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1. Introduction 
One of the major problems of acousto-optic (AO) materials science is searching for the crystals 
with high enough values of acousto-optic figure of merit (AOFM). This parameter plays a role of a 
coupling coefficient between the efficiency of AO interactions and the acoustic wave (AW) power. 
If the AOFM is high, the operating power can be reduced, thus implying decreased energy 

consumption, which is always important. The AOFM is defined as 6 2 3
2 /efM n p  v , where n is 

the refractive index, ρ the material density, v the AW velocity, and pef the effective elastooptic 
coefficient (EEC) [1]. Most of these constitutive coefficients are associated with tensor quantities 
and so depend on the geometry of AO interactions. Hence, one can, in principle, find an optimal 
phase-matched vector diagram, for which a maximal AOFM is reached, when choosing properly 
the geometry of AO diffraction. 

The above problem is not as easy as it might have seemed at a first glance. In general, the 
AW velocities can be obtained following from the Christoffel tensor after finding its eigenvalues, 
which can be done either numerically or analytically. However, the EEC is determined by 
cumbersome relations that depend upon the directions of propagation and polarization of the 
interacting optical waves and the AW. Here the polarization and propagation directions of the AW 
determine nonzero strain tensor components, which affect optical impermeability tensor through 
elasto-optic effect, and specify the set of elasto-optic tensor components involved into the EEC. 
The strain tensor components are given by derivatives of the components of displacement vector 
with respect to the coordinates [2]. Notice that the displacement vectors for each of the three 
acoustic eigenwaves (one quasi-longitudinal and two quasi-transverse ones) coincide with the 
eigenvectors of the Christoffel tensor. However, accounting for the effect of non-orthogonality of 
the AWs leads to appearance of more than one off-diagonal components in the Christoffel tensor, 
thus making it impossible to solve the appropriate equation analytically. Nonetheless, it is 
necessary to obtain the analytical relations for the EEC if one has to grasp the reasons for certain 
diffraction efficiency. 
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As a consequence, for solving this problem one is usually forced to use the numerical 
approach [3, 4] which is not as informative as the analytical one. The other alternative approaches 
are based on further approximations. For example, the AOFM anisotropy in lithium niobate has 
been calculated in Ref. [5] via the analysis of only anisotropic AO interactions with the 
longitudinal AWs. Only a collinear type of AO interactions has been analyzed for the LiNbO3 
crystals in the work [6]. In our recent works [7–9] we have neglected completely the non-
orthogonality of AWs. As a matter of fact, such an approach can be justified only when the angle 
of non-orthogonality is small enough. The other possibilities appear if one restricts oneself to the 
AO interactions in the principal crystallographic planes only. Then one can indeed derive the 
analytical relations for the EEC with accounting for the polarization non-orthogonality for the 
AWs [10]. On the other hand, this simplified approach can be applied to the crystals of at least 
orthorhombic symmetry, because the general problem of analytical solutions reappears again for 
the crystalline materials of lower symmetries. 

In the present work we develop a general approach in order to obtain analytical relations for 
the strain tensor components, which are caused by the AWs that propagate along arbitrary 
directions, with taking the non-orthogonality (quasi-longitudinality or quasi-transversality) effect 
into account. 

2. Derivation of analytical relations 
To describe all the possible directions of AW propagation, we start with the initial 
crystallophysical coordinate system XYZ. This is a Cartesian system where all the constitutive 
tensors are represented. To pass to arbitrary directions in crystals, we need to rotate the system 
mentioned above around two non-collinear axes. To be specific, one can first rotate the coordinate 
system XYZ around the Z axis by the angle +φ (counter-clockwise), which gives the system X'Y'Z' 
with Z' = Z (see Fig. 1). The second rotation is performed around the Y' axis by the angle  . In 
this manner we obtain the coordinate system X''Y''Z'', with Y'' = Y'.  
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Y =  ' ''Y
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Fig. 1. Transformations XYZX'Y'Z'X''Y''Z'' of 
Cartesian coordinate system made using successive 
rotations by angle φ around Z axis and by angle   
around Y' axis. 

Transformations of the coordinate system under rotations around the principal axes X, Y and 
Z are described by so-called transformation matrices Tx(χ), Ty( ) and Tz(φ): 

1 0 0 cos 0 sin cos sin 0
( 0 cos sin , ( 0 1 0 , ( sin cos 0

0 sin cos sin 0 cos 0 0 1
x y z

   
      

   

     
           
     

     

T T T . (1) 

In our case we deal with sequential rotations around the Z axis by the angle +φ and around 
the Y' axis by the angle  . Then the resulting transformation matrix Т2(φ,  ) is obtained by 
multiplying the elementary matrices Ty( ) and Tz(φ): 
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     
cos cos cos sin sin

, sin cos 0 .
sin cos sin sin cos

y z

    
     

    

 
     
  

T2 T T  (2) 

Let us assume that the AW propagates along the Z'' axis. This means that the AW vector 
(AWV) K and the unit vector of wavefront normal (VWN) ξ = K/|K| (|ξ| = 1) are parallel to the Z'' 
axis: K || Z'' and ξ || Z''. It is seen from Fig. 1 that the angles φ and   are respectively azimuthal 
angle and polar (or zenith, or inclination) angle of the VWN ξ in the spherical coordinate system. 
The components of the VWN ξ written in the XYZ system are nothing but directional cosines α, β 
and γ of the AWV K: 

 
1 2

3

sin cos , sin sin ,

cos , sin cos ; sin sin ; cos
x y

z

         

         

     

   
  (3) 

It is known that searching for plane-wave solutions of the three-dimensional equation of 
motion leads to the Christoffel equation which represents a basic equation of AW propagation 
theory. This equation is as follows:  

Λ×u = v2u,      (4) 
where Λ denotes a so-called reduced Christoffel tensor (RCT), u the displacement vector, and v 
the phase AW velocity. The RCT Λ is related to the conventional Christoffel tensor Г as  

1


Λ Γ .      (5) 

The symmetric second-rank Christoffel tensor Г is expressed through the four-rank elastic-
stiffness tensor C and the VWN ξ: 

Г = ξ·С·ξ,   or   Гil = Cijklξjξk.        (6) 

Then the components λil of the RCT Λ can be written as  
3 3

1 1

1
il ijkl j k

j k
C  

  

  .    (7) 

The last relationship can be represented in expanded form as 

     
     
     

11 66 55 56 15 1611
66 22 44 24 46 2622
55 44 33 34 35 4533

16 26 45 46 25 14 56 12 6623

13 15 46 35 45 36 13 55 14 56

12 56 24 34 44 23 36 45 45 46

2 2 2
2 2 2
2 2 21

C C C C C C
C C C C C C
C C C C C C
C C C C C C C C C
C C C C C C C C C
C C C C C C C C C




 



  
 
 
      
     

    

2
1
2
2
2
3

2 3

1 3

1 2




 
 
 

 
 
 
  
 
 
   

. (8) 

Since the RCT Λ is a symmetric second-rank tensor, its indicative surface is in general an 
ellipsoid. It represents a surface of AW slowness s (s = v–1). This can be described using an 
optical-indicatrix type equation, provided that the components Bij of the dielectric impermeability 
tensor are replaced by the components λil of the RCT: Bij → λij. Accordingly, the principal 
refractive indices n1, n2 and n3 correspond to the principal slownesses s1, s2 and s3: n1 → s1, 
n2 → s2 and n3 → s3. Similar to the optical indicatrix, the central cross section of the indicative 
surface of the RCT by the plane perpendicular to the AW propagation direction (i.e., to the VWN, 
ξ || Z'') is an ellipse. The principal axes of this ellipse give directions of the two axes of coordinate 
‘eigensystem’ of the RCT Λ, which is inherent to a given AW propagation direction ξ || Z''. 
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In order to find the orientation of the principal axes of the ellipse, one has to transform the 
RCT Λ from the XYZ system into the X''Y''Z'' system, using the following rule: 

   1, ,      Λ T2 Λ T2 .   (9) 

The ellipse searched for lies in the plane X''Y'' and, in general, its principal axes form some 
angle ψ with the X'' and Y'' axes, which is given by 

12

22 11

2tan 2 
 




 
.     (10) 

From Eq. (9) we obtain 

   

   

2 2 2 2
11 11 22 12 33 13 23

2 2
22 11 22 12

12 22 11 12 13 23

cos sin sin2 cos sin cos sin sin2 ,

sin cos sin2 ,
1 sin2 cos2 cos sin cos sin .
2

              

      

           

      

    
          

. (11) 

Substituting Eqs. (11) into Eq. (10), we find the angle ψ: 

   
   

   

22 11 12 13 23
2 2 2 2 2 2

11 22
2

33 12 13 23

sin2 2 cos2 cos 2 sin cos sin
1 sin cos cos cos cos sinarctan
2

sin2 sin cos sin sin2

          

       

        

              
         

. (12) 

After rotating the coordinate system X''Y''Z'' around the Z'' axis by the angle ψ, we obtain a 
new system X'''Y'''Z''', of which X''' and Y''' axes are directed along the principal axes of the ellipse, 
while the axis Z''' = Z'' is parallel to the VWN ξ. The matrix of transformation XYZ X'''Y'''Z''' 
looks like 

           
   
   

, , ,

cos cos cos sin sin cos sin cos cos sin sin cos
cos cos sin sin cos cos sin sin cos cos sin sin

sin cos sin sin cos

z z y z        

           
           

    

     

   
      
  

T3 T T2 T T T

. (13)  

The coordinate system X'''Y'''Z''' is a ‘reference’ system for representation of the strain tensor 
components, which are induced by each of the three acoustic modes propagating along the VWN 
ξ. One of the versors of the coordinate system is given by the VWN ξ, which is written in the 
initial system (see Eq. (3)). The two other versors t1 and t2 are obtained by inversely transforming 
X'''Y'''Z''' XYZ according to the formula 

 1
1 cos cos cos sin sin

, , 0 cos sin cos cos sin
0 sin cos

    
       

 



   
         
      

t1 T3 ,  (14) 

 1
0 cos cos sin sin cos

, , 1 cos sin sin cos cos
0 sin sin

    
       

 



    
          
      

t2 T3 .  (15)  

Comparing Eqs. (3) with Eqs. (13)–(15), one can see that the transformation matrices 
Т3(φ,θ,ψ) and Т3–1(φ,θ,ψ) are defined by the components of ξ, t1 and t2 versors: 

   
1 2 3 1 1 1

1
1 2 3 2 2 2

1 2 3 3 3 3

1 1 1 1 2
, , 2 2 2 , , , 1 2

1 3

t t t t t
t t t t t

t t


      

   


   
       
      

T3 T3 .  (16) 
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As seen from the Christoffel equation, the eigenvalues of the RCT Λ are squared velocities of 
the acoustic eigenwaves (λе1 = v1

2, λе2 = v2
2 and λе3 = v3

2), whereas their displacement vectors u1, 
u2 and u3 are eigenvectors of the RCT Λ. Moreover, the length of the latter vectors is unit: 
|u1| = |u2| = |u3| = 1. Since the RCT Λ is written in the initial XYZ system, its eigenvectors u1, u2 
and u3 are also expressed in this system. To rewrite them in the ‘reference’ coordinate system 
X'''Y'''Z''', the following relations can be used: 

1 2 3

1 2 3

1 2 3

1 , 1 , 1 ;
2 , 2 , 2 ;
3 , 3 , 3 ;

u u u
u u u
u u u

        
        
        

u1 t1 u1 t2 u1 ξ
u2 t1 u2 t2 u2 ξ
u3 t1 u3 t2 u3 ξ

.   (17) 

It is known from Ref. [2] that the strain tensor components eij are expressed in terms of 
coordinate derivatives of the displacement vectors: 

1
2

ji
ij

j i

dudu
e

dx dx
 

  
 

.     (18) 

Since the plane AW propagates in the direction ξ || Z''', the displacement of particles in a 
crystal depends only on the coordinate Z''' (see Fig. 2). Then the derivatives of the displacement 
vectors concerned with X''' and Y''' are equal to zero. As a result, we obtain the following 
normalized components of the strain tensor for the three acoustic eigenwaves: 

O

λа/2

λа/2

ξ
u

-u

Z 

X 

 

Z 

O
X 

uz=u3

-uz 

e =u33 3

 O

Z 

X 

ux=u1

-ux

e =u13 1

 
а) b) c) 

Fig. 2. Deformations of elementary crystal volume appearing when the AW with the VWN ξ || Z and the 
displacement vector u propagates in crystal, and appearance of normal (е33) and shear (е13) components of the 
strain tensor. The both vectors ξ and u lie in XZ plane. 

11 22 33 3 12 13 1 23 2

11 22 33 3 12 13 1 23 2

11 22 33 3 12

1 0; 1 0; 1 1 ; 1 0; 1 1 ; 1 1 ,
2 0; 2 0; 2 2 ; 2 0; 2 2 ; 2 2 ,
3 0; 3 0; 3 3 ; 3 0; 3

e e e u e e u e u
e e e u e e u e u
e e e u e e

             
             
         13 1 23 23 ; 3 3 .u e u




    

  (19) 

For each of the eigenwaves, there are three nonzero components of the strain tensor in the 
‘reference’ coordinate system X'''Y'''Z''': 

13 23 33, , .i i i i i ie e e       u t1 u t2 u ξ      (20) 

Taking Eqs. (17) and Eqs. (2) into account, one can write out the strain tensors iE  (і = 1,2,3) 
for the three acoustic eigenmodes that propagate along the VWN ξ: 

 
 

     

13

23

13 23 33

0 0 0 0
0 0 0 0

i i

i i i

i i ii i i

e
e

e e e

   
       

          

u t1
E u t2

u t1 u t2 u ξ
.   (21) 
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This tensor can be transformed to the initial coordinate system as follows: 

    1 , , , ,i i        E T3 E T3 .   (22) 
Substituting Eqs. (13) and (21) into Eq. (22), we obtain all the components of the strain 

tensors induced by the three acoustic eigenwaves propagating along the VWN ξ = {sinθcosφ; 
sinθsinφ; cosθ}. In the initial coordinate system they are given by the relations 

 

 
 
 

 

2
11 13 23

2 2
13 23 33

12 13 23

2
13 23 33

13 13

cos sin sin2 cos

sin cos sin sin2 sin cos ;
1 cos sin sin2 sin2
2

1sin cos sin cos2 sin sin2 ;
2

cos

i i i

i i i

i i i

i i i

i i

e e e

e e e

e e e

e e e

e e

   

     

   

     



  

    

  

    

  

 
 
 
 

23

13 23 33

2
22 13 23

2 2
13 23 33

23 13 23

sin cos2 cos

1sin cos cos sin sin2 cos ;
2

cos sin sin2 sin

sin cos sin sin2 sin sin ;
cos sin cos2 sin

i

i i i

i i i

i i i

i i i

e

e e e

e e e

e e e
e e e

  

     

   

     
   



    

  

    
  

 
 

13 23 33

2
33 33 13 23

1sin cos cos cos sin2 sin ;
2

cos cos sin sin2 .

i i i

i i i i

e e e

e e e e

     

   




















     
     

  (23) 

Finally, multiplying these tensors by the tensor of strain-optical coefficients peculiar for a 
crystal under study, one can derive the induced increments of all the components of the dielectric 
impermeability tensor. Then, the AO-induced increments of the refractive indices can be obtained. 
In this manner, the EEC for a given AO interaction geometry can be calculated. 

3. Conclusion 
In the present work we have derived analytical relations for the strain tensor components, which 
are caused by AWs with arbitrary wave vector directions in crystals. The first technique used for 
obtaining these relations is the standard rotation-matrix approach. The second technique is 
constructing cross sections of the indicative surfaces that describe the Christoffel tensor. These 
cross sections are made by the planes perpendicular to the wave vectors. The relations obtained by 
us can be used for the consistent analysis of AOFM anisotropy. 
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Анотація. Одержано аналітичні співвідношення для компонент тензора деформацій, 
спричинених акустичними хвилями з довільними напрямками хвильового вектора в 
кристалах. Підхід базується на стандартних поворотних матрицях і поперечних перерізах 
індикативних поверхонь тензора Крістоффеля, зроблених площинами, перпендикулярними 
до хвильового вектора. 


