УДК 541.135

Э.А. Стезерянский, И.А. Гурьянова-Доскоч, А.А. Омельчук

ВНЕШНЕСФЕРНАЯ АССОЦИАЦИЯ ТИОСУЛЬФАТНЫХ КОМПЛЕКСОВ СЕРЕБРА С КАТИОНАМИ НАТРИЯ В КАРБАМИДНЫХ РАСТВОРАХ

Образование внешнесферного ассоциата тиосульфатного комплекса серебра с катионом натрия в карбамидных растворах изучено методом вольтамперометрии (вращающийся дисковый электрод). Растворы содержали 1 ммоль- n^{-1} AgClO₄, 25 ммоль- n^{-1} Na₂S₂O₃, 1 моль- n^{-1} карбамида и разное количество перхлората натрия (C_{Na}^+ 0.05—1.00 моль- n^{-1}). Карбамид введен для изменения структуры водного раствора и сольватации ионов. Определены величины константы устойчивости внешнесферного ассоциата NaAg(S₂O₃)^{2⁻} в карбамидном растворе ($K = 25.0 \pm 2.4$) и констант скоростей его образования ($k_1 = 102 \text{ c}^{-1}$) и распада ($k_2 = 0.25 \text{ c}^{-1}$).

ВВЕДЕНИЕ. Расширяющееся применение тиосульфатных солей в качестве нетоксичного комплексообразующего компонента выщелачивающих растворов в гидрометаллургии серебра и золота [1], рациональная утилизация отработанных фотографических фиксажных растворов [2] обусловливают интерес к изучению закономерностей электродных процессов в тиосульфатных растворах.

Электрохимическое восстановление тиосульфатных комплексов серебра при соотношении Ag : $S_2O_3^{2-}$ 1 : 25, где в объеме раствора доминирует комплекс Ag(S_2O_3) $_2^{3-}$, изучено в работах [3, 4]. Установлено, что реакции переноса электрона предшествует химическая реакция, скорость которой, как и скорость электрохимической стадии, зависит от концентрации катионов натрия, введенных в раствор в качестве катионов фонового электролита. Эти экспериментальные зависимости объяснены нами [4] образованием в растворе электрохимически активного внешнесферного ассоциата NaAg(S_2O_3) $_2^{2-}$:

$$Ag(S_2O_3)_2^{3-} + Na^+ \xrightarrow{k_1} NaAg(S_2O_3)_2^{2-};$$
 (1)

$$NaAg(S_2O_3)_2^{2-} + e \rightarrow Ag^2 + 2S_2O_3^{2-} + Na^+$$
. (2)

Образование внешнесферных комплексных соединений — распространенное явление. Большинство внутрисферных комплексов в зависимости от состава окружающей среды формируют внешнесферные ассоциаты с ионами [5, 6]. Энергия образования внешнесферных комплексов значитель но меньше, чем внутрисферных, и характеризуется величинами ступенчатых констант устойчивости $K_n = 0.1$ —50. Такие значения K сви-

детельствуют о меньшем энергетическом взаимодействии между ионами при внешнесферной ассоциации и поэтому сольватация ионов и структура раствора оказывают на внешнесферное комплексообразование значительно большее влияние, чем на внутрисферное. Следовательно, оказывая влияние на ион-дипольное взаимодействие путем изменения сольватации ионов и структуры раствора, можно воздействовать на внешнесферное комплексообразование. Изменение сольватации ионов в водном растворе возможно введением органических соединений, например, растворителя с высокой сольватирующей способностью диметилформамида (ДМФА). Внешнесферная ассоциация тиосульфатных комплексов серебра с катионами натрия в присутствии ДМФА изучена в работе [4].

Другим соединением из класса амидов, влияющим на ион-дипольное взаимодействие в водных растворах, является карбамид. Карбамид разрушает структуру воды и изменяет сольватацию ионов [7, 8].

Цель работы — определение константы устойчивости внешнесферного ассоциата $NaAg(S_2O_3)_2^{2-}$ в карбамидных растворах методом вольтамперометрии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Рабочие растворы содержали 1 ммоль·л⁻¹ AgClO₄, 25 ммоль·л⁻¹ Na₂S₂O₃ (соотношение Ag : S₂O₃ 1:25), 1 моль·л⁻¹ карбамида и разное количество перхлората натрия NaClO₄. Аналитическая концентрация ионов Na⁺ составляла 0.05—1.00 моль·л⁻¹. Необходимое значение кислотности растворов (рН 9.5 ± 0.3) создавали добавлением гидроксида натрия. Элект-

[©] Э.А. Стезерянский, И.А. Гурьянова-Доскоч, А.А. Омельчук, 2011

Электрох имия

ролиты были приготовлены из реактивов квалификации ч.д.а. и бидистиллированной воды.

Вольт-амперометрические исследования проводили методом вращающегося дискового серебряного электрода с использованием потенциостата IPC-рго M и электрохимического датчика Модуль EM-04 (НТФ Вольта, РФ). Управление потенциостатом и первичную обработку данных осуществляли с помощью персонального компьютера, программа IPC2000.

Равновесную концентрацию ионов натрия Na⁺ измеряли иономером И-160 МИ и натрий-селективным электродом ЭЛИС-112Na (Измерительная техника ИТ, РФ). Перед измерениями ион-селективный электрод выдерживали в 0.01 моль л⁻¹ растворе NaCl в течение 1 сут.

Диаметр серебряного дискового электрода составлял 3 мм. В качестве вспомогательного электрода использовали платиновую проволоку. Электрод сравнения — хлоридсеребряный, с насыщенным раствором NaCl (E = 0.197 В относительно нормального водородного электрода). Все потенциалы приведены в шкале этого электрода. Скорость развертки потенциала при получении поляризационных кривых 5 мВ·с⁻¹. Измерения проводили в стеклянной термостатируемой ячейке при температуре 25 ± 0.5 °C.

Перед съемкой поляризационных кривых рабочий электрод полировали порошком оксида алюминия с размером частиц 1 мкм. Перед каждым измерением поверхность электрода протирали влажной пастой гидроксида кальция с последующей промывкой дистиллированной водой. До измерений из растворов удаляли кислород продувкой аргона в течение 20 мин.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Внешнесферное комплексообразование тиосульфатных комплексов серебра с катионами натрия в карбамидных растворах и кинетику образования ассоциатов изучали вольт-амперометрическим методом. Поляризационные кривые восстановления тиосульфатных комплексов серебра из растворов, содержащих карбамид, приведены на рис. 1. Величину предельного тока іпр определяли при потенциале минимума зависимости f(E) = di/dE. Зависимости предельных токов восстановления комплексов серебра от скорости вращения электрода $\omega^{0.5}$ (рис. 2) линейны и не проходят через начало координат. Это свидетельствует о кинетических или адсорбционных осложнениях электродного процесса. На рис. З предельные токи восстановления представ-

Рис. 1. Поляризационные кривые восстановления комплексов серебра на вращающемся дисковом электроде в растворах, содержащих 1 ммоль-л⁻¹ AgClO₄, 25 ммоль-л⁻¹ Na₂S₂O₃, 1 моль-л⁻¹ карбамида и разное количество NaClO₄, моль-л⁻¹: *1* — 0.0507; 2 — 0.0693; *3* — 0.0923; *4* — 0.124; 5 — 1.0007. *v* = 5 мВ·с⁻¹. Скорость вращения 1000 об·мин⁻¹.

Рис. 2. Зависимости предельных токов $i_{\rm np}$ от $\omega^{0.5}$. Обозначение растворов, как на рис. 1.

лены в координатах для предшествующей химической реакции $i_{\rm np}\omega^{-0.5} - i_{\rm np}$ [9, 10]. Для электродного процесса с предшествующей химической реакцией, протекающей на вращающемся дисковом электроде, зависимость величины $i_{\rm np}\omega^{-0.5}$ от плотности тока $i_{\rm np}$ линейна и для реакции (1) описывается уравнением [10]:

$$\frac{i_{\rm np}}{\omega^{1/2}} = \frac{i_g}{\omega^{1/2}} - \frac{0.62(Dv)^{7/6} i_{\rm np}}{K[\text{Na}] (k_1[\text{Na}] + k_2)^{1/2}}, \qquad (3)$$

здесь i_{np} — плотность предельного тока; i_g — гипотетическая плотность предельного тока восстановления $Ag(S_2O_3)_2^{3-}$; k_1 и k_2 — константы скорости прямой и обратной химической реакции, K

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2011. Т. 77, № 4

Рис. 3. Экспериментальные (точки) и расчетные (пунктир) зависимости $i_{np}\omega^{-0.5}$ от плотности предельного тока i_{nn} . Обозначение растворов, как на рис. 1.

— константа устойчивости внешнесферного ассоциата $NaAg(S_2O_3)_2^{2-}$; D — коэффициент диффузии $Ag(S_2O_3)_2^{3-}$; v — кинематическая вязкость раствора; [Na] — равновесная концентрация ионов натрия.

Нов патрия. Зависимости $i_{np}\omega^{-0.5}$ — i_{np} линейны и при экстраполяции на нулевое значение тока отсекают отрезок, равный $i_g\omega^{-0.5}$, который пропорционален общей концентрации тиосульфатных комплексов серебра. Наклоны этих зависимостей связаны с величинами K, k_1 и k_2 (уравнение (3)) и определяются концентрацией ионов Na⁺. В растворах, содержащих 0.092 и 0.124 моль π^{-1} ионов Na⁺, достигаются постоянные величины $i_{n}\omega^{-0.5}$, которые не зависят от плотности предельного тока (рис. 3,

Кинетические параметры электрохимического восстановления тиосульфатных комплексов серебра из карбамидных растворов с разным содержанием катионов натрия, коэффициенты диффузии D, константа устойчивости K, константы скоростей образования k_1 и распада k_2 внешнесферного ассоциата NaAg(S₂O₃)₂²⁻

C _{Na}	$[Na]^+$	$D \cdot 10^6$,	$\partial(i_{\rm np}\omega^{-0.5})$	$i_g \omega^{-0.5}$	К,	k ₁	k_2
моль.л ⁻¹		$cm^2 \cdot c^{-1}$	$\frac{\partial i_{np}}{\partial i_{np}}$	$\overline{i_{\Pi}\omega^{-0.5}}$	моль ⁻¹	c^{-1}	
0.051	0.025	6.0	-6.06		_		
0.069	0.033	6.1	-5.33	—	—	—	_
0.092	0.057	6.3	-4.73	1.66	26.67	126	0.29
0.124	0.072	6.9	-4.31	1.60	23.25	78	0.22
1.001	0.904	7.6	-0.70	_	_	_	
			С	реднее	25.0± 2.4	102	0.25

кривые 3, 4). На основании этих значений и величины $i_{o}\omega^{-0.5}$ по уравнению [4]:

$$K = \frac{1}{(i_g \omega^{-0.5} / i_n \omega^{-0.5} - 1)[\text{Na}]}$$
(4)

определена константа устойчивости внешнесферного ассоциата NaAg(S₂O₃)₂²⁻. Значения *K*, определенные при концентрации ионов натрия 0.092 и 0.124 моль- π^{-1} (таблица), были усреднены: *K* = 25.0 ± 2.4 . Константы скорости прямой k_1 и обратной k_2 химической реакции образования NaAg(S₂O₃)₂²⁻ рассчитаны на основании значений наклонов

$$\frac{\partial (i_{\rm np}\omega^{-0.5})}{\partial i_{\rm np}} = \frac{0.62(Dv)^{1/2}}{K[{\rm Na}](k_1[{\rm Na}] + k_2)^{1/2}}$$

(уравнение (3)) с использованием коэффициентов диффузии и кинематической вязкости 1 моль \cdot л⁻¹ раствора карбамида $v = 0.0096 \text{ см}^2 \cdot \text{c}^{-1}$ [11]. Значения констант скоростей отличаются и зависят от концентрации катионов натрия (таблица). Для $C_{\text{Na}} 0.092$ и 0.123 моль \cdot л⁻¹ значения k_1 и k_2 близки и после усреднения составляют k_1 =102 c⁻¹ и k_2 = =0.25 c⁻¹. Зависимости $i_{\text{пр}}\omega^{-0.5}$ — $i_{\text{пр}}$, рассчитанные по уравнениям (3), (4) и полученным значениям K, k_1, k_2 , приведены на рис. 3 (пунктир). Для концентраций $C_{\text{Na}} 0.069$ —0.123 моль \cdot л⁻¹ наблюдается удовлетворительное совпадение экспериментальных и расчетных данных. Для низкой (0.051 моль \cdot л⁻¹) и высокой (1.001 моль \cdot л⁻¹) концентраций ионов натрия расчетные значения не совпадают с экспериментальными. Вероятно, это связано с разной ионной силой растворов.

Таким образом, образование внешнесферного ассоциата тиосульфатного комплекса серебра с катионом натрия в карбамидных растворах изучено методом вольтамперометрии на вращающемся дисковом электроде. Константа устойчивости внешнесферного комплекса NaAg(S₂O₃)₂²⁻ равна 25.0 \pm 2.4. Значения констант скоростей его образования k_1 и распада k_2 составляют 102 и 0.25 с⁻¹ соответственно. Приведенные значения К являются оценочными, поскольку были получены в растворах с разной ионной силой из величин предельных токов.

Электрох имия

РЕЗЮМЕ. Утворення зовнішньосферного асоціату тіосульфатного комплексу срібла з катіоном натрію в карбамідних розчинах вивчено методом вольтамперометрії (обертовий дисковий електрод). Розчини містили 1 ммоль·л⁻¹ AgClO₄, 25 ммоль·л⁻¹ Na₂S₂O₃, 1 моль·л⁻¹ карбаміду та різну кількість перхлорату натрію (C_{Na}⁺ 0.05— 1.00 моль·л⁻¹). Карбамід уведений для зміни структури водного розчину і сольватації іонів. Визначено величини константи стійкості зовнішньосферного асоціату NaAg-(S₂O₃)₂²⁻ у карбамідному розчині ($K = 25.0 \pm 2.4$) і констант швидкостей його утворення ($k_1 = 102$ c⁻¹) і розпаду ($k_2 = 0.25$ c⁻¹).

SUMMARY. The formation of outer-sphere associate of silver thiosulfate complex with sodium cation in carbamide solutions has been studied by the voltammetric method (rotationg disk electrode). The solutions contained 1 mmol- L^{-1} AgClO⁴, 25 mmol· L^{-1} Na₂S₂O₃, 1 mol· L^{-1} carbamide and different amounts of sodium perchlorate ($C_{\rm Na}^+$ 0.05— 1.00 mol· L^{-1}). Carbamide was added to change the structure of aqueous solution and to solvate ions. Stability constant values of the outer-sphere associate NaAg(S₂O₃)₂²⁻ in a carbamide solution ($K = 25.0 \pm 2.4$) and rate constant values of its formation ($k_1 = 102 \text{ s}^{-1}$) and decomposition ($k_2 = 0.25 \text{ s}^{-1}$) have been determined.

Институт общей и неорганической химии им. В.И. Вернадского НАН Украины, Киев

- 1. Senanayake G. // Gold Bulletin. -2005. -38, № 4. -P. 170-179.
- Ситтиг М. Извлечение металлов и неорганических соединений из отходов. -М.: Металлургия, 1985.
- 3. Vandeputte S., Hubin A., Vereecken J. // Electrochim. Acta. -1997. -42, № 23-24. -P. 3429-3441.
- Стезерянский Э.А., Гурьянова-Доскоч И.А., Омельчук А.А. // Укр. хим. журн. -2010. -76, № 1. -С. 34—38.
- 5. Бек М. Химия равновесий реакций комплексообразования. -М.: Мир, 1973.
- Миронов В.Е., Исаев И.Д. Введение в химию внешнесферных комплексных соединений металлов в растворах. -Красноярск: Изд-во Краснояр. ун-та, 1986.
- 7. Вандышев В.И. // Журн. физ. химии. -2008. -**82**, № 6. -С. 1089—1092.
- Королев В.П. // Журн. структур. химии. -2008. -49, № 4. -С. 688—695.
- 9. Плесков Ю.В.. Филиновский В.Ю. Вращающийся дисковый электрод. -М.: Наука, 1972.
- Галюс 3. Теоретические основы электрохимического анализа. -М.: Мир, 1974.
- 11. Справочник азотчика / Под ред. Н.М. Жаворонкова. -М.: Химия. 1986.

Поступила 22.09.2010

УДК 541.138.2

С.В. Бык, В.С. Кублановский

ФАЗОВЫЕ ОБРАЗОВАНИЯ ПРИ АНОДНОМ РАСТВОРЕНИИ СЕРЕБРА В ДИЦИАНОАРГЕНТАТНОМ ЭЛЕКТРОЛИТЕ

На основании рентгеновских фотоэлектронных спектров поверхностей образцов серебряных покрытий подтверждено образование тонкого слоя оксидной фазы Ag₂O в растворе K[Ag(CN)₂] и в электролите на его основе. На поверхности серебра, при его анодной поляризации в электролите, выявлено присутствие соединения AgCN. Рассмотрена модель процесса окисления, происходящего на поверхности серебра, что позволило подобрать KNO₃ как вещество, способствующее ускорению процесса анодного растворения.

Проблема пассивации анодов в малотоксичных цианоаргентатных электролитах без свободного цианид-иона является одной из основных на пути широкого использования новых электролитов, в том числе и разработанного ранее боратнофосфатно-карбонатного (БФК) электролита. Стабилизация электролита на основе дицианоаргентата калия K[Ag(CN)₂] буферными добавками позволяет получать из этого электролита хорошие функциональные покрытия. Решение проблемы пасси-

© С.В. Бык, В.С. Кублановский, 2011

вации анодов облегчает контроль состава электролита и параметров электролиза [1, 2]. В работах [3—5] нами были рассмотрены кинетика, механизмы растворения серебра в БФК-электролите при различных условиях. Для обоснования и подтверждения полученных ранее результатов необходимо знать фазовый состав поверхностных образований, чтобы можно было легко подобрать дополнительные компоненты электролита, которые бы способствовали растворению серебряного анода.