample under load. The exact 
solutions of the equilibrium equations 

0
jX
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
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for the elastic body having a parallelepiped shape are as follows [23]: 
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, ,   are the Lame coefficients, , ,u v w  the displacement vectors responsible 

for the mechanical strains, and 
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where a, b and c denote respectively the width, the length and the height of the parallelepiped 

sample ( a b  in our case), and , ,nm km kn
i i iK L M  are the coefficients that have to be determined.  

It is evident that, by choosing in appropriate manner the above coefficients, one can select 
one or another boundary condition at the parallelepiped faces and describe different types of 
inhomogeneities. Notice that Bayda [23] has generalized this approach for the case of anisotropic 
parallelepipeds. Here the displacement vectors are as follows: 
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The components of the mechanical stress tensor may be determined using the relations 
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Eqs. (5)–(10) may be simplified when the stress distribution becomes symmetric with respect 
to the mirror planes 3 / 2X c , 1 2X X  and 2 1 1X X   : 
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The symmetric distribution of stresses leads to the following relationships among the coefficients: 
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Here we remind that the coordinate axes 1X , 2X  and 3X  are parallel to parallelepiped edges a, b, 

and c, respectively.  
The exact boundary conditions are given by 
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To simplify the procedure for obtaining the solutions of the stress components, we have accepted 
the condition 3 1    at the lateral faces, since in the absence of friction forces the stress 

components should be given by 

3 1 2 4 5 61, 0, 0, 0, 0, 0            ,  (28) 

which hold true for all of the sample volume. When the friction forces are present, the approximate 
boundary conditions read as 
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Below we will show that the approximate boundary conditions (29) yield in the solutions 
which agree well with the exact conditions (27). We have accepted that the number of harmonics 
is given by , , 1..59n m k  . The relevant even terms can be neglected due to the symmetry of the 

stressed state. 
Having obtained the distributions for all of the stress tensor components, we have simulated 

the phase difference for the case of light propagating along the 2X  axis. The sample has been 

divided into 10 layers (l = 1–10), which are mechanically and optically homogeneous along the 
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light beam direction. Each of the layers has been divided by 10 10i j    cells. The phase 

difference and the orientation of optical indicatrix have been simulated using the Jones matrix 
approach. The Jones matrix for each homogeneous cell may be written as 
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where the phase difference is determined by 
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Here 310 mld   denotes the thickness of the homogeneous cells along the 2X  direction, 

and we have 3 12 2
0 11 12( ) 5.53 10 m /Nn       for the light wavelength 632.8 nm   (see 

Krupych O. et al Ukr.J.Phys.Opt. 2011, 12, 150). The angle of optical indicatrix rotation around 
the 2X  axis is given by the relation 
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The resultant Jones matrix for the case when the beam propagates through all the layers is as 
follows: 
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This matrix is involved in the relation  
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which links the amplitude components of the incident ( 1
inE  and 3

inE ) and the outgoing ( 1
outE  and 

3
outE ) optical waves. Finally, the incident wave has been taken to be circularly polarized: 
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3. Results and discussion 
Fig. 2 to Fig. 4 display the main results of our simulations performed for the stress tensor 
components appearing in the parallelepiped-shaped isotropic glass samples with the square cross-
sections and different width-to-height ratios (1:1, 1:3 and 1:5). For the sample of cubic shape (i.e., 
the ratio 1:1), the stress tensor components 1  and 2  change from –0.013 in the central plane 

1 2X X  (at 3X  = 0.5c) to –0.085 at 3X  = 0.2c and 0.8c (see Fig. 2a, b). The component 3  

reaches its maximum equal to –1.12 in the sample centre and decreases in its absolute value down 
to –1.088 at 3X  = 0.2c and 0.8c (see Fig. 2c). This means that the module of the actual 3  

component observed in the sample centre is 12% higher than the supposed stress which has been 
created in the experiment. 
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Fig. 2. 1 2X X  distributions of stress tensor components for the parallelepiped-shaped isotropic glass sample 

with the square cross-section and the width-to-height ratio equal to 1:1: (a) 1 , (b) 2 , (c) 3 , (d) 4 , (e) 

5 , and (f) 6 . The stress component values represent relative units with respect to 3 1   . Left, central and 

right columns correspond respectively to 3X  = 0.2c, 0.5c and 0.8c. 
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Fig. 3. 1 2X X  distributions of stress tensor components for the parallelepiped-shaped isotropic glass sample 

with the square cross-section and the width-to-height ratio equal to 1:3: (a) 1 , (b) 2 , (c) 3 , (d) 4 , (e) 

5 , and (f) 6 . The stress component values represent relative units with respect to 3 1   . Left, central 

and right columns correspond respectively to 3X  = 0.2c, c/2 and 0.8c. 
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Fig. 4. 1 2X X  distributions of stress tensor components for the parallelepiped-shaped isotropic glass sample 

with the square cross-section and the width-to-height ratio equal to 1:5: (a) 1 , (b) 2 , (c) 3 , (d) 4 , (e) 

5 , and (f) 6 . The stress component value represent relative units with respect to 3 1   . Left, central and 

right columns correspond respectively to 3X  = 0.2c, 0.5c and 0.8c. 
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The shear stress components 4  and 5  become as large as 0.8  in some parts of thin 

layers close to the lateral faces (at 3X  = 0.2c and 0.8c – see Fig. 2d, e), though they are equal to 

zero in the central plane of the sample (at 3X  = 0.5c). On the other hand, the component 6  

reaches the value of 0.1  even in the central cross-section, though it remains zero in the centre for 

all of the cross-sections (see Fig. 2f). The most important, the appearance of different components 
of the stress tensor would lead to incorrect determination of magnitude of the stress applied and, 
consequently, to the error occurring in determination of the piezooptic coefficients. Roughly 
speaking, the estimation error characteristic for the component 3  is equal to ~ 12% for the 

sample with the width-to-height ratio equal to 1:1. 
For the sample with the width-to-height ratio equal to 1:3, the stress tensor components 1  

and 2  (see Fig. 3a, b) are equal to 0.0015 in the central cross-section (at 3X  = c/2) and reach the 

value of 0.002 at 3X  = 0.2c. At the same time, the 3  component is equal to –1.005 at 3X  = c/2 

and reaches the value of –1.05 at the upper and lower sample faces (at 3X  = 0.2c and 0 – see 

Fig. 3c). The shear components 4  and 5  are equal to 0.025  near the lateral sample faces (at 

3X  = 0 and c) and remain zero at 3X = c/2 (see Fig. 3d, e). The component 6  is an order of 

magnitude smaller than the other shear components (see Fig. 3f). Since the maximum deviation of 
the actual stress from that applied to the sample is peculiar for the 3  component (–1.05), the 

maximum error for the stress may be evaluated as ~ 5%. Notice that this error decreases by an 
order of magnitude in the central part of the sample, being equal only to 0.5%. The latter value is 
surely not higher than the errors caused by various imperfections of the polarimetric or 
interferometric techniques. 

Let us proceed to the sample with the width-to-height ratio equal to 1:5. In this case the stress 
tensor components 1  and 2  are zero in the central cross section (at 3X  = 0.5c), though they 

become equal to 0.003 at 3X  = 0.2c and 0.8c (see Fig. 4a, b). The 3  component is equal to –

1.0001 at 3X  = 0.5c and –1.015 at 3X  = 0.2c and 0.8c (see Fig. 4c). The shear stress components 

4  and 5  are equal to 0.008  near the lateral sample faces (at 3X  = 0.2c and 0.8c) and remain 

zero at 3X  = 0.5c (see Fig. 4d, e). Finally, the shear component 6  reaches its maximum equal to 

0.006  close to the upper and lower sample surfaces. Hence, the latter width-to-height ratio 

manifests the maximum stress error equal to 1.5%. It is characteristic for the 3  component near 

the upper and lower sample faces. Nevertheless, since this error is some order of magnitude 
smaller in the central part of the sample, one can neglect it while determining the piezooptic 
coefficients. 

As the last stage of our analysis, we have simulated the associated changes occurring in the 
optical phase difference due to inhomogeneous stress distribution. The phase difference is 

determined as hom inh( ) ij ijij     , where hom
ij  and inh

ij  are the total phase differences 

determined from relation 1 3inh arg( / )ij out outE E  , which follows from Eq. (33) respectively for 

the cases of homogeneous (the only constant nonzero component 6 2
3 2.4 10 N/m   ) and 

inhomogeneous (all of the stress tensor components are nonzero) stress distributions. Fig. 5 
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reproduces the spatial maps of the phase difference changes obtained for the samples having the 
width-to-height ratios equal to 1:1, 1:3 and 1:5. Even if the geometrical ratio is equal to 1:1, the 
optical indicatrix rotation angle within the homogeneous cells located near the upper and lower 
surfaces does not exceed 2 deg and remains negligibly small in the central part of the sample. 
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Fig. 5. 1 3X X  maps of phase difference changes, as simulated for the samples with the width-to-height ratios 
equal to 1:1 (a), 1:3 (b) and 1:5 (c). 

In this respect let us remind that, for all of the three cases presented in Fig. 5, we have 

hom 39 degij   at the sample thickness equal to 10–2 m. When the beam propagates through the 

centre of the 1 3X X  cross-section of the sample, the relative errors for the phase difference are 

equal to 8.4, 0.4 and 0.00025% for the geometrical ratios 1:1, 1:3 and 1:5, respectively. Even in 
the worst case, when one considers whole cross-section of the sample under the condition that the 
ratio is equal or less than 1:3, the maximal error for the phase difference does not exceed 3.8%. 

4. Conclusions 
In this work we have demonstrated that the error of experimental determination of the piezooptic 
coefficients, which is caused by friction appearing between the sample surfaces and the substrates, 
can be eliminated by choosing properly the geometrical parameters of the sample. In the case of 
initially isotropic samples with the square cross-section, the width-to-height ratio has to be equal 
or smaller than 1:3. This reduces the error for the phase difference down to 3.8% provided that the 
absolute value of the phase difference is equal to 39 deg. It is worth noticing that our conclusion 
agrees well with the experimentally based data presented in Ref. [4]. Moreover, if one employs a 
probing optical beam with the diameter ~ 2 mm, this error could be still further reduced (at least to 
0.7%) under the condition that the sample height equals to 9 mm. Hence, the main remaining 
problems of the piezooptic experiments are accurate application of mechanical stresses, precise 
alignment of samples and preparation of samples with parallel enough faces. 
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Анотація. У роботі показано, що похибку експериментального визначення п’єзооптичних 
коефіцієнтів, спричинену силами тертя між поверхнями зразка і підкладками, можна 
усунути належним підбором геометричних параметрів зразка. Відношення ширини зразка 
до його висоти повинно дорівнювати або бути меншим за 1:3. У такому разі похибку, 
спричинену бочкоподібною дисторсією, можна зменшити приблизно до 1%.  


