УДК 541.49+546.72

Е.Э. Марцинко, И.И. Сейфуллина, А.Г. Песарогло

ПОЛУЧЕНИЕ И ХАРАКТЕРИСТИКА РАЗНОМЕТАЛЛЬНЫХ КОМПЛЕКСОВ s-(Na, K, Mg, Ca, Sr)-МЕТАЛЛОВ НА ОСНОВЕ БИС(ЦИТРАТО)ГЕРМАНАТНОЙ КИСЛОТЫ

Синтезирован ряд новых разнометалльных комплексов s-(Na, K, Mg, Ca, Sr)-металлов на основе бис-(цитрато)германатной кислоты H₂[Ge(HCitr)₂] (H₄Citr — лимонная кислота). Описаны разработанные методики получения пяти координационных соединений состава M₂[Ge(HCitr)₂]·2H₂O (M = Na(I), K(II)), [M(H₂O)₆][Ge(HCitr)₂]·H₂O (M = Mg(III), Ca(IV), Sr(V)). На основании результатов исследования методами элементного, рентгенофазового анализов, термогравиметрии и ИК-спектроскопии предложена схема комплексного аниона в соединениях I–V.

ВВЕДЕНИЕ. В настоящее время появилось большое число работ, посвященных синтезу и исследованию свойств различных гетерометаллических координационных соединений. Оказалось, что во многих случаях гетероядерные комплексы по своим функциональным (спектральным, магнитным, биологическим и др.) свойствам превосходят моноядерные [1, 2]. Практический интерес представляют комплексы на основе гидроксокарбоновых кислот, поскольку они находят применение в науке, технике, пищевой и фармацевтической промышленности.

Так, лимонная кислота является непосредственным участником цикла трикарбоновых кислот - процесса, обеспечивающего в живом организме окисление промежуточных продуктов расщепления питательных веществ, и применяется в медицине в составе средств, улучшающих энергетический обмен. С учетом того, что смеси GeO₂ с некоторыми гидроксокарбоновыми кислотами используются как добавки в медицине и косметологии [3], можно предположить, что комплексные соединения Ge(IV) с теми же кислотами окажутся еще более эффективными. Поэтому исследование разнометалльных комплексов германия на основе лимонной кислоты, установление связи между их строением и физико-химическими характеристиками открывает пути для получения новых соединений с полезными функциональными свойствами.

Выделение в твердом виде и исследование бисцитратогерманатных комплексов с внешнесферными лигандами состава (HNic)₂[Ge(HCitr)₂]·3H₂O, (HDphg)₂[Ge(HCitr)₂]·H₂O (H₄Citr — лимонная кислота, Nic — никотиновая кислота, Dphg — дифенилгуанидин) [4—6], подтвердили существование в растворе [7] достаточно устойчивой бисцитратогерманатной кислоты, которой соответствует формула H₂[Ge(HCitr)₂]. Кислотный характер и наличие в H₂[Ge(HCitr)₂] свободных донорных центров, способных к образованию связей с другими металлами, определили возможность использования бисцитратогерманатной кислоты в качестве конструкционного блока для синтеза гетерометаллических комплексов. Так, ранее нами были получены разнометалльные бис(цитрато)германаты бария [8] и 3*d*-металлов (Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺) [9].

В продолжение этих исследований была сформулирована цель настоящей работы — синтез гетерометаллических комплексов на основе бис(цитрато)германатной кислоты и катионов *s*-металлов (Na, K, Mg, Ca, Sr), а также определение их строения и свойств.

ЭКСПЕРИМЕНТ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Для синтеза комплексов использовали поэтапный метод "конструкционных блоков". На первом этапе навески 1.046 г (0.01 моль) GeO₂ и 4.2 г (0.02 моль) моногидрата лимонной кислоты C₆H₈O₇·H₂O вносили в 400 мл горячей воды. Смесь нагревали (80 -90 °C) при постоянном перемешивании до полного растворения реагентов, а затем полученный прозрачный раствор (рН 1.5-2) упаривали на водяной бане до объема 100 мл (~2 ч) и охлаждали. На втором этапе к 20 мл (0.002 моль) насыщенного раствора бис(цитрато)германатной кислоты (70-80 °C) добавляли при постоянном перемешивании до полного растворения навески по 0.004 моль КНСО3 и NaHCO3 (комплексы I и II соответственно) и по 0.002 моль MgCO₃ (III), CaCO₃

© Е.Э. Марцинко, И.И. Сейфуллина, А.Г. Песарогло, 2011

Неорганическая и физическая химия

Таблица 1

Сое- динние	Брутто-формула	Найдено, %				Вычислено, %			
		Ge	М	С	Н	Ge	М	C	Н
Ι	$C_{12}H_{14}O_{16}GeNa_{2}$	13.55	8.58	27.00	2.50	13.63	8.64	27.04	2.63
II	$C_{12}H_{14}O_{16}GeK_2$	12.78	13.59	25.00	2.40	12.86	13.82	25.50	2.48
III	C ₁₂ H ₂₄ O ₂₁ GeMg	12.01	4.01	23.85	4.00	12.09	4.04	23.96	3.99
IV	C ₁₂ H ₂₄ O ₂₁ GeCa	11.68	6.37	23.03	3.80	11.75	6.49	23.36	3.89
V	$\mathrm{C_{12}H_{24}O_{21}GeSr}$	10.69	13.10	21.50	3.65	10.93	13.19	21.68	3.61

Результаты элементного анализа комплексов I-V

Таблица 2

D					T T7
Результяты	исспелования	термическои	VCTOИЧИВОСТИ	комплексов	I - V
1 cognibiaibi	пестедования	repain reenton	Jeron mooern	Rommercheob	- ·

	- <i>n</i> H ₂ O			Деструкция,	Остаток		
Сое- динение	t _{max} * (ДТА), ^о С	$\Delta m_{\rm практ}$	$\Delta m_{\rm reop}$	$t \qquad (\Pi T A)^{\circ} C$	$\Delta m_{\Pi \text{pakt}}, \%$	$\Delta m_{\rm практ}$	$\Delta m_{\rm reop}$
		%		max (ATT), C	(суммарно)	%	
I	60–140 (105↓)	6.70	6.76	180–290 (250↑)	62.30	31.00	31.28
		n=2		290–500 (450↑)			Na_2GeO_3
				500-780 (720↑)			2 5
				780880 (825↑)			
II	60–130 (100↓)	6.25	6.38	190-290 (260↑)	60.75	33.00	33.18
		n=2		290-500 (410↑)			K ₂ GeO ₃
				540-700 (710↑)			
				780-870 (820↑)			
III	100–180 (160↓)	21.25	20.98	190-300 (280↑)	55.25	23.50	24.08
		<i>n</i> =7		300-550 (480↑)			MgGeO ₃
				550-780 (630↑)			
				780-870 (820↑)			
IV	80–230 (170↓)	19.90	20.43	230-330 (280↑)	54.00	26.10	26.05
		<i>n</i> =7		330–500 (430↑)			CaGeO ₃
				500-730 (620↑)			2
V	90–240 (170↓)	19.00	18.97	210-330 (280↑)	50.00	31.00	31.35
		<i>n</i> =7		350–510 (430↑)			SrGeO ₃
				510-800 (680↑)			5
* 1	\wedge	v 11					

* ↓ — эндо-, ↑ — экзотермический эффект.

(IV), SrCO₃ (V). Полученные растворы (pH 4–5) оставляли при комнатной температуре.

Для выделения осадков комплексов I, II и IV к их растворам добавляли двукратный избыток 96 %-го этанола (выход продуктов 70-75%). Осадки соединений III и V выпадали из соответствующих растворов через 1–2 сут (выход продуктов 80—85 %). Полученные осадки отделяли на фильтре Шотта, промывали водно-спиртовым раствором и эфиром, а затем сушили до постоянной массы при комнатной температуре.

Содержание германия и других металлов определяли методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой на приборе Optima 2000 DV (фирма Perkin Elmer), углерода и водорода — с помощью полуавтоматического С, N, H-анализатора. Гидратный состав устанавливали с привлечением расчетов по термогравиметрической кривой. Термогравиметрический анализ проводили на дериватографе Q-1500Д (воздушная атмосфера, интервал температур 20—1000 °С, скорость нагрева 10 град/мин), рентгенофазовый анализ (РФА) — на дифрактометре ДРОН-0,5 на медном антикатоде с никелевым фильтром. ИК-спектры поглощения (400—4000 см⁻¹) комплексов записывали на спектрофотометре Shimadzu FTIR-8400S.

На основании элементного анализа (табл. 1) продуктов синтеза разнометалльных бисцитратных комплексов германия (IV) с ионами *s*- и *d*-элементов установлено, что в зависимости от иона второго металла образуются соединения различного состава: Na (K): Ge : лиганд = 2:1:2 и Mg (Ca, Sr) : Ge : лиганд = 1:1:2.

По результатам рентгенофазового анализа все комплексы являются кристаллическими, их штрихрентгенограммы характеризуются собственным набором межплоскостных расстояний, что исключает наличие примеси исходных веществ.

При исследовании термической устойчивости соединений I-V установлено, что их термолиз носит сложный, ступенчатый характер (табл. 2). На первой стадии в интервале температур 60-240 °С наблюдается эндотермический эффект. Для комплексов III-V по сравнению с I, II его более широкий температурный интервал и высокая температура начала позволяет заключить, что соединения III-V содержат молекулы не только кристаллизационной, но и координированной воды. Дальнейшее разложение комплексов I-V протекает однотипно: за указанным эндоэффектом наблюдается ряд следующих друг за другом экзоэффектов, происходит окислительная термодеструкция веществ. На основании расчета убыли массы по термогравиметрической кривой и данных РФА установлено, что конечными продуктами термолиза при 1000 °C являются метагерманаты соответствующих металлов (табл. 2).

Обнаруженный однотипный характер термолиза комплексов I, II и III–V косвенно указывает на образование соединений аналогичного строения. Это нашло подтверждение в том, что набор характеристических частот полос поглощения в ИК-спектрах соединений I, II и III–V соответственно оказался практически одинаковым. Для примера на рис. 1 приведены ИК-спектры комплексов II и III.

Таблица З

Характеристические частоты в ИК-спектрах комплексов І-V

OTHERE $\lambda = \alpha v^{-1}$	Комплекс						
OTHECCHINE, V, CM	Ι	II	III	IV	V		
ν(OH) (H ₂ O)	3470	3450	3523	3521	3524		
v(C=O) (своб. СООН)	1708	1709	1705	1707	1706		
$v_{as}(COO^{-})$	1580	1579	1677	1674	1672		
			1601	1602	1599		
$v_s(COO^-)$	1420	1421	1421	1418	1420		
-	1350	1352	1359	1358	1360		
v(C–O) (COOH)	1255	1260	1255	1248	1255		
v(C–O) (OH)	1072	1073	1072	1071	1072		
δ(H ₂ O)		_	1641	1630	1639		
ρ(H ₂ O) маятниковые	_	_	731	729	730		
ω(H ₂ O) веерные		_	471	470	470		
v(Ge–O)	667	668	665	663	670		
	630	628	633	637	634		

Отнесение полос поглощения, обнаруженных в рассматриваемых ИК-спектрах (табл. 3), было сделано в соответствии с данными, полученными для бис(цитрато)германатов с экзо-лигандами и другими металлами [4—6, 8, 9], а также с информацией, имеющейся в литературе об аква- и карбоксилатных комплексах различных металлов [10, 11]. В ИК-спектрах соединений I–V присутствуют полосы валентных колебаний молекул воды в области 3450—3520 см⁻¹ в зависимости от комплекса.

О наличии вакантной группы СООН в молекулах соединений I–V свидетельствуют имеющиеся в их ИК-спектрах частоты v(C=O) = 1704— 1710 и v(C-O) = 1260—1248 см⁻¹. Во всех комплексах отмечено появление характеристических полос двух $v_{as}(COO^{-})$ и двух $v_{s}(COO^{-})$ в более и менее высокочастотной области (табл. 3), а также v(С-О) алкоголятного типа в области 1069-1073 см⁻¹ [13] при отсутствии деформационных колебаний С-ОН. Зафиксированные особенности ИКспектров соединений I-V были интерпретированы следующим образом: в данных комплексах сохраняется не только такая же, как и в бис(цитрато)германатах с органическими катионами, барием и *d*-металлами [4—6, 8, 9], координируемая форма HCitr³⁻, но и сам полиэдр германия GeO₆ (в связях участвуют кислороды депротонированных двух карбоксильных и одной гидроксильной групп). Это находит подтверждение в появлении полос, характерных для колебаний связей v(Ge-O) (табл. 3).

Отличием ИК-спектров комплексов III–V является наличие полос деформационных $\delta(H_2O)$, маятниковых $\rho(H_2O)$ и веерных $\omega(H_2O)$ колебаний, характерных для гексааквакомплексов двухвалентных металлов [11].

Рис. 2. Схема строения комплексного аниона в соединениях I–V.

На основании совокупности данных, полученных различными методами исследования, для комплексов I–V предложены следующие молекулярные формулы: $M_2[Ge(HCitr)_2]\cdot 2H_2O$ (M = K(I), Na(II)), [M(H_2O)_6][Ge(HCitr)_2]·H_2O (M = Mg(III), Ca(IV), Sr(V)). С учетом структуры ранее полученных бис(цитрато)германатов [4—6, 8, 9] строение комплексного аниона, одинакового для всех рассмотренных соединений, можно представить схемой, приведенной на рис. 2.

Одесский национальный университет им. И.И. Мечникова

РЕЗЮМЕ. Синтезовано ряд нових різнометальних комплексів s-(Na, K, Mg, Ca, Sr)-металів на основі біс-(цитрато)германатної кислоти $H_2[Ge(HCitr)_2] (H_4Citr$ лимонна кислота). Описано розроблені методики одержан $ня п'яти координаційних сполук складу <math>M_2[Ge(HCitr)_2]$. $2H_2O (M = Na(I), K(II)), [M(H_2O)_6][Ge(HCitr)_2] H_2O (M = Mg(III), Ca(IV), Sr(V)). На підставі результатів дослід$ ження методами елементного, рентгенофазового аналізів, термогравіметриії та IЧ-спектроскопії запропоновано схему будови комплексного аніону в сполуках I–V.

SUMMARY. The row of new mixed-metal complexes of s-(Na, K, Mg, Ca, Sr)-metals on the basis of bis(citrato)germanate acid $H_2[Ge(HCitr)_2]$ (H_4Citr — citric acid) was synthesized. Methods of synthesis of 5 coordination compounds of composition $M_2[Ge(HCitr)_2]\cdot H_2O$ (M = Na(I), K(II)), $[M(H_2O)_6][Ge(HCitr)_2]\cdot H_2O$ (M = Mg(III), Ca(IV), Sr(V)) were described. The scheme of complex anion in I–V compounds was proposed on the basis of element, X-ray powder diffraction analysis, thermogravimetry and IR-spectrometry.

- 1. Пилипенко А.Г., Тананайко М.М. Разнолигандные и разнометальные комплексы и их применение в аналитической химии. -М.: Химия, 1983.
- 2. Lehn J.M. Supramolecular Chemistry. Weinheim: VCH, 1995.
- Лукевиц Э.Я., Гар Т.К., Игнатович Л.М., Миронов В.Ф. Биологическая активность соединений германия. -Рига: Зинатие, 1990.
- Сейфуллина И.И., Песарогло А.Г., Марцинко Е.Э. и др. // Журн. неорган. химии. -2006. -51, № 12. -С. 2010—2017.
- 5. Сейфулина И.И., Песарогло Л.Г., Миначева Л.Х. и др. // Там же. -2007. -52, № 4. -С. 550—555.
- 6. Сейфуллина И.И., Марцинко Е.Э., Миначева Л.Х. и др. // Укр. хим. журн. -2009. -75, № 1. -С. 3—8.
- 7. Сейфуллина И.И., Белоусова Е.М., Пожарицкий А.Ф., Бобровская М.М. // Журн. неорган. химии. -1973. -18, № 10. -С. 2766—2771.
- 8. Песарогло А.Г., Марцинко Е. Э., Миначева Л. Х. и др. // Там же. -2010. -55, № 9. -С. 1449—1455.
- 9. Марцинко Е. Э., Миначева Л. Х., Песарогло А.Г. и др. // Там же. -2011. -56, № 8.
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. -М.: Мир, 1991.
- 11. Григорьев А.И. Введение в колебательную спектроскопию неорганических соединений. -М.: Наука, 1977.

Поступила 17.05.2011

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2011. Т. 77, № 9