# Elasto-optic coefficients of $\mathrm{KGd}\left(\mathrm{WO}_{4}\right)_{2}$ crystals 

Martynyuk-Lototska I., Dudok T., Krupych O., Mys O. and Vlokh R.

Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine
Received: 06.06.2019


#### Abstract

The modules of ten components of the elasto-optic tensor for $\mathrm{KGd}\left(\mathrm{WO}_{4}\right)_{2}$ crystals have been determined using a Dixon-Cohen method. We have found that some of the elasto-optic components of these crystals reach notably high values. Being combined with the fact of high acoustic-wave velocity, this should imply short response times of the acousto-optic devices based on $\mathrm{KGd}\left(\mathrm{WO}_{4}\right)_{2}$, provided that the acousto-optic figure of merit remains as high as that calculated in the present work, $(32.6 \pm 4.5) \times 10^{-15} \mathrm{~s}^{3} / \mathrm{kg}$.


Keywords: $\mathrm{KGd}\left(\mathrm{WO}_{4}\right)_{2}$ crystals, elasto-optic coefficients, acousto-optics
UDC: 535.551+535.421

## 1. Introduction

$\mathrm{K} \operatorname{Re}\left(\mathrm{WO}_{4}\right)_{2}$ crystals, with $\operatorname{Re}$ being rare-earth elements such as $\mathrm{Gd}, \mathrm{Yb}, \mathrm{Er}, \mathrm{Tb}, \mathrm{La}$, etc., are well known materials for the active media of solid-state lasers [1]. Besides, these crystals can be used for Raman lasers with both up and down frequency conversions [2, 3]. Among $\mathrm{K} \operatorname{Re}\left(\mathrm{WO}_{4}\right)_{2}$ crystals, potassium-gadolinium tungstate $\mathrm{KGd}\left(\mathrm{WO}_{4}\right)_{2}$ (abbreviated as KGW further on) is one of the best studied materials. Since the ion radii of $\mathrm{Gd}^{3+}$ and $\mathrm{Nd}^{3+}$ are close, the KGW crystals can be easy doped, e.g., with $\mathrm{Nd}^{3+}$ ions [4, 5]. The crystals have high laser-damage threshold (10-20 J/cm ${ }^{2}$ [6]), high third-order nonlinear coefficients, and low Raman conversion threshold [7]. Finally, KGW is optically transparent from 0.3 to $5 \mu \mathrm{~m}$ [6].

The KGW crystals belong to the monoclinic system under normal conditions. They are characterized by the point symmetry group $2 / \mathrm{m}$ and the space group $C 2 / c$. The unit cell parameters are equal to $a=10.652 \AA, b=10.374 \AA, c=7.582 \AA$ and $\beta=130.80 \mathrm{deg}$ [8]. Notice that the unit cell parameters could be equal to $a^{\prime}=7.582 \AA, b^{\prime}=10.374 \AA, c^{\prime}=8.087 \AA$ and $\beta^{\prime}=94.41 \mathrm{deg}$ if the space symmetry group $I 2 / a$ were assumed. Although the last fact contradicts the common recommendations of setting [9], the habitus of the crystal corresponds to just this choice of the unit cell. To transform crystallographic coordinate system to Cartesian crystal-physical one, we use the crystallographic setting [10], where $a^{\prime \prime}=8.087 \AA, b^{\prime \prime}=10.374 \AA, c^{\prime \prime}=7.582 \AA$ and $\beta^{\prime \prime}=94.41 \mathrm{deg}$ (see Fig. 1). Then the monoclinic angle becomes closer to 90 deg and our results still can be comparable with those reported in Refs. [10-12].

KGW is optically biaxial, with the angle $V=43.3 \mathrm{deg}$ between the optic axes at the light wavelength $\lambda=632.8 \mathrm{~nm}$ [13]. The principal axis $N_{p}$ of optical indicatrix coincides with the principal crystallographic axis $b$, while the $N_{g}$ axis is rotated clockwise (if one looks along the $b^{\prime \prime}$ axis) by the angle $\varphi=21.5$ deg with respect to the $c^{\prime \prime}$ axis in the $a^{\prime \prime} c^{\prime \prime}$ plane [8, 10].

Recently it has been shown that the KGW crystals can be efficiently utilized in various acousto-optic (AO) devices, e.g. modulators or collinear filters [10, 11]. Such applications expect some knowledge of elasto-optic (EO) coefficients $p_{i j}$ because it is these coefficients that determine the AO figure of merit $M_{2}$ of a crystal. The appropriate relationship is $M_{2}=n^{6} p_{e f f}^{2} / \rho v^{3}$,


Fig. 1. Crystallographic (abc, $\beta$; $a^{\prime} b^{\prime} c^{\prime}, \beta^{\prime} ; a^{\prime \prime} b^{\prime \prime} c^{\prime \prime}, \beta^{\prime \prime}$ ), crystal-physical (XYZ) and crystal-optical ( $N_{\rho} N_{m} N_{g}$ ) settings adopted for the KGW crystals.
with $n$ being the refractive indices that corresponds to the polarizations of interacting optical waves, $p_{\text {eff }}$ the effective EO coefficient, $v$ the acoustic-wave (AW) velocity, and $\rho$ the crystal density.

In fact, twelve components of the EO tensor have been determined in Refs. [10, 12]. Let us remind that the EO tensor for the point symmetry group $2 / \mathrm{m}$ contains twenty components, nineteen of which are invariants [14]. Besides, EO components have been determined in Refs. $[10,12]$ in a so-called crystal-optical coordinate system (see Fig. 1). This is the system associated with the eigenvectors of optical-frequency impermeability tensor $B_{k}=\left(1 / n^{2}\right)_{k}$. The system is very sensitive to external actions and even to scalar ones. Namely, any change in the temperature, hydrostatic pressure or the wavelength of optical radiation would lead to rotation of optical indicatrix around the two-fold symmetry axis, and so to the rotation of crystal-optical coordinate system. Moreover, the coordinate eigensystems for different tensorial properties would differ from the crystal-optical one. This is the reason why determination of tensorial constitutive parameters of low symmetry crystals is more reasonable to carry out in crystal-physical Cartesian coordinate system $X Y Z$, which is associated with the crystallographic one $a^{\prime \prime} b^{\prime \prime} c^{\prime \prime}$ as shown in Fig. 1.

In the present work we aim at studying the EO parameters of KGW in its crystal-physical coordinate system.

## 2. Experimental procedures and phenomenological relations

The EO properties of KGW were measured in the crystal-physical Cartesian coordinate system $X Y Z$ linked to the crystallographic system $a^{\prime \prime} b^{\prime \prime} c^{\prime \prime}$ as illustrated in Fig. 1. The relations among the appropriate axes are as follows: $Z\left\|c^{\prime \prime}, Y\right\| b^{\prime \prime} \| N_{p}$ and $X \perp b^{\prime \prime} c^{\prime \prime}$. The EO properties were studied using a standard Dixon-Cohen method [15]. It is based on comparison of AO parameters of a material under study with those of a standard material. In our case we used fused silica as a standard material. The scheme of our experimental setup was described elsewhere (see Ref. [16]). The KGW crystals were supplied by the "Plant "Optika" Company (Republic of Belarus).

A sample under test was prepared in the shape of cube with the sizes $\sim 1 \times 1 \times 1 \mathrm{~cm}^{3}$ and the faces perpendicular to the crystal-physical axes. The test sample was bonded with the reference sample made of a standard material. The longitudinal AW in the cell was excited with a piezoelectric transducer fabricated from $\mathrm{LiNbO}_{3}$ crystals. The excited wave with the frequency $f=50 \mathrm{MHz}$ was modulated by square pulses with the duration $0.5 \mu \mathrm{~s}$ and the repetition rate $300 \mu \mathrm{~s}$.

The AO figure of merit of a sample under study can be calculated as

$$
\begin{equation*}
M_{2}^{s a}=M_{2}^{s t} \frac{I_{s t}}{I_{s a}}\left(\frac{I_{3} I_{4}}{I_{1} I_{5}}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

where $M_{2}^{s t}=1.56 \times 10^{-15} \mathrm{~s}^{3} / \mathrm{kg}$ is the AO figure of merit of fused silica in the case of light diffraction at the longitudinal AW [1]. In Eq. (1), $I_{s a}$ and $I_{s t}$ are the intensities of light $(\lambda=632.8 \mathrm{~nm})$ transmitted respectively through the test and standard samples, which have been detected with no acoustic signal applied. The intensities of diffracted light that correspond to AO interactions with the forward-propagating acoustic pulse for the cases of standard material and test sample are referred to as $I_{1}$ and $I_{3}$. Finally, the intensities of the pulse reflected from the rear surface of the sample and the same pulse re-entered in the standard sample are denoted as $I_{4}$ and $I_{5}$, respectively.

The effective EO coefficient can be calculated using the relation [17]

$$
\begin{equation*}
\left|p_{e f f}\right|=\frac{\sqrt{M_{2}^{s a} \rho v^{3}}}{n^{3}} \tag{2}
\end{equation*}
$$

where $\rho=7216 \mathrm{~kg} / \mathrm{m}^{3}$ is the density of KGW. Here the AW velocities have been calculated from the elastic stiffness coefficients [10] by solving a Christoffel equation.

The refractive indices for the optical waves polarized parallel to the principal axes of the crystal-physical coordinate system $X Y Z$ were calculated using the formulae

$$
\begin{equation*}
n_{X}=\left(\frac{\cos ^{2} \varphi}{N_{m}^{2}}+\frac{\sin ^{2} \varphi}{N_{g}^{2}}\right)^{-1 / 2}, n_{Z}=\left(\frac{\sin ^{2} \varphi}{N_{m}^{2}}+\frac{\cos ^{2} \varphi}{N_{g}^{2}}\right)^{-1 / 2}, n_{Y}=N_{p} \tag{3}
\end{equation*}
$$

As mentioned above, the angle $\varphi$ is equal to $\varphi=21.5$ deg according to Ref. [8]. Nonetheless, we have re-measured this angle using the method of observing conoscopic patterns at $\lambda=632.8 \mathrm{~nm}$. One of the faces of our sample is perpendicular to the $c^{\prime \prime}$ axis, which has been verified with an X-ray analysis. We have found that rotation of our sample around the $b^{\prime \prime}$ axis leads to appearance of conoscopic pattern typical for the direction of principal axis of the optical indicatrix. In this manner we have determined the angle between the direction $N_{g}$ and the $c^{\prime \prime}$ axis, which equals to $\varphi=14.5 \mathrm{deg}$.

In order to determine the EO coefficients, one has to consider all the possible types of isotropic AO interactions. We will solve this problem step by step. Let the incident optical wave with the electrical induction $D_{l}$ that propagates along the $Z$ axis and is polarized parallel to the $Y$ axis interact with the longitudinal AW propagating along the $X$ axis. This corresponds to AO interactions of a so-called type 1 (see Fig. 2a). Then the relation for the electric field of diffracted optical wave is given by $E_{2}=\Delta B_{2} D_{2}=p_{21} e_{12}$ (with $e_{j}$ being the strain component caused by the AW). The appropriate effective EO coefficient can be written as $p_{\text {eff }}=p_{21}$.

When the incident optical wave propagating along the $Z$ axis with its polarization parallel to the $X$ axis interacts with the longitudinal AW propagating along the $X$ axis (the AO interactions of the type 2 - see Fig. 2a), one can determine the effective EO coefficient $p_{\text {eff }}=p_{11}$ basing on the
relation $E_{1}=\Delta B_{1} D_{1}=p_{11} e_{1} D_{1}$. Let the incident light wave polarized parallel to the $Y$ axis propagate along the $X$ axis and interact with the longitudinal AW propagating along the $Z$ axis (the type 3 - see Fig. 2a). In this case we obtain $E_{2}=\Delta B_{2} D_{2}=p_{23} e_{3} D_{2}$ and $p_{\text {eff }}=p_{23}$. When the incident light wave polarized parallel to the $Z$ axis propagates in the $X Z$ plane along the $X$ axis, whereas the longitudinal AW propagates along the $Z$ axis, one deals with the AO interaction type 4 (see Fig. 2a). Then the relations $E_{3}=p_{33} e_{3} D_{3}$ and $p_{\text {eff }}=p_{33}$ hold true. Moreover, the EO coefficient remains the same $\left(p_{\text {eff }}=p_{33}\right)$ in the case of AO interactions in the $Y Z$ plane, when the incident optical wave propagates along the $Y$ axis and is polarized along the $Z$ axis.

(c)

Fig. 2. Schematic vector diagrams for AO interactions in KGW in the coordinate planes $X Z$ (a), $X Y$ (b) and $Y Z$ (c): $k_{i}, k_{d}$ and $k_{a c}$ are wave vectors of the incident optical wave, diffracted optical wave and the AW, respectively. Double-sided arrows and crossed circles indicate polarizations of optical eigenwaves.

Let the incident light wave polarized parallel to the $Y$ axis propagate in the $X Y$ plane along the $X$ axis and interact with the longitudinal AW propagating in the same plane along the $Y$ axis (the AO interactions of the type 5 - see Fig. 2b). Then one can write out the constitutive relation as $E_{2}=\Delta B_{2} D_{2}=p_{22} e_{2} D_{2}$, while the EO coefficient is given by $p_{\text {eff }}=p_{22}$. When the incident light wave polarized parallel to the $Z$ axis propagates along the $X$ axis and interacts with the longitudinal AW propagating along the $Y$ axis (the case of AO interactions of the type 6 - see Fig. 2b), the AO relationships are as follows: $E_{3}=\Delta B_{3} D_{3}, \Delta B_{3}=p_{32} e_{2}$, and $E_{3}=p_{32} e_{2} D_{2}$. When the incident optical wave propagates along the $Y$ axis and is polarized along the $Z$ axis (the type 7 - see Fig. 2b), the formulae describing AO interactions of this wave with the longitudinal AW propagating along the $X$ axis can be written as $E_{3}=\Delta B_{3} D_{3}=p_{31} e_{1} D_{1}$ and $p_{\text {eff }}=p_{31}$.

Let the optical wave polarized parallel to the $Z$ axis propagate along the $Y$ axis. Its AO interactions with the transverse AW that propagates along the $Z$ axis and is polarized parallel to the $X$ axis (the interactions of the type 8 - see Fig. 2c) can be described by the formula $E_{3}=0.5 p_{35} e_{5} D_{3}$, while the effective EO coefficient is defined as $p_{\text {eff }}=p_{35}$. This effective coefficient can also be measured in the case of AO interactions in the $X Y$ plane, when the optical wave polarized along the $Z$ axis propagates along the $Y$ axis and interacts with the transverse AW propagating along the $X$ axis and polarized along the $Z$ axis (the type 7 - see Fig. 2b). When the incident light wave with the polarization parallel to the $X$ axis propagates along the $Y$ axis and interacts with the longitudinal AW propagating along the $Z$ axis (the type 9 - see Fig. 2c), the AO relationships can be written in the form $E_{1}=p_{13} e_{3} D_{1}$ and $p_{\text {eff }}=p_{13}$. Finally, the effective EO coefficient $p_{\text {eff }}=p_{12}$ is actual at the geometry when the incident light wave polarized parallel to the $X$ axis propagates along the $Z$ axis and interacts with the longitudinal AW propagating along the $Y$ axis (the type 10 - see Fig. 2c). Then we obtain the formulae $E_{1}=\Delta B_{1} D_{1}=p_{12} e_{2} D_{1}$ and $p_{\text {eff }}=p_{12}$.

## 3. Results and discussion

As mentioned above, the angle $\varphi$ determined in the present work has proved to be almost twice as smaller as the value reported in Ref. [8]. This angle follows from the relation $\tan 2 \varphi=2 B_{5} /\left(B_{1}-B_{3}\right)$, where $B_{k}$ are the components of optical impermeability tensor written in the crystallographic coordinate system. The disagreement between the corresponding $\varphi$ values can be caused by the changes observed for the refractive indices $N_{m}$ and $N_{g}$. In fact, a small variation in the third digit after decimal point for the refractive indices is quite enough in order for the $\varphi$ angle to change from 21.5 to 13.5 deg. Notice that different literature data [8, 18] report somewhat different refractive indices of the KGW crystals (see Table 1). This fact can lead to changing angle between the optic axes [13] and changing rotation angle of optical indicatrix with respect to the crystal-physical coordinate system. Taking into account the fact that the principal refractive indices for KGW reported in Refs. [8, 18] are very similar and differ only in the second digit after decimal point, we accept $N_{g}=2.09, N_{p}=2.01$ and $N_{m}=2.04$ in our further calculations.

Table 1. Refractive indices for the KGW crystals at $\lambda=632.8 \mathrm{~nm}$.

| Reference | $N_{g}$ | $N_{m}$ | $N_{p}$ |
| :---: | :---: | :---: | :---: |
| $[8]$ | 2.0950 | 2.0414 | 2.0116 |
| $[18]$ | 2.08608 | 2.04580 | 2.01348 |

The modules of the ten EO components determined by us are gathered in Table 2. The angle of non-orthogonality of the polarizations of AWs does not exceed $\sim 10 \mathrm{deg}$ whenever the AWs propagate along the $X, Y$ or $Z$ axes. As a consequence, one can neglect this angle at this stage of consideration. Then the AWs can be regarded as purely longitudinal and transverse. In this case the modules of the effective EO coefficients determined above would correspond to the modules of single components of the EO tensor.

Table 2. Geometries of AO interactions analyzed and EO coefficients found for the KGW crystals.

| $\begin{aligned} & .0 \\ & \text { O } \\ & \text { 0. } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |  | $\begin{aligned} & 0 \\ & \text { I } \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $X, X$, and 5062 | Z, Y | $n_{Y}=2.01$ | $0.8 \pm 0.2$ | $p_{21}$ | 0.11 | 0.13 |
| 2 | $X, X$, and 5062 | $Z, X$ | $n_{X}=2.04$ | $2.4 \pm 0.1$ | $p_{11}$ | 0.18 | 0.11 |
| 3 | $Z, Z$, and 4334 | $X, Y$ | $n_{Y}=2.01$ | $4.6 \pm 1.0$ | $p_{23}$ | 0.21 | 0.23 |
| 4 | $Z, Z$, and 4334 | $X, Z$ | $n_{Z}=2.09$ | $32.6 \pm 4.5$ | $p_{33}$ | 0.49 | 0.28 |
| 5 | $Y, Y$, and 4878 | $X, Y$ | $n_{Y}=2.01$ | $0.52 \pm 0.04$ | $p_{22}$ | 0.08 | 0.04 |
| 6 | $Y, Y$, and 4878 | $X, Z$ | $n_{Z}=2.09$ | $0.50 \pm 0.04$ | $p_{32}$ | 0.07 | 0.09 |
| 7 | $X, X$, and 5062 | $Y, Z$ | $n_{\mathrm{Z}}=2.09$ | $0.5 \pm 0.2$ | $p_{31}$ | 0.07 | 0.13 |
| 8 | $Z, X$, and 2402 | $Y, Z$ | $n_{\mathrm{Z}}=2.09$ | $1.51 \pm 0.04$ | $p_{35}$ | 0.04 | -0.13 |
| 9 | $Z, Z$, and 4334 | $Y, X$ | $n_{X}=2.04$ | $4.0 \pm 0.2$ | $p_{13}$ | 0.18 | 0.23 |
| 10 | $Y, Y$, and 4878 | $Z, X$ | $n_{X}=2.04$ | $1.3 \pm 0.1$ | $p_{12}$ | 0.12 | 0.14 |

Although the angle $\varphi$ is not very large, some of the EO coefficients determined in the present work and in Ref. [12] differ conspicuously. In particular, this concerns the tensor components $p_{11}, p_{33}$ and $p_{31}$. It is these coefficients that change their values when the EO tensor is rewritten from the crystal-optical coordinate system to the crystal-physical one. According to our measurements, the coefficient $p_{22}$, which is invariant with respect to the rotations of optical indicatrix around the $b^{\prime \prime}$ axis, is equal to 0.08 (to be compared with the value 0.04 reported in Ref. [12]. Due to our data, the corresponding AO figure of merit proves to be almost five times higher than that following from the data [12]. Notice that the AW propagating along the two-fold axis is purely longitudinal. Hence, the non-orthogonality of its polarization is equal to zero and so cannot affect the $p_{\text {eff }}$ value. The coefficient $p_{35}$ differs essentially, too. It is known that this coefficient is sensitive to the rotation of crystal-optical coordinate system with respect to the crystal-physical system.

As seen from Table 2, the maximal AO figure of merit, $(32.6 \pm 4.5) \times 10^{-15} \mathrm{~s}^{3} / \mathrm{kg}$, is achieved for the interaction geometry \#4, due to high EO coefficient. This value is almost the same as the maximal value reported in Ref. [12], which is reached in the case of AO interactions with the quasi-transverse wave. This fact implies that the KGW crystals can be characterized by higher AO figures of merit in the case when the optical waves interact with the AWs propagating in some
directions, which do not coincide with the principal axes of the coordinate system. Nevertheless, one should know the values of all EO tensor components in order to analyze the anisotropy of AO figure of merit (see, e.g., Ref. [19]). This will be a subject of our further studies.

## 4. Conclusion

Using the AO Dixon-Cohen method, we have determined the modules of ten components of the EO tensor for the KGW crystals in its crystal-physical coordinate system. It has been found that some of the EO tensor components of KGW reach high enough values. In particular, the component $p_{33}$ is equal to 0.49 . This fact, together with high enough AW velocity ( $4334 \mathrm{~m} / \mathrm{s}$ ) would lead to short response times of the AO devices based on KGW, whenever the AO figure of merit remains high enough, e.g. $(32.6 \pm 4.5) \times 10^{-15} \mathrm{~s}^{3} / \mathrm{kg}$ as found above. We have also observed that such important parameters of the KGW crystals as refractive indices can vary notably for the samples of different origins. Finally, we have demonstrated that the optical indicatrix in our crystals rotates by the angle 14.5 deg with respect to the crystallographic axis, although this angle has been accepted to be 21.5 deg in the literature.

## Acknowledgement

The authors acknowledge financial support of the present study from the Ministry of Education and Science of Ukraine (the Projects \# 0117U000802 and \#0118U003899).

## References

1. Pollnau M, Romanyuk Y E, Gardillou F, Borca C N, Griebner U, Rivier S and Petrov V, 2007. Double tungstate lasers: from bulk toward on-chip integrated waveguide devices. IEEE J. Sel. Top. Quantum Electron. 13: 661-671.
2. Ustimenko N S and Gulin A V, 2002. New self-frequency converted $\mathrm{Nd}^{3+}: \mathrm{KGd}\left(\mathrm{WO}_{4}\right)_{2}$ Raman lasers. Quant. Electron. 32: 229-231.
3. Grasiuk A Z, Kurbasov S V and Losev L L, 2004. Picosecond parametric Raman laser based on $\mathrm{KGd}\left(\mathrm{WO}_{4}\right)_{2}$ crystal. Optics Commun. 240: 239-244.
4. Kaminskii A A, Crystalline lasers: physical processes and operating schemes. New York: CRC Press (1996).
5. Senthil Kumaran A, Lakshmi Chandru A, Moorthy Babu S, Bhaumik I, Ganesamoorthy S, Karnal A K, Wadhawan V K and Ichimura M, 2005. Crystal growth of pure and doped- $\mathrm{KGd}\left(\mathrm{WO}_{4}\right)_{2}$ and their characterization for laser applications. J. Cryst. Growth. 275: e2117-e2121.
6. Basiev T T, Osiko V V, Prokhorov A M and Dianov E M, 2003. Crystalline and fiber Raman lasers. In: Sorokina I T and Vodopyanov K L (Eds.). Solid-state mid-infrared laser sources. Topics in Appl. Phys. 89: 359-408. Springer, Berlin, Heidelberg.
7. Mochalov I V, 1997. Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal $\mathrm{KGd}\left(\mathrm{WO}_{4}\right)_{2}: \mathrm{Nd}^{3+}-(\mathrm{KGW}: \mathrm{Nd})$. Opt. Eng. 36: 1660-1669.
8. Pujol M C, Rico M, Zaldo C, Solée R, Nikolov V, Solans X, Aguiló M and Díaz F, 1999. Crystalline structure and optical spectroscopy of $\mathrm{Er}^{3+}$-doped $\mathrm{KGd}\left(\mathrm{WO}_{4}\right)_{2}$ single crystals. Appl. Phys. B. 68: 187-197.
9. International tables for crystallography, Vol. A ( $3^{\text {rd }}$ Ed.), Ed. by T. Hanh, for the IUCr by D. Reidel Pu. Company, 1992.
10. Mazur M M, Velikovskii D Yu, Kuznetsov F A, Mazur L I, Pavlyuk A A, Pozhar V E and Pustovoit V I, 2012. Elastic and photoelastic properties of $\mathrm{KGd}\left(\mathrm{WO}_{4}\right)_{2}$ single crystals. Acoust. Phys. 58: 658-665.
11. Velikovskiy D Yu and Pozhar V E, Acousto-optics devices for high-power laser beam. WDS' 12 Proceedings of Contributed Papers, Part III, 65-68, 2012.
12. Mazur M M, Mazur L I and Pozhar V E, 2015. Optimum configuration for acousto-optical modulator made of KGW. Phys. Proc. 70: 741-744.
13. Romain Cattoor, Inka Manek-Hönninger, Marc Tondusson, Philippe Veber, Todor K. Kalkandjiev, Daniel Rytz, Lionel Canioni and Marc Eichhorn, 2014. Wavelength dependence of the orientation of optic axes in KGW. Appl. Phys. B. 116: 831-836.
14. Sirotin Yu I and Shaskolskaya M P. Fundamentals of crystal physics. Moscow: Mir (1982).
15. Dixon R W and Cohen M G, 1966. A new technique for measuring magnitudes of photoelastic tensors and its application to lithium niobate. Appl. Phys. Lett. 8: 205-207.
16. Martynyuk-Lototska I, Dudok T, Mys O, Grabar A and Vlokh R, 2019. Elasto-optic coefficients of $\mathrm{Sn}_{2} \mathrm{P}_{2} \mathrm{~S}_{6}$ crystals determined by Dixon-Cohen method. Ukr. J. Phys. Opt. 20: 54-59.
17. Magdich L N and Molchanov V Ya. Acoustooptic devices and their applications. Gordon and Breach Science Publ., (1989).
18. Filippov V V, Kuleshov N V and Bodnar I T, 2007. Negative thermo-optical coefficients and athermal directions in monoclinic $\mathrm{KGd}\left(\mathrm{WO}_{4}\right)_{2}$ and $\mathrm{KY}\left(\mathrm{WO}_{4}\right)_{2}$ laser host crystals in the visible region. Appl. Phys. B. 87: 611-614.
19. Mys O, Adamenko D, Krupych O and Vlokh R, 2018. Effect of deviation from purely transverse and longitudinal polarization states of acoustic waves on the anisotropy of acoustooptic figure of merit: the case of $\mathrm{Tl}_{3} \mathrm{AsS}_{4}$ crystals. Appl. Opt. 57: 8320-8330.

Martynyuk-Lototska I., Dudok T., Krupych O., Mys O. and Vlokh R. 2019. Elasto-optic coefficients of $\mathrm{KGd}\left(\mathrm{WO}_{4}\right)_{2}$ crystals. Ukr.J.Phys.Opt. 20: $98-105$.
doi: $10.3116 / 16091833 / 20 / 3 / 98 / 2019$
Анотація. Методом Діксона-Коена в роботі визначено модулі десяти компонент пружнооптичного тензора кристалів $K G d\left(W O_{4}\right)_{2}$. Виявлено, що деякі з компонент досягають високого значення, що разом з високими швидкостями поширення акустичних хвиль може привести до значної швидкодії акусто-оптичних пристроїв на основі кристалів $\mathrm{KGd}\left(\mathrm{WO}_{4}\right)_{2}$ при порівняно великих значеннях коефіцієнта акусто-оптичної якості ((32.6 $\left.\mathbf{~} 4.5) \times 10^{-15} c^{3} / \kappa г\right)$.

