УДК 546.43' 723 - 36: 544.23.022.246

Е.Д.Соловьева, Е.В.Пашкова, А.Г.Белоус

СИНТЕЗ И СВОЙСТВА НАНОДИСПЕРСНЫХ МОДИФИЦИРОВАННЫХ ГЕКСАФЕРРИТОВ BaFe_{12-2x}Co_xSi_xO_{19±γ} СО СТРУКТУРОЙ МАГНЕТОПЛЮМБИТА

Исследовано влияние модифицирования на свойства и фазовые превращения при синтезе ВаFe_{12-2x}Co_xSi_xO_{19±γ} М-типа. Показано, что замещение 2Fe³⁺ \rightarrow Co²⁺ + Si⁴⁺ способствует уменьшению размера частиц, снижению температуры ферритизации, существенному снижению коэрцитивной силы (H_c) и увеличению намагниченности (M_s) ГФБ.

ВВЕДЕНИЕ. В последнее время возрос интерес исследователей к нанодисперсному гексаферриту бария со структурой магнетоплюмбита (ГФБ Мтипа). Это обусловлено высокими значениями коэрцитивной силы (H_c) и остаточной индукции (B_r). Поэтому гексаферрит бария широко применяется для производства постоянных магнитов [1-3], систем высокоплотной записи и хранения информации [4—5], различных современных СВЧ-устройств [6]. Отмечена также перспективность ГФБ для изготовления поглотителей электромагнитной энергии в диапазоне сверхвысоких частот [7—9] и для биомедицинского применения в качестве индукторов гипертермии [10, 11]. В зависимости от области применения гексаферрита бария требования к величине коэрцитивной силы (*H*_c) существенно различаются : для постоянных магнитов требуется величина коэрцитивной силы от 635-480 кА/м и более, для магнитной записи — 210-280 кА/м, а для медицины — минимальные значения. При этом магнитный момент (*M*_s) независимо от области применения ГФБ должен быть высоким. Одним из возможных путей решения этой задачи может быть замещение ионов Fe^{3+} по схеме $2Fe^{3+}$ $\rightarrow Me^{2+} + Me^{4+}$, где Me^{2+} и Me^{4+} — ферромагнитный и немагнитный ионы соответственно [12-14]. Такое замещение обеспечивает выполнение условия электронейтральности и может влиять на величину коэрцитивной силы и магнитного момента.

Структура ГФБ М-типа состоит из кубического блока S, имеющего структуру шпинели, и гексагонального блока R, содержащего ионы бария Ba²⁺. Гексагональная элементарная ячейка такой структуры состоит из десяти слоев ионов кислорода O²⁻. В ней ионы железа Fe³⁺ занимают пять различных кристаллографических позиций: тетраэдрическую $(4f_1)$, октаэдрические $(12k, 2a, 4f_2)$ и позицию, образованную пятью ионами кислорода с центрами при вершинах тригональной бипирамиды (2b) [15]. В магнитно упорядоченном состоянии спины молекулы ГФБ (BaFe₁₂O₁₉) в позициях 12k, 2a, 2b направлены параллельно оси легкого намагничивания, в то время как в позициях $4f_1$ и $4f_2$ антипараллельно [16]. Результирующая намагниченность ГФБ определяется антиферромагнитным упорядочением магнитных ионов Fe³⁺, то есть зависит от катионного распределения ферромагнитных ионов по неэквивалентным позициям (подрешеткам) ГФБ [2, 17]:

$$M_{s} = M_{s}(12k + 2a + 2b) - M_{s}(4f_{1} + 4f_{2})$$

На распределение катионов в ферритах существенное влияние оказывают не только условия их синтеза, но и природа модифицирующих добавок. В данной работе в качестве модифицирующих добавок выбрана комбинация ионов (Co^{2+} + + Si^{4+}), которые частично замещали ионы Fe³⁺. Выбор модифицирующих добавок был сделан на основе результатов исследований авторов работ [12—18] с учетом стерического фактора и электронного строения иона Si⁴⁺.

Цель данной работы — исследование влияния модифицирования на фазовые превращения и свойства $BaFe_{12-2x}Co_xSi_xO_{19\pm\gamma}$ М-типа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. В качестве исходных реагентов использовали растворы нитратов железа (III), бария (II) и кобальта (II), а также 100 %-й раствор тетраэтоксилана марки ч.д.а. Осадки получали методом последовательного соосаждения из водных растворов солей. На предварительно соосажденные гидроксиды железа (III) и кремния (IV) соосаждали карбонаты бария (II) и

[©] Е.Д.Соловьева, Е.В.Пашкова, А.Г.Белоус, 2012

кобальта (II). Гидроксиды железа и кремния осаждали водным раствором NH₄OH при постоянном контролируемом рН 4.3, после чего осадки тщательно промывали дистиллированной водой до отсутствия в них ионов аммония. Карбонаты бария и кобальта осаждали раствором Na₂CO₃ при рН 9. Контроль рН проводили с помощью ионометра И-160МИ с точностью \pm 0.05, а регулирование рН — с помощью блока автоматического титрования БАТ-15. Полученные осадки созревали в течение 20 ч. Затем их фильтровали, отмывали дистиллированной водой до отсутствия в них ионов NO₃, а после этого прокаливали в камерной печи в интервале температур 923-1373 К с изотермической выдержкой в течение 2 ч. Исследовали образцы составов BaFe_{12–2x}Co_xSi_xO_{19 $\pm\gamma$} (x = 0; 0.05;0.1; 0.2; 0.3; 0.5).

Образцы исследовали методами рентгенофазового анализа (РФА) и полнопрофильного анализа Ритвельда на дифрактометре ДРОН-4-07 (Си K_{α} -излучение, съемка в каждой точке 10 с). В качестве внешних стандартов применяли SiO₂ (стандарт 2 θ) и сертифицированный стандарт интенсивности Al₂O₃ [19]. Для РФА использовали базу данных JCPDS. Структурные параметры образцов были рассчитаны на основании результатов РФА.

Размер частиц ГФБ оценивали по уширению рентгеновских рефлексов 110 и 220. В качестве эталона использовали ГФБ, прокаленный при температуре 1673 К в течение 5 ч. Линейное уширение линий β вычисляли по формуле $\beta = \sqrt{B^2 - b^2}$, где B — общее линейное уширение исследуемой линии до внесения поправки *b*. Размер частиц рассчитывали по формуле []]:

$$D = \frac{0.9\lambda}{\beta_{hkl} \cdot \cos(\theta_{hkl})}$$

Мессбауэровские спектры (МС) получали на спектрометре динамического типа, работающем в режиме постоянных ускорений. В качестве источников γ -квантов использовали ⁵⁷Со в матрице Cr. Измерение выполняли при комнатной температуре. Калибровку шкалы скоростей проводили по положению линий поглощения α -Fe. Компьютерную обработку спектров выполняли с использованием программы Univvem-2, реализующей метод наименьших квадратов. При аппроксимации спектров суммы секстетов зеемановского расщепления допускалось попарное равенство интенсивностей

Рис. 1. Концентрационная зависимость объема элементарной ячейки образцов $BaFe_{12-2x}Co_xSi_xO_{19\pm\gamma}$, прокаленных при 1273 К.

линий 1–6, 2–5, 3–4 и полуширин всех линий секстетов. Магнитные свойства порошков ГФБ определяли на баллистическом магнитометре при комнатной температуре в диапазоне полей H = 0—10 кЭ.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Результаты рентгенофазового анализа образцов Ва $Fe_{12-2x}Co_xSi_x$ -О_{19±ү} (x=0—0.5), прокаленных в интервале температур 923—1373 К, приведены в табл. 1. Как видно, температура начала ферритобразования для чистого ГФБ (x=0) и модифицированных (x 0.1, 0.3 и 0.5) образцов составляет 1023 и 973 К, а однофазность достигается при температурах 1273 и 1173 К соответственно. Это указывает на то, что модифицирование ГФБ Co²⁺ и Si⁴⁺ способствует ускорению образования конечного продукта, что обусловлено, вероятно, уменьшением размера частиц при увеличении концентрации модифицирующих добавок (x):

x	0	0.005	0.01	0.03	0.05	0.1	0.3	0.5
<i>d</i> . нм	66.1	51	44.55	42.62	39.02	37.8	36.9	38.52

Уменьшение размеров частиц связано с образованием защитной оболочки вокруг частиц из слоя SiO₂, обусловленной частичной сегрегацией SiO₂ на границе зерен [20]. Это придает частицам устойчивость к самопроизвольной агрегации и замедляет рост частиц с повышением температуры. На основании приведенных результатов РФА (табл. 1) видно, что при температуре прокаливания 1273 К образцы в интервале x = 0—0.3 являются однофазными и характеризуются гексагональной структурой М-типа (структура магнетоплюмбита, пр.гр. *P*6₃/*mmc*). С увеличением x > 0.3, кроме фазы ГФБ, появляются следы второй фазы BaFe₁₈O₂₇ с гексагональной структурой W-типа. На рис. 1 представлена концен-

Неорганическая и физическая химия

Таблица 1

Результаты рентгенофазового анализа образцов BaFe12-2xCoxSixO19±g, прокаленных при различных температурах

Образец	923 К	973 K	1023 K	1073 K	1173 К	1273 K	1373 К
1 (<i>x</i> =0)	BaCO ₃ (57.00 %), α-Fe ₂ O ₃ (43.00 %)	BaCO ₃ (22.00 %), α-Fe ₂ O ₃ (78.00 %)	BaFe ₂ O ₄ (12.0 %), α-Fe ₂ O ₃ (59.00 %), BaFe ₁₂ O ₁₉ (29.00 %)	$\begin{array}{c} \alpha \text{-} Fe_2O_3 \\ (35.6 \ \%), \\ BaFe_{12}O_{19} \\ (64.4 \ \%) \end{array}$	α-Fe ₂ O ₃ (9.00 %), BaFe ₁₂ O ₁₉ (91.00 %)	BaFe ₁₂ O ₁₉ (100 %)	BaFe ₁₂ O ₁₉ (100%)
2 (<i>x</i> =0.1)	BaCO ₃ (58.63 %), α-Fe ₂ O ₃ (41.37 %)	BaCO ₃ (15.65 %), BaFe ₂ O ₄ (12.32 %), α -Fe ₂ O ₃ (38.44 %), BaFe ₁₂ O ₁₉ (33.63 %)	BaFe ₂ O ₄ (18.0 %), α -Fe ₂ O ₃ (15.53 %), BaFe ₁₂ O ₁₉ (66.47 %)	BaFe ₂ O ₄ (17.43 %), α-Fe ₂ O ₃ (15.29 %), BaFe ₁₂ O ₁₉ (67.28 %)	BaFe ₁₂ O ₁₉ (100 %)	BaFe ₁₂ O ₁₉ (100 %)	BaFe ₁₂ O ₁₉ (100 %)
3 (<i>x</i> =0.3)	BaCO ₃ (37.5 %), α-Fe ₂ O ₃ (62.5 %)	BaCO ₃ (28.46 %), α-Fe ₂ O ₃ (56.32 %), BaFe ₁₂ O ₁₉ (15.22 %)	BaFe ₂ O ₄ (9.17%), α-Fe ₂ O ₃ (33.94%), BaFe ₁₂ O ₁₉ (56.89%)	BaFe ₂ O ₄ (7.7%), α-Fe ₂ O ₃ (30.88%), BaFe ₁₂ O ₁₉ (61.42%)	BaFe ₁₂ O ₁₉ (100 %)	BaFe ₁₂ O ₁₉ (100 %)	BaFe ₁₂ O ₁₉ (100 %)
4 (<i>x</i> =0.5)	BaCO ₃ (46.6 %) α-Fe ₂ O ₃ (56.4 %)	$\begin{array}{c} \text{BaCO}_3 \\ (33.23 \ \%) \\ \alpha \text{-Fe}_2\text{O}_3 \\ (47.45 \ \%), \\ \text{BaFe}_{12}\text{O}_{19} \\ (19.32 \ \%) \end{array}$	α-Fe ₂ O ₃ (39.8 %), BaFe ₁₂ O ₁₉ (60.2 %)	α-Fe ₂ O ₃ (37.74 %), BaFe ₁₂ O ₁₉ (62.26 %)	BaFe ₁₂ O ₁₉ (100 %)	BaFe ₁₂ O ₁₉ (82.89 %), BaFe ₁₈ O ₂₇ (17.11 %)	BaFe ₁₂ O ₁₉ (58.85 %), BaFe ₁₈ O ₂₇ (41.15 %)

трационная зависимость объема кристаллической решетки (V) образцов $\text{BaFe}_{12-2x}\text{Co}_x\text{Si}_x\text{O}_{19\pm\gamma}$ Как видно, в области гомогенности (x = 0-0.3) наблюдается уменьшение V модифицированных ГФБ при замещении ионов $\text{Fe}^{3+}_{\text{кч. 6, HS}}$ (r = 0.645 Å) на ионы Co^{2+} и Si^{4+} ($\tilde{r} = 0.567$ Å), что соответствует правилу Вегарда. Это указывает на образование твердых растворов замещения.

Для однофазных образцов исследовали мессбауэровские спектры (МС). В табл. 2 представлены зависимости относительных площадей компонент МС в неэквивалентных позициях $\text{BaFe}_{12-}_{2x}\text{Co}_x\text{Si}_x\text{O}_{19\pm\gamma}$ от степени замещения ионов Fe^{3+} . Как следует из табл. 2, при замещении 2Fe^{3+} на Co^{2+} + $+\text{Si}^{4+}$ наблюдается уменьшение площадей компонент $4f_1$ и 12k в интервале $0 < x \le 0.3$ и $4f_2$ — в интервале $0 < x \le 0.1$. Это указывает на уменьшение концентрации ионов Fe^{3+} в этих позициях и на

Таблица 2

Относительные площади компонент MC (S, %) в неэквивалентных позициях BaFe12–2xCo $_x$ Si $_x$ O19 $\pm g$ в зависимости от степени замещения (x)

r	<i>S</i> , %							
л	12k	2a	2 <i>b</i>	$4f_1$	$4f_2$			
0	52.4	9.1	3	23.4	12.1			
0.1	50.2	16.2	4.5	19.8	9.3			
0.3	46.1	20.4	4.4	17.6	11.5			

заселенность в них ионов Si⁴⁺ и Co²⁺.

Известно [21], что при образовании связей для кремния характерна *sp*³-гибридизация с образованием четырех равноценных гибридных *sp*³-орбиталей, ориентированных в пространстве к четырем

Рис. 2. Магнитные характеристики образцов BaFe_{12-2x}-Co_xSi_xO_{19 $\pm\gamma$}, прокаленных при температуре 1273 К: *1*, *3* — *x*=0.3; *2* — *x*=0.1.

вершинам правильного тетраэдра. Поэтому для кремния логично заселение тетраэдрической позиции $4f_1$. Заселяя эту позицию, ионы Si⁴⁺, вероятно, вытесняют ионы Fe³⁺ в октаэдрические позиции 2*a* в интервале $0 < x \le 0.3, 2b$ — в интервале $0 < x \le$ 0.1 и $4f_2$ — в интервале $0.1 \le x \le 0.3$ (табл. 2). Ионы Со²⁺ вследствие d^2sp^3 -гибридизации предпочитают октаэдрическую координацию и могут заселять позицию 12*k* [22].

Результаты исследования магнитных характеристик образцов ВаFe_{12-2x}Co_xSi_xO_{19±γ}(x 0, 0.1 и 0.3) представлены на рис. 2. Видно, что коэрцитивная сила (H_c) образцов с увеличением xуменьшается и равняется 378, 104 и 96 кА/м для x0, 0.1 и 0.3 соответственно. При этом магнитный момент указанных выше образцов увеличивается и составляет 43.7, 49.5 и 60.1 кА/м² соответственно (рис. 2, вставка).

Результирующий магнитный момент ГФБ определяется разницей между суммой магнитных моментов ионов в позициях 12k, 2a, 2b и в позициях $4f_1$, $4f_2$ [15] в соответствии с уравнением [2]:

$$M_s = M_s(12k + 2a + 2b) - M_s(4f_1 + 4f_2)$$
.

В связи с этим увеличение намагниченности модифицированных ГФБ (рис. 2, вставка) обусловлено увеличением концентрации ферромагнитных ионов (Fe³⁺ и Co²⁺) в положительной составляющей $M_{s} = M_{s}(12k + 2a + 2b)$ и уменьшением ионов Fe³⁺ в отрицательной составляющей $M_{s} = M_{s}(4f_{1} + 4f_{2})$, что подтверждают результаты МС (рис. 2). Как видно, параметры МС исследуемых образцов соответствуют высокоспиновым ионам Fe³⁺ с октаэдрической (12k, 4 f_2 и 2a), тетраэдической (4 f_1) и бипирамидальной (2b) координациями.

Таким образом, исследовано влияние модифицирования на свойства и фазовые превращения при синтезе BaFe_{12–2x}Co_xSi_xO_{19±γ} М-типа (в интервалах x = 0—0.5). Установлена гомогенная область образования твердых растворов замещения BaFe_{12–2x}Co_xSi_xO_{19±γ} при x = 0—0.3. Отмечено, что в гексагональных ферритах BaFe_{12–2x}-Co_xSi_xO_{19±γ} ионы Si⁴⁺ занимают тетраэдрические позиции 4f₁, а ионы Co²⁺— октаэдрические позиции 12k. Показано, что замещение 2Fe³⁺ \rightarrow Co²⁺ + + Si⁴⁺ способствует уменьшению размера частиц, снижению температуры ферритизации, существенному снижению коэрцитивной силы (H_c) и увеличению намагниченности (M_s) ГФБ. Полученные результаты позволяют синтезировать ГФБ с заданными свойствами.

РЕЗЮМЕ. Досліджено вплив модифікування на властивості та фазові перетворення при синтезі ВаFe₁₂₋₂₄. Со_xSi_xO_{19±γ} М-типу. Показано, що заміщення 2Fe³⁺ \rightarrow Co²⁺ + Si⁴⁺ сприяє зменшенню розміру часток, зниженню температури феритизації, значному зменшенню коерцитивної сили (H_c) та збільшенню намагніченості (M_s) ГФБ.

SUMMARY. The effect of modification on the properties and phase transformations in the synthesis of M-type BaFe_{12-2x}Co_xSi_xO_{19±y} It has been shown that substitution 2Fe³⁺ \rightarrow Co²⁺ + Si⁴⁺ facilitates decreasing of particle size, temperature of single-phase BHF synthesis, coercivity (H_c) and increasing saturation magnitization (M_x) of BHF.

ЛИТЕРАТУРА

- Крупичка С. Физика ферритов и родственных им магнитных окислов. -М.: Мир., 1976. -Т. 2. -С. 504.
- 2. Смит Я., Вейн Х. Ферриты. -М.: Изд-во иностр. лит., 1962. -С. 504.
- Губин С.П., Кокшаров Ю.А., Хомутов Г.Б., Юрков Г.Ю. // Успехи химии. -2005. -74, № 6. -С. 539—574.
- 4. Lei Fu, Xiagang Liu, Zhang Yi et al. // Nano letters. -2003. -3, № 6. -P. 757—760.
- 5. Pankhurst Q.A., Pollard R.S. // J. Phys. Condens. Mater. -1993. -№ 5. -P. 8487—8508.
- 6. Lebedev S.V., Patton C.E., Wittenauer M.A. et. al. // J. Appl. Phys. -2002. -91, № 7. -P. 4426—4431.
- 7. Haijun Z., Zhichao L., Chenliang Ma et al. // Mater.

Sci. Eng. -2002. -96. -P. 289.

- Ragotani T., Fujiwara D., Sugimoto S. et.al. // J. Magn. Mater. -2004. -1813. -P. 272-276.
- 9. Meshram M.R., Agarwal N.K., Sinha B., Misra P.S. // J. Magn. Magnet. Mater. -2004. -271. -P. 207.
- Müller R., Hergt R., Dutz S. et al. // J. Phys. Condens. Matter. -2006. -18. -P. 2527—2542.
- Pollert E., Veverka P., Veverka M. et al. // Progr.Solid State Chem. -2009. -P. 1—14.
- 12. He H.Y., Huang J.F, Cao L.Y. et al. // Mater. Techn. -2007. -2. -P. 30-32.
- Koga N., Tsutaoka T. // J. Magn. Magnet. Mater. -2007, -313. -P. 168—175.
- Haijun Z., Zhichao L., Chenliang M. et al. // Mater. Chem. Phys. -2003. -80. -P. 129—134.
- 15. Kim C.S., Lee S.W., An S.Y. // J. Appl. Phys. -2000. -87. -P. 6244—6246.

Институт общей и неорганической химии им. В.И.Вернадского НАН Украины, Киев

- Liu X.S., Hernandez-Gomez P., Huang K. et al. // J. Magn. Magnet. Mater. -2006. -305. -P. 524—528.
- Левин Б.Е., Третьяков Ю.Д., Летюк Л.М. Физикохимические основы получения, свойства и применение ферритов. -М.: Металлургия, 1979. -С. 232.
- An S.Y., Lee S.W., Shim I.B., Kim C.S. // J. Appl. Phys. -2002. -91, № 10. -P. 8465—8467.
- 19. Rosler S., Wartewing P., Laugbein H. // Cryst. Res. Technol. -2003. -38, № 11. -P. 927-934.
- Dong-Young Kim, Hong-Yeol Lee, Dong-Suk Jun, Sang-Seog Lee // Jpn. J. Appl. Phys. -2005. -P. 3015—3016.
- Горшков В.С., Савельев В.Г., Федоров Н.Ф. Физическая химия силикатов и других тугоплавких соединений. -М: Высш. шк., 1988.
- 22. Orgel L.E. An introduction to transition metal chemistry. -London: Methuen & Co LTD, 1966.

Поступила 08.09.2011

УДК 546.16:546.817 + 546.832

Е.В.Тимухин, В.Ф.Зинченко, О.В.Мозговая, В.П.Соболь ВЗАИМОДЕЙСТВИЕ В СИСТЕМЕ PbF₂(PbO)—HfF₄ И ЕЕ ОПТИЧЕСКИЕ СВОЙСТВА

Исследован характер твердофазного взаимодействия между PbF₂, содержащим примесь PbO, и HfF₄. Методами PФA и ИК-спектроскопии установлено образование фазы сложного фторида неустановленной структуры. Выявлен факт батохромного сдвига полосы валентных колебаний связей Hf–F, обусловленного комплексообразованием. Тонкопленочные покрытия, полученные термическим испарением материала в вакууме, неравномерны по толщине и поверхности и обладают недостаточной климатической стойкостью. В то же время по уровню светорассеяния и механической прочности покрытие отвечает предъявляемым требованиям.

ВСТУП. Фториды металлов являются основой создания материалов для интерференционной оптики, работающей в широком диапазоне спектра — от вакуумного ультрафиолетового (ВУФ) до среднего инфракрасного (СИК) диапазона, включая так называемое окно прозрачности (ОП) атмосферы Земли (8—14 мкм). Практически ни один из оксидов и фторидов не перекрывает полностью упомянутое выше ОП. Редким исключением являются фториды ,,сверхтяжелых" металлов, в частности, ThF₄ и PbF₂. Если не учитывать ThF₄ из-за его радиоактивности, фторид свинца остается единственным материалом для нанесения слоев с низким показателем преломления (в паре с ZnSe) для

интерференционной оптики, функционирующей в ОП атмосферы [1, 2].

ПРОГНОЗИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ В СИСТЕМЕ PbF₂(PbO)—HfF₄. Главным недостатком фторидных материалов является невысокая механическая прочность и климатическая стойкость наносимых из них покрытий. Основной причиной этого является наличие в них остаточных оксидных примесей (оксиды, карбонаты, гидроксиды), а также склонность к диспропорционированию в процессе нанесения покрытий (особенно, при термическом испарении в вакууме).

Влияние оксидных примесей (что особенно характерно для PbF₂) [3, 4] существенно сказы-

© Е.В.Тимухин, В.Ф.Зинченко, О.В.Мозговая, В.П.Соболь, 2012