ЛІТЕРАТУРА

- Van der Plas T. Physical and Chemical Aspects of Adsorbents and Catalysts. -London: Academ. Press, 1970.
- 2. Bansal R.C., Donnet J.B., Stoeckli F. Active carbon. -New York: Marcel Dekker, 1988.
- Leon y Leon C.A., Radovic L.R. / Ed. by P.A.Thrower. -New York: Marcel Dekker, 1994. -24. -P. 213—310.
- Puri B.R. Chemistry and Physics of Carbon / Ed. by P.J.Walker Jr. -New York: M.Dekker, 1970. -6. -P. 191—282.
- Cadenas-Perez A.F., Maldonado-Hodar F.J., Moreno-Castilla C. // Carbon. -2003. -41. -P. 473—478.
- 6. Fanning P.E., Vannice M.A. // Ibid. -1993. -**31**. -P. 721-730.
- 7. Matzner R., Boehm H.P. // Ibid. -1998. -36. -P. 1697-1709.
- 8. Fitzer E., Geigl K.H., Huttner W., Weiss R. // Ibid. -1980. -18, № 6. -P. 389-393.
- 9. Николаев В.Г., Стрелко В.В. Гемосорбция на активированных углях. -Киев: Наук. думка, 1979.
- 10. *Кузин И.А., Лоскутов А.И. //* Журн. прикл. химии. -1966. -**39**, № 1. -С. 100—104.
- Щербицкий А.Б., Картель Н.Т., Михаловский С.В. и др.// Адсорбция и адсорбенты. -1983. -№ 11. -С. 80—84.
- Adib F., Bagreev A., Bandosz T.J. // Langmuir. -2000.
 -16. -P. 1980—1986.
- Bagreev A., Bashkova S., Bandosz T.J. // Ibid. -2002.
 -18. -P. 1257—1264.
- Calahorro C.V., Garcia A.M., Garcia A.B., Serrano V.G. // Carbon. -1990. -28, № 2–3. -P. 321—335.
- Seron A., Benaddi H., Beguin F. et al. // Ibid. -1996.
 -34, № 4. -P. 481-487.
- 16. Пат. України №42910 А. -Опубл. 15-Лис-01; Бюл. № 10.
- 17. Puziy A.M., Poddubnaya O.I., Ritter J.A. et al. // Carbon. -2001. -39, № 15. -P. 2313—2324.
- 18. Puziy A.M., Poddubnaya O.I. // Materials Science

Інститут сорбції та проблем ендоекології НАН України, Київ Forum. -1999. -308. -P. 908-913.

- 19. Пузий А.М., Поддубная О.И., Ставицкая С.С. // Журн. прикл. химии. -2004. -77, № 8. -С. 1279—1283.
- 20. Provencher S.W. // Computer Physics Communications. -1982. -27. -P. 213-227.
- 21. Provencher S.W. // Ibid. -1982. -27. -P. 229-242.
- 22. Puziy A.M., Matynia T., Gawdzik B., Poddubnaya O.I. // Langmuir. -1999. -15. -P. 6016-6025.
- Lange's Handbook of Chemistry / Ed. by John A. Dean, 15th edition. -New York: McGraw-Hill Inc., 1999. -Section 3. -P. 3.41.
- 24. Kortum G., Vogel W., Andrussow K. Dissociation Constants of Organic Acids in Aqueous Solution. -London: Butterworth, 1961. -P. 189-536.
- 25. Рабинович В.А., Хавин З.Я. Краткий химический справочник. -Л.: Химия, 1978.
- 26. Stumm W., Morgan J.J. Aquatic Chemistry. -New York: John Wiley & Sons, 1996.
- 27. Puziy A.M., Poddubnaya O.I., Martinez-Alonso A. et al. // Carbon. -2002. -40, № 9. -P. 1493—1505.
- Leon y Leon C.A., Solar J.M., Calemma V., Radovic L.R. // Ibid. -1992. -30, № 5. -P. 797—811.
- Montes-Moran M.A., Menendez J.A., Fuente E., Suarez D. // J. Phys. Chem. B. -1998. -102. -P. 5595—5601.
- Фрумкин А.Н. Потенциалы нулевого заряда. -М: Наука, 1982.
- Тарасевич М.Р. Электрохимия углеродных материалов. -М: Наука, 1984.
- Boehm H.P. // Advances in Catalysis / Eds. D.D.Eley, H.Pines, P.B.Weisz. -New York: Academ. Press, 1966.
 -16. -P. 179-274.
- Puziy A.M., Poddubnaya O.I., Ziatdinov A.M. // Appl. Surf. Sci. -2006. -252. -P. 8036—8038.
- 34. Puziy A.M., Poddubnaya O.I., Socha R.P. et al. // Carbon. -2008. -46, № 15. -P. 2113—2123.

Надійшла 26.04.2010

УДК 546.06

В.Д.Александров, А.Ю.Соболев, О.В.Соболь

ДИАГРАММА СОСТОЯНИЯ СИСТЕМЫ КРИСТАЛЛОГИДРАТОВ Na₂CO₃·10H₂O—Na₂SO₄·10H₂O *

Методами термического анализа построена диаграмма состояния системы Na₂CO₃·10H₂O— Na₂SO₄·10H₂O с метастабильными областями.

^{*} Работа выполнена в рамках госбюджетной НИР по плану Министерства образования и науки Украины в области фундаментальных исследований.

[©] В.Д.Александров, А.Ю.Соболев, О.В.Соболь, 2012

ВВЕДЕНИЕ. Кристаллогидраты сульфата и карбоната натрия находят широкое применение при создании термоаккумулирующих материалов (ТАМ) на основе периодических фазовых превращений типа плавление-кристаллизация [1-7]. Основными характеристиками ТАМ являются высокие значения энтальпий плавления ΔH_I , устойчивая стабильность эндо- и экзотермических эффектов при многократном термоциклировании, знание разновидностей кристаллизации и величин предкристаллизационных переохлаждений. Однако для полного анализа характеристик ТАМ в литературе практически отсутствуют сведения о диаграммах состояния бинарных кристаллогидратов. Имеются лишь данные об отдельных смесях этих кристаллогидратов, используемых в качестве ТАМ. В работах [8—11] при изучении кинетики кристаллизации в системах вода—карбонат натрия (Na₂CO₃), вода—сульфат натрия (Na₂SO₄) методом циклического термического анализа (ЦТА) были установлены величины предкристаллизационных переохлаждений и влияние различных факторов на них, найдены области метастабильности растворов, которые были нанесены на соответствующие диаграммы состояния [10] в части, ограни-

ченной кристаллогидратами Na_2SO_4 · 10H₂O (CH-10) и Na_2CO_3 ·10H₂O (KH-10). Однако для создания эффективных ТАМ важно знать диаграммы состояния смесей этих кристаллогидратов. Поэтому цель данной работы — построение диаграммы состояния CH-10—KH-10 и установление границ метастабильности относительно линий ликвидуса и солидуса.

МЕТОДИКА ЭКСПЕРИМЕНТА. Все смеси в системе СН-10—КН-10 изучали в условиях, в которых индивидуальные кристаллогидраты имели достаточное переохлаждение. Исследовали смеси, содержащие 0(I), 11 (II), 22(III), 33(IV), 43(V), 53 (VI), 63(VII), 72(VIII), 82(IX), 91(X), 100 (XI) % мол. СН-10. Образцы готовили по стандартной методике [8, 9]. Все образцы, имеющие одинаковые массы по 1 г, помещали в стеклянные пробирки с притертыми крышечками. Нагрев и охлаждение образцов осуществляли с помощью печи сопротивления в интервале температур от –15 до +75 °С. Для этого печь и образцы помещали в морозильную камеру, работающую при температуре –20 °С. Скорости нагрева и охлаждения подбирали примерно одинаковыми и варьировали в диапазоне 0.15—0.2 К/с. Запись кривых ЦТА и ДТА, а также управление процессами нагрева—охлаждения производили при помощи измерителя-регулятора ТРМ 202 фирмы Овен и компьютера. Образцов каждого состава приготавливали не менее трех, количество термоциклов на каждом составе — не менее десяти.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. На первом этапе образцы нагревали и охлаждали с целью определения температур ликвидуса T_L и солидуса T_S. Результаты средних значений этих величин представлены в табл. 1. По данным таблицы построены линии ликвидуса для системы Na₂CO₃. 10H₂O—Na₂SO₄·10H₂O (жирные линии). Полученная диаграмма состояния показана на рис. 1. Линия, соответствующая температурам T_s , практически является прямой и, по-видимому, характеризует эвтектическую линию. Однако сплошная линия ликвидуса не характерна для сплавов эвтектического типа. Если при увеличении концентрации второго компонента как слева, так и справа на 30-35 % наблюдается уменьшение температуры ликвидуса, то в центральной части они

Таблица 1

Составы образцов и соответствующие им средние температуры (°C) ликвидуса T_L , солидуса T_S , минимальных температур T_{min} , переохлаждений DT_L^- и DT_S^- относительно температур T_L и T_S соответственно в системе Na₂CO₃·10H₂O—Na₂SO₄·10H₂O

Образец	Q	$< T_L >$	$< T_L^{min} >$	$<\Delta T_L^->$	$<\Delta T_{S}^{-}>$	$< T_{S}^{min} >$	$<\Delta T_{S}^{-}>$				
Ι	0	32.5	20	9.5	0	-2.0	2.0				
II	11	29.0	19	9.0	-0.5	-3.0	2.5				
III	22	26.0	13	7.0	-2.0	-4.0	2.0				
IV	33	24.0	10	8.0	-2.0	-3.5	1.5				
V	43	22.5	9	7.5	-1.5	-3.5	2.0				
VI	53	21.5	11	6.5	-1.0	-3.4	2.4				
VII	63	22.0	11	4.0	-0.9	-2.5	1.6				
VIII	72	23.5	12	4.5	-0.8	-2.8	2.0				
IX	82	25.0	14	5.0	-0.2	-2.6	2.4				
Х	91	29.0	17	8.0	-0.4	-2.0	1.6				
XI	100	32.4	19	10.4	-0.8	-2.1	1.3				
* <u>О</u> — солержание КН-10 в СН-10 % мол											

не доходят до линии солидуса, а замыкаются в сплошную кривую с минимумом при температурах ~15—16 °С и содержанием компонентов приблизительно 50 на 50 %. Если проэкстраполировать начальные точки (до 20 % как слева, так и справа) до линии солидуса, получим гипотетические линии ликвидуса АВЕ и А'В'Е, сходящиеся в точке Е с составом примерно 47 % Na₂CO₃· $10H_2O - 53$ % Na₂SO₄· $10H_2O$ при температуре –2.9 °С. Однако при дальнейшем увеличении

Рис. 1. Диаграмма состояния системы Na₂CO₃·10H₂O— Na₂SO₄·10H₂O.

концентрации второго компонента свыше 20 % мол. линия ликвидуса начинает отклоняться и проходит по точкам ABCB'A' с минимумом в точке C, с тем же составом, что и в точке E.

Линия ликвидуса в системе двух кристаллогидратов описывается эмпирическим уравнением с минимумом при $x \approx 47$ %:

$$T_i = T_L + Ax + Bx^2, \qquad (1)$$

где x — содержание Na₂CO₃·10H₂O в системе KH-10—CH-10, A = -0.45, $B = 0.48 \cdot 10^{-2}$.

> Диаграмма на рис. 1 не характерна и для непрерывного ряда твердых растворов. Подобная диаграмма ранее была получена нами для системы кристаллогидратов Na₂SO₃·7H₂O----Na₂SO₄·10H₂O [12]. К сожалению, в литературе отсутствуют сведения о диаграммах состояния бинарных кристаллогидратов. Наши исследования в этом направлении показали, что, например, в системах $Na_2S_2O_2 \cdot 5H_2O_{--}$ Na₂SO₄·10H₂O и Na₂S₂O₃·5H₂O—Na₂SO₃· 7H₂O образуются смеси классического эвтектического типа, объяснялось это либо различием строения кристаллических решеток, либо слишком большой разницей в параметрах решеток одинакового типа. В нашем случае для системы декагидрат сульфата натрия -декагидрат карбоната натрия при одинаковых сингониях (моноклинных) остальные кристаллографические па-

Таблица 2

Кристаллохимические параметры кристаллогидратов КН-10—СН-10

Кристалло- гидрат	Молярная масса, г/моль	Параметры решетки	Отношение осей <i>a,b,c</i> к <i>b</i>	Тип решетки	Объем ячейки, А ³	Плот- ность ·10 ³ кг/м ³
KH-10 (Na ₂ CO ₃ ·10H ₂ O)	286.14	a = 12.830, b = 9.026, c = 13.440, 1.42:1:1.48 $Z = 4, \beta = 123.00^{\circ}$	Моно- клинная	1305.31	1.44	
CH-10 (Na ₂ SO ₄ \cdot 10H ₂ O)	322.20	$a = 12.820, \ b = 10.350, \ c = 11.480,$ 1.24:1:1.11 $Z = 4; \ \beta = 107.66^{\circ}$	Моно- клинная	1451.46	1.49	
Разница пара- метров		0.010, 1.324, 1.960 0, 15.34°			146.15	0.05
Отличие пара- метров, %		0.78, 12.79, 14.58 0, 12.20°			10.7	3.35

раметры отличаются незначительно (табл. 2).

Вид линии ликвидуса на рис. 1, возможно, связан с особенностями строения жидкого раствора, характеризующегося двумя типами водородных связей между молекулами воды, между водородом воды и кислородом, ионами SO_4^{2-} , CO_3^{2-} . По-видимому, близость параметров решеток CH-10 и KH-10 способствует непрерывному характеру растворимости этих кристаллогидратов в общей кристаллизационной воде при малых концентрациях одной из компонент.

В жидком состоянии молекулы Na_2SO_4 . 10H₂O и Na_2CO_3 ·10H₂O диссоциируют на ионы Na^+ , SO_4^{2-} , CO_3^{2-} , H₂O с близкими по характеру водородными связями с непрерывным чередованием анионов SO_4^{2-} и CO_3^{2-} [13]:

$$N_{a}^{+}...0 < H_{H...OSO_{3}^{2}}; N_{a}^{+}...0 < H_{H...OCO_{2}^{2}};$$

$$N_{a}^{+}...0 < H_{H...OSO_{3}^{2}}; N_{a}^{+}...0 < H_{H...OCO_{2}^{2}};$$

$$N_{a}^{+}...0 < H_{H...OSO_{3}^{2}}; N_{a}^{+}...0 < H_{H...OCO_{2}^{2}};$$

- однотипными

$$N_{a}^{+}...O < \frac{H...O < H...OCO_{2}^{2}}{H...OSO_{3}^{2}} + N_{a}^{+}...O < \frac{H...O < H...OSO_{3}^{2}}{H...OCO_{2}^{2}}$$

– разнотипными

Подобный порядок H-связей с анионами может быть обусловлен тем, что энергия прочных водородных связей воды с анионами $SO_4^{2^-}$ (7.2—7.4 эВ) несколько меньше энергии подобной связи с анионами $CO_3^{2^-}$ (7.4—8.2 эВ) и с близостью менее прочных H-связей: 4.5—4.7 эВ для Na^+ и 4.5—4.9 эВ для $CO_3^{2^-}$.

При кристаллизации подобных растворов последовательность формирования кристаллогидратов, вероятно, будет происходить в порядке: Na⁺ + SO₄²⁻ + nH₂O и Na⁺ + CO₃²⁻ + nH₂O, так как энергии водородных связей в системе CH-10 больше, чем в системе KH-10 ($E_{\rm H''} > E_{\rm H'}$). При этом до концентраций ~ 50 % будут преобладать кристаллы CH-10, а выше 50% состава растворов — кристаллы KH-10. Наличие смешанных кристаллов, схожих по кристаллохимическим параметрам, скорее всего, приводит к тому, что линия ликвидуса имеет вид, представленный на рис. 1.

Рис. 2. Термограммы образца IV.

Линия солидуса характеризует, прежде всего, кристаллизацию остатков воды и не- закристаллизованных мелких крис- таллогидратов обоего типа.

На втором этапе экспериментальных исследований изучали переохлаждения растворов двух крис- таллогидратов относительно линий ликвидуса ΔT_L^- и солидуса ΔT_S^- . Данные по этим величинам

приведены в табл. 1. В соответствии с эти- ми результатами на диаграмме сос- тояния СН-10— КН-10 показаны метастабильные зоны ниже линии ликвидуса и солидуса (рис. 1, пунктирные линии) в условиях наших экспериментов.

На рис. 2 в качестве примера приведены термограммы нагревания и охлаждения образца IV (30 % КН-10—70 % СН-10), характеризующие влияние перегрева образца на ход кристаллизации при охлаждении.

Во-первых, четко обозначены температуры ликвидуса (~24 °C) и солидуса (~ –1 °C) на всех трех термограммах. Во-вторых, наблюдается рост переохлаждения ΔT_L^- по мере увеличения перегрева ΔT_L^+ относительно температуры ликвидуса. При этом переохлаждения ΔT_S^- относительно T_S остаются неизменными. Кроме того, обнаружено, что при слабом нагреве до $\Delta T^+ \approx 5^\circ$ (термограмма 1) и охлаждении кристаллизация про-исходит квазиравновесно без переохлаждения, а

Рис. 3. Зависимость предкристаллизационных переохлаждений от предварительного перегрева для составов IV (a) и XI (δ).

при увеличении перегрева ΔT_L^- характер кристаллизации меняется на неравновесно-взрывной с соответствующими переохлаждениями (термограммы 2 и 3).

На рис. 3, *а* для образца IV представлен обобщающий график зависимости ΔT_L^- от ΔT_L^+ . Подобная зависимость характерна для остальных смесей в системе Na₂CO₃·10H₂O—Na₂SO₄· 10H₂O. Согласно полученным термограммам, зависимости ΔT_L^- от ΔT_L^+ аппроксимируются функцией Больцмана, имеющей вид:

$$\Delta T^{-} = A_{2} + \frac{A_{1} - A_{2}}{1 + e^{(\Delta T^{+} - x_{0})/d}},$$

где $A_1 = 0, A_2 = 16, x_0 = 14.1, d = 2.71.$

Следует отметить, что перегревы того же образца выше T_L начиная с 16° и далее не влияют на среднюю величину предкристаллизационно-го переохлаждения.

Для сравнения на рис. 3, б приведена зависимость ΔT^- от ΔT^+ для чистого кристаллогидрата Na₂CO₃·10H₂O [11]. Видно, что для него зависимость является скачкообразной, описываемой функцией Хэвисайда:

$$\Delta T^{-} = 13^{\circ} \cdot \Theta(\Delta T^{+} - 9^{\circ}) ,$$

где $\Theta = \{(0,\Delta T^+ < 9^0), (1,\Delta T^+ \ge 9^0)\}.$

Выбрав одинаковые температуры прогревов (~60 °C) жидкой фазы для всех образцов в системе $Na_2CO_3 \cdot 10H_2O_Na_2SO_4 \cdot 10H_2O$, после которых наблюдаются достаточно хорошие переохлаждения, по минимальным температурам T_{min} на начало кристаллизации были получены соответствующие переохлаждения ΔT_L , которые были занесены в табл. 1. Там же приведены температуры T_{min} , T_S и переохлаждения ΔT_S^- относительно T_S . Эти данные были использованы для определения метастабильных областей ниже T_L и T_S на диаграмме состояния CH-10—КН-10 (рис. 1, пунктирные линии). Из этого рисунка можно заключить, что переохлаждение ΔT_L^{-} незначительно уменьшается по мере увеличения концентрации второго компонента, а переохлаждения ΔT_{S}^{-} практически остаются постоянными.

ВЫВОДЫ. Таким образом, в данной работе методом термического циклического анализа (ЦТА) построена диаграмма состояния между двумя кристаллогидратами $Na_2CO_3 \cdot 10H_2O_$ — $Na_2SO_4 \cdot 10H_2O$. Установлен вид диаграммы состояния. На ней показаны предкристаллизационные переохлаждения, которые незначительно изменяются относительно линии ликвидуса и остаются приблизительно постоянными относительно линии солидуса.

РЕЗЮМЕ. Методами термічного аналізу побудовано діаграму стану системи $Na_2CO_3 \cdot 10H_2O$ — $Na_2SO_4 \cdot 10H_2O$ з метастабільними областями.

SUMMARY. By the methods of thermal analysis the equilibrium diagram of the system of crystal hydrates $Na_2CO_3 \cdot 10H_2O$ — $Na_2SO_4 \cdot 10H_2O$ including meta-

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2012. Т. 78, № 2

stable regions is build.

ЛИТЕРАТУРА

- 1. Пат. США. -Заявл. 01.11.82, № 438224.
- 2. Пат. Япония. -Заявл. 21.12.81, № 56-207661.
- 3. Заявка 646083, Япония, МКИ. С09К 5/06. -Опубл. 10.01.89.
- 4. Заявка № 59-213789, Япония. -Заявл. 19.05.83.
- 5. Пат. 4603003, США. -Опубл. 29.07.86.
- 6. *Kimura Hiroshi* // Ind. and Eng. Chem. Fundam. -1980. -19, № 3. -P. 251—253.
- 7. Пат. США 4508632. -Заявл. 15.06.83, № 504601.
- 8. Александров В.Д., Соболь О.В., Савенков М.В. //

Донбасская национальная академия строительства и архитектуры, Макеевка

Фізика і хімія тв. тіла. -2007. -№ 4. -С. 1—5.

- 9. Александров В.Д., Соболь О.В., Постніков В.А. // Там же. -2008. -№ 6. -С. 1—5.
- Киргинцев А.Н., Трушникова Л.Н., Лаврентьева В.Г. // Растворимость неорганических веществ в воде. Справочник. -Л.: Химия, 1972.
- Александров В.Д., Соболев О.Ю., Фролова С.А. та ін. // Вісн. Донбас. націон. академії буд-ва і архітектури. -2009. -Вип. 1 (75). -С. 100—103
- 12. Александров В.Д., Соболь О.В. //VI конф. по росту кристаллов. -М., 2010. -С. 132.
- 13. Коулсон Ч. // Валентность. -М.: Мир, 1965.

Поступила 25.05.2011

УДК 536.7

В.Г.Кудин, Н.Г.Кобылинская, М.А.Шевченко, В.С.Судавцова ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА СПЛАВОВ ДВОЙНЫХ СИСТЕМ У—В (Al, Ga, In)

Методом калориметрии при 1775 ± 5 К определены энтальпии смешения жидких сплавов двойных систем Y—Al(Ga), прогнозированы аналогичные данные для Y—B(In, Tl) из энтальпий образования промежуточных фаз и диаграмм состояния этих систем. Термодинамические свойства жидких сплавов двойных систем Y–Al(Ga) рассчитаны в полном концентрационном интервале с использованием модели идеального ассоциированного раствора (ИАР). Показано, что термодинамические активности компонентов расплавов двойных систем Y—Al(Ga) проявляют отрицательные отклонения от идеального поведения, а энтальпии смешения указывают на значительные экзотермические эффекты. Минимумы энтальпии смешения двойных систем Y—Al(Ga) составляют –40.8 ± 2.2 и –70.0 ± 3.2 кДж/моль.

ВВЕДЕНИЕ. Поскольку иттрий имеет сильное сродство к кислороду, сере, углероду и другим элементам, его можно применять как раскислитель, десульфуратор и т.п. Но из-за высокой агрессивности и химической активности его чаще всего используют в виде лигатур. Состав лигатур научно обоснованно находят с помощью диаграмм состояния иттрийсодержащих систем и их физико-химических свойств, среди которых важнейшими являются термодинамические.

Цель данной работы — определение термохимических свойств жидких сплавов двойных систем Y—Al(Ga) и прогнозирование аналогичных данных для Y—B(In,Tl) по энтальпиям образования промежуточных фаз и диаграммам состояния систем, а также расчет термодинамических свойств по модели идеальных ассоциированных растворов (ИАР). ЭКСПЕРИМЕНТ И ОБСУЖДЕНИЕ РЕЗУЛЬ-ТАТОВ. Исследования проводили методом высокотемпературной изопериболической калориметрии при температуре 1775 \pm 5 К в концентрационном интервале 0< $x_{\rm Y}$ <0.6. Используемые материалы: алюминий марки АВОО, дистиллят иттрия ИтМД-2 (99.999 %) и галлий марки Гл 000 (99.99 %); эталонное вещество — вольфрам класса А2 (99.96 %). Исследование выполняли в атмосфере аргона высокой чистоты. Методика проведения экспериментов и обработки результатов подробно описаны в работах [1, 2]. Погрешность в определении парциальных энтальпий смешения компонентов ($\Delta \overline{H}_i$) составляла \pm 10 %, интегральных (ΔH) — \pm 1 %.

Вначале подробно опишем данные, полученные при исследовании жидких сплавов двойной системы Y—Al. Наиболее современная оптими-

[©] В.Г.Кудин, Н.Г.Кобылинская, М.А.Шевченко, В.С.Судавцова, 2012