A new photonic crystal fibre with low nonlinearity, low
confinement loss and improved effective mode area
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Abstract. Photonic crystal fibres with large mode areas are widely employed for
reducing the impairments arising from various nonlinear effects. We suggest a new
design of photonic crystal fibres with large effective mode area. The fibre consists of
six air-hole rings with two different structures and unequal diameters, where the air
holes of the third ring are filled with the substance having high refractive index.
Employing a full vectorial finite-element method, we have found that our structure
exhibits a large effective mode area (up to 3575 um’ at the light wavelength of
1200 nm) and low confinement losses (about 5.70x10~* dB/km at 1550 nm).
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1. Introduction

In the recent years photonic crystal fibres (PCFs) have attracted a great deal of attention of optical
community. They exhibit a wide range of useful optical properties, which are impossible to
achieve using a conventional technology of optical fibres, e.g. endless single-mode operation [1],
anomalous dispersion at short wavelengths of light [2] and enhanced nonlinearity [3] (see the
review [4]). PCFs consist of a periodic array of air holes running along the entire fibre length.
There are two main categories of PCFs. The first one embraces index-guiding fibres, which have a
solid core and guide the light through a total internal reflection, like conventional fibres. The
second category corresponds to hollow-core PCFs that transmit light basing on a photonic band-
gap effect. The PCFs are characterized by such geometric parameters as the hole-to-hole spacing
(A), the air-hole diameter (d), and the air-filling fraction (d/ A ). By manipulating one or more of
these parameters, the PCFs can be designed for different applications in the fields of optical
communications [5], nonlinear optics [6], sensing [7], high-power technologies [8] and
telecommunications.

Among the PCFs, large mode area (LMA) fibres are now being extensively studied. They
reveal very weak optical nonlinearities [9], which would otherwise limit the performance of high-
power systems. In particular, the LMA-PCFs have found their applications in the high-power
signal transmission, amplifiers and lasers [10, 11]. Large hole-to-hole spacing is one of the most
known techniques used for achieving the LMA effect [12]. In 1998, Knight et al. [13] have
suggested a kind of LMA-PCFs with small air holes and large cores. Gates et al. [14] have studied
the propagation of modes in the LM A-based holey fibres. Abdelaziz et al. [15] have designed new

Ukr. J. Phys. Opt. 2019, Volume 20, Issue 2 47



Benhaddad M. et al

PCF structures, which consist of five air-holes rings, where the air-hole diameters differ from one
ring to another. The others LMA structures are also known from the literature (see Refs. [16, 17]).

In the present work we suggest a new photonic structure where the effective mode area is
further increased and the confinement loss reduced. Our PCF design is based upon six air-hole
rings with two different structures and unequal diameters. In the inner structure, three air-hole
rings are arranged in a hexagonal lattice, where the first ring and a number of air holes in the
second and third rings are removed. Furthermore, six air holes of the third ring are filled with
doped silica having high refractive index. In the outer structure, three air-hole rings are arranged in
a square lattice. The cross section of our PCF has been modelled using COMSOL Multiphysics
software and a known finite-element method. The simulation results testify that the effective mode
area of the fundamental mode can be improved notably by applying a selective material-filled
technology, with the nonlinearity and the confinement loss remaining at acceptable levels. Finally,
the influence of the air-hole diameter and the index of filling material have been analyzed
numerically.

2. Theoretical approach

In the frame of finite-element method, the cross section of PCF is divided into homogeneous
subspaces for which the Maxwell’s equations can be solved by accounting for adjacent subspaces.
In general, the finite-element method represents a numerical technique for finding the approximate
solutions of both partial differential and integral equations. The method approximates any partial
differential equation as a system of ordinary differential equations which can be solved separately
with different numerical techniques. Using the approach of anisotropic, perfectly matched layer,
the following vectorial equation is obtained from the Maxwell’s curl equations [18, 19]:
V(s'VxE)—kin*sE=0 . (1)
Here s denotes the matrix of the perfectly matched layer, s the inverse matrix of s, ko = 27m/4
the wave number in the vacuum, A the light wavelength, and » the refractive index of the medium.
The effective mode area of the PCF is a quantitative measure for the area that a waveguide or

fibre mode effectively covers along the transverse dimensions. It depends on both the core size and
the doping levels that determine how tightly the mode is confined in the core. The effective mode
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where E is the amplitude of the transverse electric field propagating inside the fibre.

area is calculated as follows [20, 21]:

The nonlinearity of the PCF can be measured using the nonlinear coefficient y. The PCFs can
have high nonlinearities owing to their ability of confining high-intensity light [22]. The nonlinear
coefficient of the PCF can be calculated as [6]

2
y =27n /AAW , 3)

where n, denotes the nonlinear refractive index of silica.
The confinement loss of the PCF implies the leakage of optical power from core to cladding.
It is deduced from the imaginary part of the effective modal index found with simulations. This
parameter is calculated as follows [23]:
L. =8.686k, Im(n,;) , 4)

where Im(n,, ) stands for the imaginary part of the effective refractive index.
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3. Design of the fibre

The cross section of our PCF structure is shown in Fig. 1. It is composed of six air-hole rings with
two different structures, so that the air-hole diameters differ for different structures. In the inner
structure of the PCF, three air-hole rings are arranged in a hexagonal lattice. Here the first ring and
a number of the air holes in the second and third rings are removed. Moreover, six air holes of the
third ring are filled with a high refractive-index material. In the outer structure, three air-hole rings
are arranged in a square lattice.
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Fig. 1. Geometry of our solid-core photonic crystal fibre.

The diameter of holes in the inner structure is chosen as d; =2 pum, whereas the pitch that
represents the distance between the two adjacent air holes is set to be A =12 um. Finally, the
refraction index of the air holes (n,;) and the high refraction index (ng,) are taken to equal
respectively to 1 and 1.4507. In the outer PCF structure, we choose the diameter d, =4 um, while
the pitch A remains the same. The material is pure silica, of which refraction index is ng = 1.45.

4. Results and discussion

Below, we analyze different parameters of our PCF such as the effective index, the effective mode
area, the nonlinearity and the confinement loss, using the finite element method. At first, we vary
the diameter of the third inner ring (which corresponds to doped holes), keeping the pitch A, the
diameter of the second ring and the filling-material index constant. The diameters of the doped
holes taken in our numerical experiments are d; = 2.0, 2.2 and 2.4 um (with d,, A, ng, being equal
to 4 pm, 12 pm and 1.4507, respectively). Note that the diameter of the second ring is kept
constant (2 um). One can see from Fig. 2 that the effective index decreases with increasing light
wavelength and decreasing doped-hole diameter. This is due to the fact that the mode is less
confined in the core at longer wavelengths, thus reducing its effective index [17]. Besides, the
increase in the doped-hole diameter and the silica content in our PCF leads to increasing effective
refractive index [24].

Dependences of the effective mode area on the wavelength and the doped-hole diameter are
shown in Fig. 3. The effective area decreases with increasing wavelength and decreasing doped-
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hole diameter. This can be linked to the doped holes in the third ring in cladding. When higher-
index materials are employed for the cladding, the propagation mode penetrates the PCF cladding
deeper [17]. The same occurs with increasing doped-hole diameter and, hence, the effective mode
area increases under this condition.
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The nonlinear coefficient as a function of light wavelength is shown in Fig. 4 at different
doped-hole diameters. The nonlinearity decreases with increasing wavelength and doped-hole
diameter. This is because the mode is well confined in the core at shorter wavelengths. This means
that the light energy is concentrated in a small area, resulting in increasing nonlinearity [25].

In Fig. 5 we present the confinement loss as a function of wavelength, as calculated at three
different doped-hole diameters. The confinement loss increases with increasing doped-hole
diameter. As mentioned above, the increase in the doped-hole diameter leads to increasing
effective mode area, so that the confinement loss also increases. The increase in the confinement
loss occurring at longer wavelengths is caused by that fact that the light starts to penetrate deeper
and deeper into the cladding.
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In our further model calculations, the refractive index of the filling material has been varied,
while keeping constant the inner-hole diameter (¢, =2 pm) and the pitch (A = 12 pm). The index
values for the filling material taken in this study have been equal to 1.4507, 1.4515 and 1.452. It is
seen from Fig. 6 that the effective index decreases with increasing wavelength and decreasing
index of the filling material. This is in accordance with the fact that, at longer wavelengths, the
mode is less confined in the core. Then the effective-index decrease follows.

The effective mode area as a function of light wavelength is presented in Fig. 7 for different
indices of the filling material. It is obvious that the effective area decreases with increasing
wavelength and decreasing index of the filling material. This behaviour can be explained by the
fact that the propagation mode penetrates deeper into the PCF cladding.
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It can be seen from Fig. 8 that the nonlinearity decreases with increasing light wavelength
and increases with decreasing filling-material index. As expected (see Ref. [26]), the optical
energy is concentrated in a smaller area at shorter wavelengths, so that the nonlinearity increases.
Moreover, increase in the filling-material index leads to increasing effective mode area. As a
consequence, the nonlinear coefficient decreases under this condition.
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Finally, Fig. 9 displays the confinement loss as a function of light wavelength, as calculated
at different values of the filling-material index. The loss increases with increasing wavelength and
filling-material index. As already mentioned, the light starts to leak further into the cladding at
longer wavelengths, thus causing an increase in the confinement loss.

5. Conclusion

We suggest a new design for the PCF in order to improve its transmission characteristics such as
the effective mode area, the nonlinearity and the confinement loss. We achieve a large effective
mode area (about 3575 pm” at 1.2 pm), a low nonlinear coefficient (~3.25x 10> W 'km™ and
low confinement losses (~5.70x107° dB/km at 1.55 pm). These results are derived with the
modelling based on the COMSOL Multiphysics software and the finite-element method. The fibre
suggested in the present work can be used for optical communication and high-power signal
transmission, as well as in optical amplifiers and lasers.
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Anomayia. [{ns ycyHeHHs HeOOMIKI8 36UUAUHUX B0JOKOH, NO8 S3AHUX 3 HENIHIUHUMU ehekmami,
WUPOKO BUKOPUCMOBYIOMb BONOKHA HA (POMOHHUX KPUCMANAX 13 8EIUKOI0 «naoujer0 Moouy. Mu
npeocmasiieEMo Ho8Y KOHCMPYKYIIO B0J0KOH HA (QOMOHHUX KPUCIANAX 3 BEIUKOIO epeKMUBHOIO
«nnowero Moouy. Bonokno cknaoaemoca 3 wecmu HanosHeHux nOGIMpPAM Kineyb 3 060Ma PisHUMU
cmpykmypamu I piznumu Oiamempamu, Oe NOGIMPAHI OMEOPU MPembo20 KLlblYs 3aN06HeHI
PEUOBUHOIO, WO MAE BUCOKULL NOKA3HUK 3anomienns. Ha ocnogi noHozo 8eKmopHoz20 memooy
CKIHUEHHUX eNIeMEeHmMI6 MU 3 'ACY8anu, W0 Maka CIMpyKmypa UAAE 3HAUHY epeKmueHy «niouy
MoOuy (0o 3575 mxm’® ma Ooeocumi xeuni ceéimna 1200 mm), a makoxc HuzbKi empamu
kougaiinmenmy (6auzvko 5,70x107 0b/km npu 1550 um).
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