хелатів є утворення іон-молекулярних асоціатів з однозарядними катіонами. Спектри у негативній області реєстрації іонів малоінформативні. Гексахлорзаміщений клатрохелат не утворює катіонів ні шляхом окиснення, ні за рахунок асоціації. Але, на відміну від клатрохелатів з донорними замісниками, він дає інформативний спектр у негативній області реєстрації іонів, де спостерігається продукт його одноелектронного відновлення M^- . Показано можливість застосування тетрафенілборатів лужних металів в якості матриць та іон-утворюючих добавок для MALDI MS, що є ефективним для дослідження речовин, які важко іонізуються. Розроблено методику для MS досліджень металокомплексів з акцепторними замісниками із застосуванням йон-утворюючих реагентів.

SUMMARY The peculiarities of ionization process of macrobicyclic tris-dioxymates of iron (II) considering the influence of substituents have been emerged by MALDI mass spectroscopy technique. It was found that the cationic complex is ionized by heterolytic dissociation of the ion pair. The formation of the molecular ion by one-electron oxidation to M⁺ is characteristic for clathrochelates with donor substituents. For di-halogen substituted clathrochelates the main process is the formation of ion-molecular associates with single-charged cations. The spectra of negative ions are not informative. Hexahalogen-substituted clathrochelates do not form cations nighther by oxidation nor by association. But unlike clathrochelates with donor substituents, they have informative spectra in the range of negative ions, where one-electron reduction products M⁻ are registered. We developed technique for MS study of metal complexes with acceptor substituents using ionizing additives and showed the possibility of application of tetraphenilborates salts of alkali metals as matrices and ionizing additives for MALDI MS for the study of hardlyionized compounds.

Институт общей и неорганической химии им. В.И. Вернадского НАН Украины, Киев Институт химии поверхности им. А.А. Чуйко НАН Украины, Киев

- 1. Варзацкий О.А., Волошин Я.З., Ткаченко Е.Ю. и др. // Укр. хим. журн. -2002. -68, № 3. -С. 65—66.
- 2. Voloshin Y.Z., Kostromina N.A., Kramer R. // Clathrochelates: Synthesis, Structure and Properties. -Amsterdam: Elsevier, 2002.
- 3. Voloshin Y.Z., Varzatskii O.A., Belov A.S. et al. // Inorg. Chem. -2008. -47, № 6. -P. 2155—2161.
- 4. Voloshin Y.Z., Varzatskii O.A., Palchik A.V. et al. // Inorg. Chim. Acta. -2006. -359, № 2. -P. 553—569.
- 5. *Варзацкий О.А.* Автореф. дис. ... докт. хим. наук. -Иваново, 2006.
- 6. Vincenti M., Irico A. // Int. J. Mass Spectrom. -2002. -214, № 1. -P. 23—36.
- 7. Wang P., Ohanessian G., Wesdemiotis S. // Ibid. -2008. -269, № 1-2. -P. 34—45.
- Mayeux C., Tammiku-Tau J., Massi L. et al. // J. Amer. Soc. Mass Spectrom. -2009. -20, № 9. -P. 1912—1924.
- 9. Gal G., Pierre-Charles Maria, Massi L. et al. // Int. J. Mass Spectrom. -2007. -267, № 1-3.- P. 7-23.
- Toshihiro Fujii // Mass Spectrom. Rev. -2000. -19, № 3. -P. 111—138.
- Guangdi Wang, Cole R.B. // Anal. Chem. -1998. -70, № 5. -P. 873—881.
- Juan Zhang, Knochenmuss R., Stevenson E. // Int. J. Mass Spectrom. -2002. -213, № 2-3. -P. 237—250.
- Neubert H., Kevin A. Knights, Yolanda R. et al. // Macromolecules. -2003. -36, № 22. -P. 8297—8303.
- 14. Ping Xiang, Yiming Lin, Peng Li et al. // J. Appl. Polymer Science. -2007. -105, № 2. -P. 859-864.
- 15. Sung-Seen Choi, Hye Min Lee, Soonmin Jang et al. // Int. J. Mass Spectrom. -2009. -279, № 1. -P. 53—58.
- 16. Jurg M. Daniel, Sebastian D. Friess, Sudha Rajagopalan et al. // Ibid. -2002. -216, № 1. -P. 1—27.
- 17. Грень А.И., Мазепа А.В., Ракипов И.М. и др. // Масс-спектрометрия. -2008. -5, № 3. -С. 203—210.

Поступила 17.03.2011

УДК 546.28.72.667:548.3

О.І. Бардін, М. Дашкевич, Б.Д. Белан, М.Б. Маняко, Л.Б. Коваль, Р.Є. Гладишевський ВЗАЄМОДІЯ КОМПОНЕНТІВ У СИСТЕМІ Тт—Fe—Si ПРИ 800 °C

Ізотермічний переріз діаграми стану потрійної системи Tm—Fe—Si побудовано при 800 $^{\circ}$ C методами рентгенівського фазового та структурного аналізів. Встановлено, що бінарна сполука Tm₂Fe₁₇ зі структурою типу Th₂Ni₁₇ характеризується областю гомогенності 10.5—12.5 % ат. Tm. Часткове заміщення пар атомів Fe₂ атомами Tm приводить до збільшення параметру *a* елементарної комірки та зменшення параметру *c*. Визначено, що розчинність Si в сполуці Tm₂Fe₁₇ становить 15 % ат. вздовж ізоконцентрати 10.5 % ат. Tm. Межі твердих розчинів на основі інших бінарних сполук систем Tm—Fe та Tm—Si не перевищують 5 % ат. Вісім тернарних

© О.І. Бардін, М. Дашкевич, Б.Д. Белан, М.Б. Маняко, Л.Б. Коваль, Р.Є. Гладишевський, 2011

сполук утворюються у системі Tm—Fe—Si при 800 °C. Кристалічну структуру сполуки TmFe₄Si₂ (тип ZrFe₄Si₂) визначено рентгенівським методом порошку, а структуру сполук TmFe_{0.57(3)-0.47(5)}Si₂ (тип CeNiSi₂) і Tm₂FeSi₂ (тип Sc₂CoSi₂) — методом монокристалу.

ВСТУП. На сьогодні повністю побудовані ізотермічні перерізи діаграм стану таких потрійних систем із рідкісноземельними металами (P3M), силіцієм і перехідними металами тріади феруму: Sc—{Fe,Co,Ni}—Si, Y—{Fe,Co,Ni}—Si, La—{Fe,Co, Ni}—Si, Ce—{Fe,Co,Ni}—Si, Nd—Ni—Si, Gd— {Fe,Ni}—Si [1], Tb—{Fe,Co}—Si [2, 3]. Системи за участю інших P3M досліджувались лише на предмет утворення інтерметалічних сполук. Вивчення взаємодії компонентів у системі Tm—Fe—Si при 800 °C є продовженням систематичних досліджень систем P3M—перехідний метал—силіцій.

Подвійні системи, що оточують досліджувану потрійну, вивчені повністю [4—6]. У системі Fe —Si утворюється сім бінарних сполук: Fe_{1.72}Si_{0.28} (структурний тип (СТ) CsCl), Fe₃Si (СТ BiF₃), Fe₂Si (CT Ni₂Al), Fe₅Si₃ (CT Mn₅Si₃), FeSi (CT FeSi), FeSi₂ (метастабільна, СТ CaF₂) та Fe_{0.92}Si₂ (ВТМ, СТ Fe_{0.92}Si₂). При взаємодії тулію з силіцієм утворюються три бінарні сполуки: TmSi_{1.67} (CT AlB₂), TmSi (CT CrB) та Tm5Si3 (CT Mn5Si3). Згідно з діаграмою стану [5] у системі Tm—Fe існують такі сполуки: Tm₂Fe₁₇ (CT Th₂Ni₁₇), Tm₆Fe₂₃ (CT Th₆Mn₂₃), TmFe₃ (СТ PuNi₃) та TmFe₂ (СТ MgCu₂). Система Tm—Fe—Si досліджувалась багатьма авторами на предмет утворення сполук [7, 8]. Крім цього, взаємодія компонентів у системі Tm—Fe—Si при 800 °С у повному концентраційному інтервалі вивчалась авторами роботи [9]. Відповідно до [7, 9] у системі утворюються сполуки TmFe₁₀Si₂ (CT ThMn₁₂), TmFe_{4.42}Si_{1.52} (CT ZrFe₄Si₂), Tm_{0.6}Fe₂Si_{4.9} (CT Sc₀₆Fe₂Si₄₉), Tm₂Fe₄Si₉ (CT Yb₂Fe₄Si₄₅), TmFe₂-Si₂ (CT CeAl₂Ga₂), Tm₂Fe₃Si₅ (CT U₂Mn₃Si₅), Tm₂₄-Fe₂Si₇ (CT Ho₃Co₂Si₇), TmFe_{0.33}Si₂ (CT CeNiSi₂), Tm₃Fe₂Si₃ (CT Hf₃Ni₂Si₃), Tm₂FeSi₂ (CT Sc₂CoSi₂), Tm₃FeSi₃ (CT Sc₃NiSi₃).

ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА. Для синтезу сплавів системи Tm—Fe—Si масою 2 г використано компактні метали: Tm (>99.8 % мас.), Fe (99.99 % мас.) та Si (99.9999 % мас.). Зразки виготовляли сплавлянням шихти з вихідних компонентів в електродуговій печі з вольфрамовим електродом на мідному водоохолоджуваному поді в атмосфері аргону, очищеного титановим гетером. Відпал сплавів проводили при 800 °C у вакуумованих кварцевих ампулах; час відпалу становив 336 год. Відпалені сплави загартовували в холодній воді без попереднього розбивання ампул.

Основним методом дослідження був рентгенівський фазовий аналіз [10]. Порошкограми (дебаєграми) отримували в камерах типу РКД-57.3 (проміння CrK). Для повного визначення кристалічної структури методом порошку використано масиви дифракційних даних, одержаних на автоматичному дифрактометрі HZG-4а (проміння FeK_{α}) та ДРОН-2.0М (проміння FeK_{α}) з наступним уточненням параметрів структури методом Рітвельда за допомогою програми DBWS-9807 [11]. Перший етап дослідження монокристалу проводили фотографічними методами Лаve та обертання (камера РКВ-86, проміння МоК). Експериментальні масиви відбить для другого етапу досліджень отримували на монокристальному дифрактомері КМ-4 ССД. Розрахунки проводили за допомогою програм SHELX-97 [12] та WinCSD [13]. Для графічного зображення структур використовували програму ATOMS [14].

РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ. З метою перевірки літературних відомостей та одержання еталонних рентгенограм бінарних сполук проведено рентгенографічне дослідження шести сплавів систем Tm—Fe та Tm—Si. Результати рентгеноструктурного аналізу показали, що сполука Tm₂Fe₁₇ при 800 °C характеризується змінним складом та існує в області 10.5—12.5 % ат. Tm (рис. 1, *a*,*б*) [15]. Сплав складу Tm_{14.5}Fe_{85.5} є двофазним і містить, крім основної фази зі структурою типу Th₂Ni₁₇, 39 % мас. фази зі структурою типу Th₆Mn₂₃ (рис. 1, *e*). Результати уточнення структури сполуки Tm₂Fe₁₇ для сплаву Tm_{10.5}Fe_{89.5} подано в табл. 1,2. Вакансії (16 %) у положенні 2*b* атомів Tm компенсуються парами атомів Fe в положенні 4*e*.

Графік зміни параметрів елементарної комірки в області гомогенності сполуки $Tm_{2-x}Fe_{17+2x}$ приведений на рис. 2.

У системі Tm—Si нами підтверджено існування бінарних сполук Tm₅Si₃ (CT Mn₅Si₃, a = = 0.82664(3), c = 0.61890(5) нм, $R_p = 0.0911$), TmSi (CT CrB, a = 0.41813(3), b = 1.03406(6), c = 0.37743(2) нм, $R_p = 0.1240$) та TmSi_{1.74} (CT AlB₂, a = = 0.37680(1), c = 0.40702(2) нм, $R_p = 0.0970$).

Еталонні рентгенограми бінарних сполук системи Fe—Si були отримані раніше [2].

Система Tm—Fe—Si вивчалась на 104 подвійних і потрійних сплавах. Згідно з діаграмою фазових рівноваг, у системі Tm—Fe—Si при 800 °C

Рис. 1. Спостережувані (крапки), розраховані (суцільні лінії) та різницеві (внизу рисунку) дифрактограми сплавів $Tm_{10,5}Fe_{89,5}$ (*a*); $Tm_{12,5}Fe_{87,5}$ (*b*); $Tm_{14,5}Fe_{85,5}$ (*s*: I — Th_2Ni_{17} , 2 — Th_6Mn_{23}); $Tm_{10,5}Fe_{84,5}Si_5$ (*c*); $Tm_{10,5}Fe_{79,5}Si_{10}$ (*d*); $Tm_{10,5}Fe_{74,5}Si_{15}$ (*e*); $Tm_{12,5}Fe_{77,5}Si_{10}$ (*c*); $Tm_{36,5}Fe_5Si_{58,5}$ (*ж*: I — AlB_2 , 2 — CrB, 3 — $CeNiSi_2$) (дифрактометр HZG-4a, проміння FeK_{α}).

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2011. Т. 77, № 7

Результати уточнення структури сполуки Tm_2Fe_{17} для сплаву $Tm_{10.5}Fe_{89.5}$ (метод порошку, дифрактометр HZG-4a, проміння FeK_{α})

Значення параметрів
Tm _{1.84} Fe _{17.32}
P6 ₃ /mmc
0.84052(2), 0.82797(3)
0.50657(3)
2
8.380
1.07(1) [0 1 0]
0.1500
-0.004(3), 0.036(6),
0.002(2)
1.01(3)
-0.22(2)
16
0.0322, 0.0416
0.44

Таблиця 2

Координати атомів і коефіцієнти заповнення положень (КЗП) у структурі $Tm_{1.84}Fe_{17.32}$ (СТ Th_2Ni_{17} , СП *hP*38, ПГ *P6₃/mmc*, *a* = 0.84052(2), *c* = 0.82797(3) нм, *Z*=2)

Атом	ПСТ	Коо	КЗП		
_	-	x	У	z	-
Tm1	2c	1/3	2/3	1/4	1
Tm2	2b	0	0	1/4	0.84(1)
Fe1	12 <i>k</i>	0.162(3)	0.324(3)	0.011(1)	1
Fe2	12 <i>j</i>	0.371(1)	0.0387(8)	1/4	1
Fe3	6 <i>g</i>	1/2	0	0	1
Fe4	4f	1/3	2/3	0.613(1)	1
Fe5	4 <i>e</i>	0	0	0.1051(2)	0.16(1)

На рис. 1, *г*–*е* приведено дифрактограми сплавів із вмістом 5, 10 та 15 % ат. Si відповідно. Область гомогенності фази $\text{Tm}_2\text{Fe}_{17-x}\text{Si}_x$ підтверджено результатами рентгеноструктурного дослідження сплаву з вмістом силіцію 10 % ат. на ізоконцентраті 12.5 % ат. тулію (рис. 1, ϵ). Досліджено магнітні властивості сплавів в області гомогенності твердого розчину на основі сполуки $\text{Tm}_2\text{Fe}_{17}$ [16, 17].

Рис. 2. Зміна параметрів комірки в області гомогенності сполуки Tm_{2+x}Fe_{17-x}.

утворюються вісім тернарних сполук (рис. 3, табл. 3). З них сім були відомі раніше, а сполука приблизного складу $Tm_4Fe_3Si_{13}$ (структура не визначена) знайдена вперше.

Нами встановлено, що розчинність Si у сполуці $\text{Tm}_2\text{Fe}_{17}$ (CT $\text{Th}_2\text{Ni}_{17}$) становить 15 % ат. вздовж ізоконцентрати 10.5 % ат. Tm: a = 0.84052(2)— 0.83768(7), c = 0.82797(3)—0.82651(9) нм (табл. 4).

Рис. 3. Ізотермічний переріз діаграми стану системи Tm—Fe—Si при 800 °C: $1 - \text{Tm}_2\text{Fe}_4\text{Si}_9$; $2 - \text{TmFe}_4\text{Si}_2$; $3 - \text{TmFe}_2\text{Si}_2$; $4 - \text{Tm}_2\text{Fe}_3\text{Si}_5$; $5 - \text{~Tm}_4\text{Fe}_3\text{Si}_{13}$; $6 - \text{TmFe}_{0.57-0.47}\text{Si}_2$; $7 - \text{Tm}_3\text{Fe}_2\text{Si}_3$; $8 - \text{Tm}_2\text{FeSi}_2$.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2011. Т. 77, № 7

Таблиця 3 Кристалографічні характеристики сполук системи Tm—Fe—Si

Сполука	СТ	СП	ПГ	Параметри комірки, нм			
		en		а	b	С	
Tm ₂ Fe ₄ Si ₉	Y ₂ Fe ₄ Si ₉	hP16	P6 ₃ /mmc	0.3923		0.1540	
TmFe ₄ Si ₂	$ZrFe_4Si_2$	<i>tP</i> 14	P4 ₂ /mnm	0.71223(3)	_	0.37844(2)	
TmFe ₂ Si ₂	CeAl ₂ Ga ₂	<i>tI</i> 10	I4/mmm	0.38803(4)		0.9899(1)	
$Tm_2Fe_3Si_5$	$Sc_2Fe_3Si_5$	<i>tP</i> 40	P4/mnc	1.3067		0.5407	
$\sim Tm_4Fe_3Si_{13}$	•••	•••	•••	•••	•••	•••	
$TmFe_{0.57-0.47}Si_2$	CeNiSi ₂	oS16	Cmcm	0.40009(8)-	1.5508(3)-	0.38837(8)-	
0.07 0.17 2	-			0.39843(5)	1.5518(2)	0.38725(5)	
Tm ₃ Fe ₂ Si ₃	Hf ₃ Ni ₂ Si ₃	oS32	Cmcm	0.40650(4)	1.0367(1)	1.3472(2)	
Tm ₂ FeSi ₂	Sc ₂ CoSi ₂	mS20	C2/ <i>m</i>	1.0353(2)	0.4115(1)	0.9832(2)	
	_				$\beta = 118.49(3)^{\circ}$		

П р и м і т к а. Виділено результати, отримані у цій роботі.

Таблиця 4

Результати рентгенофазового аналізу сплавів системи Tm—Fe—Si в області гомогенності сполуки Tm₂Fe_{17-x}Si_x

Сянор	OT 1	а	С	V m ³	D	
Сплав	СТ фази	н	М	<i>v</i> , нм	к _р	
Tm _{10.5} Fe _{89.5}	Th ₂ Ni ₁₇	0.84052(2)	0.82797(3)	0.50657(3)	0.0322	
Tm _{10.5} Fe _{84.5} Si ₅	Th ₂ Ni ₁₇	0.83919(2)	0.82696(3)	0.50436(3)	0.0296	
Tm _{10.5} Fe _{79.5} Si ₁₀	Th ₂ Ni ₁₇	0.83894(2)	0.82732(3)	0.50427(2)	0.0290	
Tm _{10.5} Fe _{74.5} Si ₁₅	Th ₂ Ni ₁₇	0.83768(7)	0.82651(9)	0.50227(8)	0.0428	
Tm _{12.5} Fe _{77.5} Si ₁₀	Th ₂ Ni ₁₇	0.84007(5)	0.82592(6)	0.50478(6)	0.0334	

Результати уточнення кристалічної структури фази $\text{Tm}_2\text{Fe}_{17-x}\text{Si}_x$ для сплавів із вмістом 5 і 15 % ат. Si вздовж ізоконцентрати 10.5 % ат. Tm представлені в табл. 5—7. Атоми силіцію утворюють статистичні суміші з атомами феруму в трьох положеннях (ПСТ 12k, 12j та 6g), тоді як положення, що формують пари атомів (ПСТ 4f та 4e), зайняті виключно атомами феруму.

Заміщення атомів Fe на атоми Si в сполуці Tm_2Fe_{17} (рис. 4) призводить до зменшення параметрів та об'єму елементарної комірки. Атоми Si частково заміщають атоми Fe лише в положеннях, які не формують пари. Таким чином, у структурах досліджених сполук ефективний радіус атома Si є меншим за радіус атома Fe. Якщо за ефективний радіус атома Fe прийняти значення його атомного радіуса r_a = 0.126 нм, то значення ефективного радіуса атома Si повинно знаходитися між його атомним і ковалентним радіусами: r_a =0.132 та r_k =0.111 нм відповідно. Збільшення вмісту тулію супроводжується збільшенням параметра елементарної комірки *a* та зменшенням параметра *c*. Атоми Tm заміщають пари атомів Fe, які орієнтовані вздовж кристалографічного напрямку [0 0 1].

На основі інших сполук системи Tm—Fe утворюються тверді розчини заміщення феруму на силіцій протяжністю до 5 % ат. Незначною розчинністю тре-

Рис. 4. Зміна параметрів елементарної комірки в області твердого розчину Si в сполуці Tm_2Fe_{17} вздовж ізоконцентрати 10.5 % ат. Tm.

Результати уточнення структури фази $Tm_2Fe_{17-x}Si_x$ для сплавів $Tm_{10.5}Fe_{84.5}Si_5$ та $Tm_{10.5}Fe_{74.5}Si_{15}$ (метод порошку, дифрактометр HZG-4a, проміння Fe K_{α})

Параметри	Tm _{10.5} Fe _{84.5} Si ₅	Tm _{10.5} Fe _{74.5} Si ₁₅
Уточнений склад сполуки	Tm _{1 90} Fe _{15 64} Si _{1 56}	Tm _{1.81} Fe _{13.85} Si _{3.21}
Просторова група	$P6_3/mmc$	$P6_3/mmc$
Параметри комірки а, с, нм	0.83919(2), 0.82696(3)	0.83764(3), 0.82667(4)
Об'єм комірки V, нм ³	0.50436(5)	0.50231(3)
Кількість формульних одиниць Z	2	2
Густина $D_{\rm X}$, г·см ⁻³	8.160	7.913
Параметр текстури G [напрям]	0.973(5) [0 1 0]	1.018(5) [0 1 0]
Фактор достовірності R _В	0.1566	0.1313
Параметри ширини піків U, V, W	0.013(3), 0.001(6), 0.013(2)	0.007(8), 0.016(9), 0.013(2)
Параметр змішування η	0.88(2)	0.94(2)
Параметр асиметрії піків С _М	-0.18(2)	-0.24(2)
Кількість уточнених параметрів	21	20
Фактор достовірності $R_{\rm p}, R_{\rm wp}$	0.0296, 0.0391	0.0349, 0.0457
Фактор добротності S	0.54	0.46

новлено, що сполука зі структурою типу ZrFe₄Si₂ утворюється при стехіометричному складі TmFe₄Si₂ (СП tP14, ПГ $P4_2/mnm$) з параметрами елементарної комірки a = 0.71223 (3), c = 0.37844(2) нм. Результати угочнення кристалічної структури приведені в роботі [18].

Нами повністю визначено кристалічну структуру сполуки TmFe_{1-x}Si₂ методом монокристалу (дифрактометр KM-4 CCD, проміння MoK_{0}) [19]. Результати уточнення представлені в табл. 9, 10. Структура сполуки TmFe_{1-x}Si₂ належить до структурного типу CeNiSi₂, просторова група *Cmcm*. Досліджено два монокристали зі сплавів різного складу. Уточнення структури показало, що в обох випадках положення атомів перехідного металу частко-

Таблиця б

Координати атомів і коефіцієнти заповнення положень у структурі $Tm_{1.90}Fe_{15.64}Si_{1.56}$ (СТ Th_2Ni_{17} , СП *hP*38, ПГ $P6_3/mmc$, a = 0.83919(2), c = 0.82696(3) нм, Z = 2)

Атом	ПСТ	Коор	кзп		
7110M	ner	x	у	z	
Tm1 Tm2	2d	1/3	2/3	3/4	0.09(9)
Tm2 Tm3	2c 2b	0	0	1/4 1/4	1 0.81(6)
Fe1	12 <i>k</i>	0.167(2)	0.335(2)	0.014(7)	0.82(8)
Si1	12 <i>k</i>	0.167(2)	0.335(2)	0.014(7)	0.18(8)
Fe2	12j	0.368(2)	0.037(8)	1/4	0.96(3)
Si2	12 <i>j</i>	0.368(1)	0.032(2)	1/4	0.04(3)
Fe3	6 <i>g</i>	1/2	0	0	0.92(7)
Si3	6 <i>g</i>	1/2	0	0	0.08(7)
Fe4	4f	1/3	2/3	0.602(2)	0.91(5)
Fe5	4 <i>e</i>	0	0	0.0734	0.19(8)

тього компонента характеризуються і бінарні сполуки системи Tm—Si (табл. 8). На рис. 1, ж приведена дифрактограма сплаву складу Tm_{36 5}Fe₅Si_{58 5}.

При побудові ізотермічного перерізу діаграми стану системи Tm—Fe—Si при 800 °C нами вставо вакантне, зайнятість якого становить від 57 до 47 %. Міжатомні віддалі в структурах досліджених кристалів подано в табл. 11.

Таким чином, сполука $\text{TmFe}_{1-x}\text{Si}_2$ має невелику область гомогенності (2.5 % ат. Fe, $\text{Tm}_{28}\text{Fe}_{16}\text{Si}_{56}$ —

Таблиця 7

Координати атомів і коефіцієнти заповнення положень у структурі $Tm_{1.81}Fe_{13.85}Si_{3.21}$ (СТ Th_2Ni_{17} , СП *hP*38, ПГ $P6_3/mmc$, a = 0.83764(3), c = 0.82667(4) нм, Z=2)

Атом	пст	Коор	КЗП		
		x	у	z	
Tm1	2d	1/3	2/3	3/4	0.13(1)
Tm2	2c	1/3	2/3	1/4	1
Tm3	2b	0	0	1/4	0.84(9)
Fe1	12 <i>k</i>	0.167(4)	0.334(4)	0.015(7)	0.61(4)
Si1	12 <i>k</i>	0.167(4)	0.334(4)	0.015(7)	0.39(4)
Fe2	12 <i>j</i>	0.366(4)	0.036(1)	1/4	0.88(5)
Si2	12 <i>j</i>	0.366(4)	0.036(1)	1/4	0.12(5)
Fe3	6 <i>g</i>	1/2	0	0	0.95(2)
Si3	6 <i>g</i>	1/2	0	0	0.05(2)
Fe4	4f	1/3	2/3	0.599(2)	0.87(5)
Fe5	4 <i>e</i>	0	0	0.099(2)	0.16(9)

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2011. Т. 77, № 7

Результати рентгенофазового аналізу зразків системи Tm—Fe—Si із вмістом Fe до 5 % ат.

890(5)
871(5)
743(2)
738(4)
702(2)
730(3)
71(2)
716(5)

Таблиця 9

Результати уточнення структури сполуки TmFe_{1-x}Si₂ (CT CeNiSi₂, СП oS16, ПГ Стст)

Уточнений склад	а	b	С	<i>V</i> , нм ³	R	wR
		HM				

Tm₂₉Fe₁₃₅Si₅₇₅), у межах якої співвідношення Tm/Si залишається постійним. Із зростанням кількості вакансій два короткі періоди а та с зменшуються, тоді як параметр b дещо збільшується. Така зміна пов'язана із деформацією координаційного многогранника атомів феруму (рис. 5). Атом феруму знаходиться в центрі тетрагональної антипризми складу Si₄Tm₄, квадратна грань якої з атомів Tm центрована додатковим атомом Si. Тобто контактні відстані існують між атомом феруму та п'ятьма атомами силіцію, які формують тетрагональну піраміду. Збільшення кількості вакансій призводить до зменшення віддалей до атомів в основі піраміди (параметри *a* і *c*), тоді як відстань до її вершини дещо збільшується (виключно параметр b).

Нами повністю визначено кристалічну структуру сполуки Tm_2FeSi_2 методом монокристалу (дифрактометр KM-4 CCD, проміння $\text{Mo}K_{\alpha}$). Результати уточнення представлені в табл. 12.

Координати атомів у структурі сполуки $Tm_3Fe_2Si_3$ не уточнювались. Сплав $Tm_{33,3}Fe_{26,7}Si_{40}$ (дифрактометр ДРОН-2.0М, проміння FeK_{α}) містить 73 % мас. фази $Tm_3Fe_2Si_3$

Таблиця 10

Координати та параметри теплового коливання атомів і коефіцієнти заповнення положень у структурах TmFe_{0.57(3)}Si₂ та TmFe_{0.47(5)}Si₂

Атом	пст	$TCT x y z U_{e_{KB}}$, K3	КЗП	Атом	$U_{11}, \ \cdot 10^2$	$U_{22}, \cdot 10^2$	$U_{33}, \ \cdot 10^2$					
			5	-	·10 ² , нм				HM			
Tm	4 <i>c</i>	0	0.39763(4) 0.39759(6)	1/4	0.0095(6) 0.0112(8)	1 1	Tm	0.0077(6) 0.0135(10)	0.0091(7) 0.0163(11)	0.0119(7) 0.0039(9)		
Fe	4 <i>c</i>	0	0.1945(4) 0.1951(7)	1/4	0.033(3) 0.027(4)	0.57(3) 0.47(5)	Fe	0.039(4) 0.028(6)	0.014(3) 0.025(7)	0.047(5) 0.027(6)		
Si1	4 <i>c</i>	0	0.0476(4) 0.0470(7)	1/4	0.0146(11) 0.0111(16)	1 1	Si1	0.011(2) 0.011(3)	0.013(2) 0.016(4)	0.020(3) 0.005(3)		
Si2	4 <i>c</i>	0	0.7505(5) 0.7500(8)	1/4	0.0335(19) 0.029(3)	1 1	Si2	0.033(3) 0.035(6)	0.009(3) 0.017(5)	0.059(5) 0.034(7)		

Примітка. $U_{12} = U_{13} = U_{23} = 0.$

Неорганическая и физическая химия

Т	а	б	Л	И	ц	я	11
---	---	---	---	---	---	---	----

Міжатомні віддалі (нм) у структурі сполуки TmFe_{1-х}Si₂

Атоми	TmFe _{0.57(3)} Si ₂	TmFe0 _{.47(5)} Si ₂	Атоми	TmFe0 _{.57(3)} Si ₂	TmFe0 _{.47(5)} Si ₂
Tm-4Si1	0.2915(2)	0.2908(3)	Fe-4 Tm	0.3132(3)	0.3128(5)
Tm-2Si2	0.3008(6)	0.2999(9)	Fe–1Tm	0.3151(6)	0.3143(11)
Tm-2Si2	0.3008(6)	0.3036(9)			
Tm-2Si1	0.3067(5)	0.3057(8)	Si1–1Fe	0.2278(7)	0.2297(12)
Tm-4Fe	0.3132(3)	0.3128(5)	Si1-2Si1	0.2439(8)	0.2425(12)
Tm-1Fe	0.3151(6)	0.3143(11)	Si1–4Tm	0.2915(2)	0.2908(3)
Tm-2Tm	0.3722(1)	0.3722(2)	Si1–2Tm	0.3067(5)	0.3057(8)
Tm-2Tm	0.3884(1)	0.3876(1)	Si2–2Fe	0.2121(4)	0.2116(6)
Tm-2Tm	0.4001(1)	0.3984(1)	Si2–2Fe	0.2181(4)	0.2167(6)
			Si2–4Si2	0.2788(4)	0.2778(3)
Fe-2Si2	0.2121(4)	0.2116(6)	Si2–2Tm	0.3008(6)	0.2999(9)
Fe–2Si2	0.2181(4)	0.2167(6)	Si2–2Tm	0.3034(5)	0.3036(9)
Fe–1Si1	0.2278(7)	0.2297(12)			

Координати та параметри теплового коливання атомів у структурі сполуки Tm_2FeSi_2 (СТ Sc_2CoSi_2 , СП mS20, ПГ C2/m, a = 1.0353(2), b = 0.4115(1), c = 0.9832(2) нм, $\beta = 118.49(3)^0$, Z=4, R = 0.0409, wR = 0.1039)

Атом	ПСТ	x	у	Z	$U_{\rm ekb}, \\ \cdot 10^2 \ {\rm hm}^2$
Tm1	4i	-0.0008(1)	0	0.3266(1)	0.007(1)
Tm2	4i	0.1883(1)	0	0.1086(1)	0.008(1)
Fe	4i	0.2711(2)	0	0.6293(2)	0.008(1)
Si1	4i	0.3529(3)	0	0.4372(4)	0.007(1)
Si2	4i	0.4948(4)	0	0.1235(4)	0.009(1)

зі структурою типу $Hf_3Ni_2Si_3$ (СП *oS*32, ПГ *Стст*, *a* =0.40650(4), *b* = =1.0367(1), *c* = 1.3472(2) нм) та 27 % мас. фази TmFe₂Si₂ зі структурою типу CeAl₂Ga₂ (СП *tI*10, ПГ *I4/ттт*, *a* =0.38803 (4), *c* = 0.9899(1) нм).

ВИСНОВКИ. Порівнюючи одержані нами результати вивчення взаємодії компонентів у системі Tm—Fe—Si при 800 °C з результатами авторів роботи [9], можна зробити висновок, що використаний ними багатоступеневий відпал сплавів впливає на характер взаємодії. Крім того, при температурі дослідження 800 °C нами не підтверджено сполук TmFe₁₀Si₂ (CT ThMn₁₂), Tm_{0.6}Fe₂Si_{4.9} (CT

Рис. 5. Тетрагональна антипризма $FeSi_4Tm_4$ з додатковим атомом Si у структурі сполуки $TmFe_{1-x}Si$.

Sc_{0.6}Fe₂Si_{4.9}), Tm_{2.4}Fe₂Si₇ (CT Ho₃-Co₂Si₇) ta Tm₃FeSi₃ (CT Sc₃NiSi₃).

РЕЗЮМЕ. Изотермическое сечение диаграммы состояния тройной системи Tm—Fe—Si построено при 800 °C методами рентгеновского фазового и структурного анализов. Установлено, что соединение Tm₂Fe₁₇ со стру-

ктурой типа Th₂Ni₁₇ характеризуется областью гомогенности 10.5—12.5 % ат. Tm. Частичное замещение пар атомов Fe₂ атомами Tm приводит к увеличению парраметра *а* элементарной ячейки и уменьшению параметра *с.* Установлено, что растворимость Si в соединении Tm₂Fe₁₇ составляет 15 % ат. вдоль изоконцентраты 10.5 % ат. Tm. Границы твердых растворов на основе других соединений систем Tm—Fe и Tm—Si не превышают 5 % ат. Восемь тройных соединений образуются в системе Tm—Fe—Si при 800 °C. Кристаллическая структура соединения TmFe₄Si₂ (тип ZrFe₄Si₂) определена рентгеновским методом порошка, а структура соединений TmFe_{0.57(3)-0.47(5)}Si₂ (тип CeNiSi₂) и Tm₂FeSi₂ (тип Sc₂CoSi₂) — методом монокристалла.

SUMMARY. The isothermal section of the phase diagram of the ternary system Tm-Fe-Si was constructed by means of X-ray phase and structural analysis at 800 °C. It was established that the binary compound Th₂Fe₁₇ with a Th₂Ni₁₇-type structure is characterized by a homogeneity range 10.5-12.5% at. Tm. Partial replacement of Fe, dumb-bells by Tm atoms leads to the increase of the cell parameter a and decrease of the parameter c. It was determined that the solubility of Si in the compound Tm₂Fe₁₇ is up to 15 % at. along the line 10.5 % at. Tm. The ranges of solid solutions based on other compounds of the Tm-Fe and Tm-Si systems do not exceed 5 % at. Eight ternary compounds are formed in the system Tm-Fe-Si at 800 ^{o}C . The crystal structure of the compound TmFe₄Si₂ (type ZrFe₄Si₂) was determined by means of X-ray powder diffraction, whereas the structures of $\text{TmFe}_{0.57(3)-0.47(5)}\text{Si}_2$ (type CeNiSi₂) and Tm_2FeSi_2 (type Sc₂CoSi₂) were determined from X-ray single-crystal diffraction data.

- 1. Бодак О.И., Гладышевский Е.И. Тройные системы, содержащие редкоземельные металлы. Справочник. -Львов: Вищ. шк., 1985.
- Kryvulya L., Belan B., Bodak O. et al. // Coll. Abst. VIII Int. Conf. Cryst. Chem. Intermet. Compd. Lviv (Ukraine). -September 25–28, 2002. -P. 52.
- Kryvulya L., Belan B., Bodak O. // Coll. Abst. 14 Int. Conf. Solid Compd. Trans. Elements, Linz (Austria). -July 6–11, 2003. -P. O1–O3.
- 4. Villars P., Cenzual K., Daams J.L.C. et al. Pauling File. Inorganic Materials Database and Design System. Binaries Ed. -Bonn (Germany): Crystal Impact (Distributor), 2001.
- 5. Okamoto H. Desk Handbook: Phase Diagrams for Binary Alloys. Materials Park (OH): American Soc. for Metals, 2000.
- Massalski T.B. Binary Alloy Phase Diagrams. Materials Park (OH): American Soc. for Metals, 1986. -Vol. 1–4.
- 7. Villars P. Pearson's Handbook of Crystallographic Data for Intermetallic Phases. Materials Park (OH): American Soc. for Metals, 1997. -Vol. 1–2.
- 8. Gladyshevskii E.I., Bodak O.I., Pecharsky V.K. Phase Equilibria and Crystal Chemistry in Ternary Rare-Earth Systems with Metallic Elements. In: Handbook on the Physics and Chemistry of the Rare Earth / Eds. K.A. Gschneidner, Jr.,L. Eyring. -Amsterdam: Elsevier, 1990. -Vol. 13, Ch. 88.
- 9. Muller M., Schmidt H., Braun H.F. // J. Alloys Compd.

Львівський національний університет ім. Івана Франка Інститут низьких температур і структурних досліджень ім. В. Тржебятовського Польської академії наук, Вроцлав Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України, Київ -1997. -257. -P. 205-210.

- Франк-Каменецкий В.А. Руководство по рентгеновскому исследованию минералов. -Л.: Недра, 1975.
- Wiles D.B., Sakthivel A., Young R.A. Program DBW3.2s for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns. -Atlanta: Georgia Institute of Thechnology, 1995.
- 12. Sheldrick G.M. SHELXL-97, Program for Crystal Structure Refinement. -University of Gottingen, Germany, 1997.
- Akselrud L.G., Grin Yu.N., Zavalii P.Yu. et al. // Proc. 12 Europ. Crystallogr. Meet. -M.: Nauka, 1989. -Vol. 3.
- 14. Dowty E. ATOMS. A Computer Program for Displaying Atomic Structures. -Kingsport, TN, 1999.
- Бардін О.І., Прокоп'як Н.М., Романюк Г.В. та ін. // Тези доп. XVII Укр. конф. з неорган. хімії. -Львів, 15–19 вересня 2008 р. -С. 227.
- Bardin O., Belan B., Gladyshevskii R. et al. // Coll. Abstr. XI Int. Conf. Cryst. Chem. Intermet. Compd. Lviv (Ukraine). 30 May-2 June 2010. -P. 10.
- 17. Bardyn O., Belan B., Gladyhevskii R. et al. // Chem. Met. Alloys. -2010. -3, № 3-4.
- 18. Bardin O., Belan B., Manyako M., Gladyshevskii R. // Ibid. -2009. -2, № 3-4. -P. 211-214.
- Бардін О., Белан Б., Степень-Дамм Ю., Гладишевський Р. // Зб. наук. праць 12 наук. конф. "Львівські хімічні читання – 2009", 1–4 червня 2009 р. -Львів: ЛНУ ім. Івана Франка. -С. Н74.

Надійшла 11.01.2011

УДК 541.183

Ю.И. Тарасевич, Е.В. Аксененко, В.Е. Поляков

ВЫВОД ОБОБЩЕННОГО УРАВНЕНИЯ ЛЕНГМЮРА И ЕГО ПРИМЕНЕНИЕ ДЛЯ ОПИСАНИЯ ГИДРАТАЦИИ АКТИВНЫХ ЦЕНТРОВ Мn-КЛИНОПТИЛОЛИТА

Предложено обобщение уравнения изотермы Ленгмюра для описания изотермы адсорбции в системе, в которой существует несколько типов адсорбционных центров, при допущении, что на каждом центре может адсорбироваться не более одной молекулы и взаимодействие между молекулами, адсорбированными на различных центрах, отсутствует. Уравнение применено к экспериментально измеренной изотерме адсорбции воды на активных центрах — ионах Mn²⁺, локализованных в 8- и 10-членных каналах структуры клиноптилолита.

ВВЕДЕНИЕ. При обработке изотерм адсорбции и ионного обмена в координатах классического уравнения Ленгмюра адсорбция (ионный обмен) часто описывается двумя пересекающимися прямыми с различным наклоном относительно оси абсцисс. Это может свидетельствовать о наличии на поверхности исследуемого вещества двух типов активных центров, характеризующихся раз-

[©] Ю.И. Тарасевич, Е.В. Аксененко, В.Е. Поляков, 2011