УДК 546.43' 723 - 36: 544.23.022.246

Е.Д.Соловьева, Е.В.Пашкова, А.Г.Белоус

СИНТЕЗ И СВОЙСТВА НАНОДИСПЕРСНЫХ МОДИФИЦИРОВАННЫХ ГЕКСАФЕРРИТОВ ВаFe_{12-2x}Co_xSi_xO_{19±γ} СО СТРУКТУРОЙ МАГНЕТОПЛЮМБИТА

Исследовано влияние модифицирования на свойства и фазовые превращения при синтезе $BaFe_{12-2x}Co_xSi_xO_{19\pm\gamma}$ М-типа. Показано, что замещение $2Fe^{3+} \rightarrow Co^{2+} + Si^{4+}$ способствует уменьшению размера частиц, снижению температуры ферритизации, существенному снижению коэрцитивной силы (H_c) и увеличению намагниченности (M_s) $\Gamma\Phi B$.

ВВЕДЕНИЕ. В последнее время возрос интерес исследователей к нанодисперсному гексаферриту бария со структурой магнетоплюмбита (ГФБ Мтипа). Это обусловлено высокими значениями коэрцитивной силы (H_c) и остаточной индукции (B_r) . Поэтому гексаферрит бария широко применяется для производства постоянных магнитов [1—3], систем высокоплотной записи и хранения информации [4—5], различных современных СВЧ-устройств [6]. Отмечена также перспективность ГФБ для изготовления поглотителей электромагнитной энергии в диапазоне сверхвысоких частот [7—9] и для биомедицинского применения в качестве индукторов гипертермии [10, 11]. В зависимости от области применения гексаферрита бария требования к величине коэрцитивной силы (H_c) существенно различаются: для постоянных магнитов требуется величина коэрцитивной силы от 635–480 кА/м и более, для магнитной записи — 210–280 кА/м, а для медицины — минимальные значения. При этом магнитный момент (M_s) независимо от области применения ГФБ должен быть высоким. Одним из возможных путей решения этой задачи может быть замещение ионов Fe^{3+} по схеме $2Fe^{3+}$ $\rightarrow Me^{2+} + Me^{4+}$, где Me^{2+} и Me^{4+} — ферромагнитный и немагнитный ионы соответственно [12—14]. Такое замещение обеспечивает выполнение условия электронейтральности и может влиять на величину коэрцитивной силы и магнитного момента.

Структура ГФБ М-типа состоит из кубического блока S, имеющего структуру шпинели, и гексагонального блока R, содержащего ионы бария Ba^{2+} . Гексагональная элементарная ячейка такой структуры состоит из десяти слоев ионов кислорода O^{2-} . В ней ионы железа Fe^{3+} занимают пять различных кристаллографических позиций: тетраэд-

рическую $(4f_I)$, октаэдрические $(12k, 2a, 4f_2)$ и позицию, образованную пятью ионами кислорода с центрами при вершинах тригональной бипирамиды (2b) [15]. В магнитно упорядоченном состоянии спины молекулы ГФБ (Ва $Fe_{12}O_{19}$) в позициях 12k, 2a, 2b направлены параллельно оси легкого намагничивания, в то время как в позициях $4f_I$ и $4f_2$ — антипараллельно [16]. Результирующая намагниченность ГФБ определяется антиферромагнитным упорядочением магнитных ионов Fe^{3+} , то есть зависит от катионного распределения ферромагнитных ионов по неэквивалентным позициям (подрешеткам) ГФБ [2, 17]:

$$M_s = M_s(12k + 2a + 2b) - M_s(4f_1 + 4f_2)$$
.

На распределение катионов в ферритах существенное влияние оказывают не только условия их синтеза, но и природа модифицирующих добавок. В данной работе в качестве модифицирующих добавок выбрана комбинация ионов ($\mathrm{Co}^{2+} + \mathrm{Si}^{4+}$), которые частично замещали ионы Fe^{3+} . Выбор модифицирующих добавок был сделан на основе результатов исследований авторов работ [12—18] с учетом стерического фактора и электронного строения иона Si^{4+} .

Цель данной работы — исследование влияния модифицирования на фазовые превращения и свойства $BaFe_{12-2x}Co_xSi_xO_{19\pm\gamma}$ М-типа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. В качестве исходных реагентов использовали растворы нитратов железа (III), бария (II) и кобальта (II), а также 100 %-й раствор тетраэтоксилана марки ч.д.а. Осадки получали методом последовательного соосаждения из водных растворов солей. На предварительно соосажденные гидроксиды железа (III) и кремния (IV) соосаждали карбонаты бария (II) и

кобальта (II). Гидроксиды железа и кремния осаждали водным раствором NH₄OH при постоянном контролируемом рН 4.3, после чего осадки тщательно промывали дистиллированной водой до отсутствия в них ионов аммония. Карбонаты бария и кобальта осаждали раствором Na₂CO₃ при рН 9. Контроль рН проводили с помощью ионометра И-160МИ с точностью \pm 0.05, а регулирование рН — с помощью блока автоматического титрования БАТ-15. Полученные осадки созревали в течение 20 ч. Затем их фильтровали, отмывали дистиллированной водой до отсутствия в них ионов NO₃, а после этого прокаливали в камерной печи в интервале температур 923—1373 К с изотермической выдержкой в течение 2 ч. Исследовали образцы составов BaFe_{12-2x}Co_xSi_xO_{19+y} (x = 0; 0.05;0.1; 0.2; 0.3; 0.5).

Образцы исследовали методами рентгенофазового анализа (РФА) и полнопрофильного анализа Ритвельда на дифрактометре ДРОН-4-07 (CuK_{α} -излучение, съемка в каждой точке 10 с). В качестве внешних стандартов применяли SiO_2 (стандарт 2 θ) и сертифицированный стандарт интенсивности Al_2O_3 [19]. Для РФА использовали базу данных JCPDS. Структурные параметры образцов были рассчитаны на основании результатов РФА.

Размер частиц ГФБ оценивали по уширению рентгеновских рефлексов 110 и 220. В качестве эталона использовали ГФБ, прокаленный при температуре 1673 К в течение 5 ч. Линейное уширение линий β вычисляли по формуле $\beta = \sqrt{B^2 - b^2}$, где B — общее линейное уширение исследуемой линии до внесения поправки b. Размер частиц рассчитывали по формуле Шерера [3]:

$$D = \frac{0.9\lambda}{\beta_{hkl} \cdot \cos(\theta_{hkl})} \cdot$$

Мессбауэровские спектры (МС) получали на спектрометре динамического типа, работающем в режиме постоянных ускорений. В качестве источников γ-квантов использовали ⁵⁷Со в матрице Ст. Измерение выполняли при комнатной температуре. Калибровку шкалы скоростей проводили по положению линий поглощения α-Fe. Компьютерную обработку спектров выполняли с использованием программы Univvem-2, реализующей метод наименьших квадратов. При аппроксимации спектров суммы секстетов зеемановского расщепления допускалось попарное равенство интенсивностей

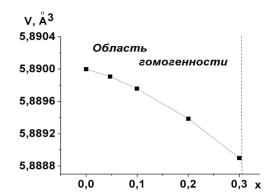


Рис. 1. Концентрационная зависимость объема элементарной ячейки образцов $BaFe_{12-2x}Co_xSi_xO_{19\pm\gamma}$, прокаленных при 1273 К.

линий 1–6, 2–5, 3–4 и полуширин всех линий секстетов. Магнитные свойства порошков ГФБ определяли на баллистическом магнитометре при комнатной температуре в диапазоне полей H = 0—10 к \Im .

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Результаты рентгенофазового анализа образцов Ва $Fe_{12-2x}Co_xSi_x$ - $O_{19\pm\gamma}$ (x=0—0.5), прокаленных в интервале температур 923—1373 К, приведены в табл. 1. Как видно, температура начала ферритобразования для чистого $\Gamma\Phi E$ (x=0) и модифицированных (x 0.1, 0.3 и 0.5) образцов составляет 1023 и 973 К, а однофазность достигается при температурах 1273 и 1173 К соответственно. Это указывает на то, что модифицирование $\Gamma\Phi E$ Co^{2+} и Si^{4+} способствует ускорению образования конечного продукта, что обусловлено, вероятно, уменьшением размера частиц при увеличении концентрации модифицирующих добавок (x):

Уменьшение размеров частиц связано с образованием защитной оболочки вокруг частиц из слоя SiO_2 , обусловленной частичной сегрегацией SiO_2 на границе зерен [20]. Это придает частицам устойчивость к самопроизвольной агрегации и замедляет рост частиц с повышением температуры. На основании приведенных результатов РФА (табл. 1) видно, что при температуре прокаливания 1273 К образцы в интервале x=0—0.3 являются однофазными и характеризуются гексагональной структурой М-типа (структура магнетоплюмбита, пр.гр. $P6_3/mmc$). С увеличением x>0.3, кроме фазы ГФБ, появляются следы второй фазы Ва $Fe_{18}O_{27}$ с гексагональной структурой W-типа. На рис. 1 представлена концен-

Таблица 1 Результаты рентгенофазового анализа образцов Ва $Fe_{12-2x}Co_xSi_xO_{19\pm g}$, прокаленных при различных температурах

•							1 /1
Образец	923 K	973 K	1023 K	1073 K	1173 K	1273 K	1373 K
1 (<i>x</i> =0)	BaCO ₃ (57.00 %), α-Fe ₂ O ₃ (43.00 %)	BaCO ₃ (22.00 %), α-Fe ₂ O ₃ (78.00 %)	BaFe ₂ O ₄ (12.0 %), α -Fe ₂ O ₃ (59.00 %), BaFe ₁₂ O ₁₉ (29.00 %)	α-Fe ₂ O ₃ (35.6 %), BaFe ₁₂ O ₁₉ (64.4 %)	α-Fe ₂ O ₃ (9.00 %), BaFe ₁₂ O ₁₉ (91.00 %)	BaFe ₁₂ O ₁₉ (100 %)	BaFe ₁₂ O ₁₉ (100%)
2 (<i>x</i> =0.1)	BaCO ₃ (58.63 %), α-Fe ₂ O ₃ (41.37 %)	BaCO ₃ (15.65 %), BaFe ₂ O ₄ (12.32 %), α-Fe ₂ O ₃ (38.44 %), BaFe ₁₂ O ₁₉ (33.63 %)	BaFe ₂ O ₄ (18.0 %), α -Fe ₂ O ₃ (15.53 %), BaFe ₁₂ O ₁₉ (66.47 %)	BaFe ₂ O ₄ (17.43 %), α-Fe ₂ O ₃ (15.29 %), BaFe ₁₂ O ₁₉ (67.28 %)	BaFe ₁₂ O ₁₉ (100 %)	BaFe ₁₂ O ₁₉ (100 %)	BaFe ₁₂ O ₁₉ (100 %)
3 (<i>x</i> =0.3)	BaCO ₃ (37.5 %), α-Fe ₂ O ₃ (62.5 %)	BaCO ₃ (28.46 %), α-Fe ₂ O ₃ (56.32 %), BaFe ₁₂ O ₁₉ (15.22 %)	BaFe ₂ O ₄ (9.17 %), α-Fe ₂ O ₃ (33.94 %), BaFe ₁₂ O ₁₉ (56.89 %)	BaFe ₂ O ₄ (7.7 %), α -Fe ₂ O ₃ (30.88 %), BaFe ₁₂ O ₁₉ (61.42 %)	BaFe ₁₂ O ₁₉ (100 %)	BaFe ₁₂ O ₁₉ (100 %)	BaFe ₁₂ O ₁₉ (100 %)
4 (<i>x</i> =0.5)	BaCO ₃ (46.6 %) α-Fe ₂ O ₃ (56.4 %)	BaCO ₃ (33.23 %) α-Fe ₂ O ₃ (47.45 %), BaFe ₁₂ O ₁₉ (19.32 %)	α-Fe ₂ O ₃ (39.8 %), BaFe ₁₂ O ₁₉ (60.2 %)	α-Fe ₂ O ₃ (37.74 %), BaFe ₁₂ O ₁₉ (62.26 %)	BaFe ₁₂ O ₁₉ (100 %)	BaFe ₁₂ O ₁₉ (82.89 %), BaFe ₁₈ O ₂₇ (17.11 %)	BaFe ₁₂ O ₁₉ (58.85 %), BaFe ₁₈ O ₂₇ (41.15 %)

трационная зависимость объема кристаллической решетки (V) образцов $\mathrm{BaFe}_{12-2x}\mathrm{Co}_x\mathrm{Si}_x\mathrm{O}_{19\pm\gamma}$ Как видно, в области гомогенности (x=0–0.3) наблюдается уменьшение V модифицированных ГФБ при замещении ионов $\mathrm{Fe}^{3+}_{\mathrm{K.u.6, HS}}$ $(r=0.645~\mathrm{\AA})$ на ионы Co^{2+} и Si^{4+} $(\widetilde{r}=0.567~\mathrm{\AA})$, что соответствует правилу Вегарда. Это указывает на образование твердых растворов замещения.

Для однофазных образцов исследовали мессбауэровские спектры (MC). В табл. 2 представлены зависимости относительных площадей компонент MC в неэквивалентных позициях $\operatorname{BaFe}_{12-2x}\operatorname{Co}_x\operatorname{Si}_x\operatorname{O}_{19\pm\gamma}$ от степени замещения ионов Fe^{3+} . Как следует из табл. 2, при замещении $\operatorname{2Fe}^{3+}$ на $\operatorname{Co}^{2+} + \operatorname{Si}^{4+}$ наблюдается уменьшение площадей компонент $4f_1$ и 12k в интервале $0 < x \le 0.3$ и $4f_2$ — в интервале $0 < x \le 0.1$. Это указывает на уменьшение концентрации ионов Fe^{3+} в этих позициях и на

Таблица 2 Относительные площади компонент МС (S, %) в неэквивалентных позициях BaFe_{12-2x}Co_xSi_xO_{19±g} в зависимости от степени замещения (x)

v	S, %							
X	12 <i>k</i>	2 <i>a</i>	2 <i>b</i>	4 <i>f</i> ₁	4f ₂			
0	52.4	9.1	3	23.4	12.1			
0.1	50.2	16.2	4.5	19.8	9.3			
0.3	46.1	20.4	4.4	17.6	11.5			

заселенность в них ионов Si^{4+} и Co^{2+} .

Известно [21], что при образовании связей для кремния характерна sp^3 -гибридизация с образованием четырех равноценных гибридных sp^3 -орбиталей, ориентированных в пространстве к четырем

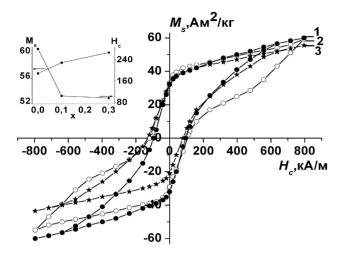


Рис. 2. Магнитные характеристики образцов BaFe_{12-2x}-Co_xSi_xO_{19± γ}, прокаленных при температуре 1273 K: I, J — x=0.3; J — x=0.1.

вершинам правильного тетраэдра. Поэтому для кремния логично заселение тетраэдрической позиции $4f_1$. Заселяя эту позицию, ионы ${\rm Si}^{4+}$, вероятно, вытесняют ионы ${\rm Fe}^{3+}$ в октаэдрические позиции 2a в интервале $0< x \le 0.3, 2b$ — в интервале $0< x \le 0.1$ и $4f_2$ — в интервале $0.1 \le x \le 0.3$ (табл. 2). Ионы ${\rm Co}^{2+}$ вследствие d^2sp^3 -гибридизации предпочитают октаэдрическую координацию и могут заселять позицию 12k [22].

Результаты исследования магнитных характеристик образцов BaFe $_{12-2x}$ Co $_x$ Si $_x$ O $_{19\pm\gamma}(x~0,~0.1~u~0.3)$ представлены на рис. 2. Видно, что коэрцитивная сила (H_c) образцов с увеличением x уменьшается и равняется 378, 104 и 96 кА/м для x0, 0.1 и 0.3 соответственно. При этом магнитный момент указанных выше образцов увеличивается и составляет 43.7, 49.5 и 60.1 кА/м 2 соответственно (рис. 2, вставка).

Результирующий магнитный момент ГФБ определяется разницей между суммой магнитных моментов ионов в позициях 12k, 2a, 2b и в позициях $4f_1$, $4f_2$ [15] в соответствии с уравнением [2]:

$$M_s = M_s(1\overrightarrow{2k} + \overrightarrow{2a} + 2\overrightarrow{b}) - M_s(4f_1 + 4f_2)$$
.

В связи с этим увеличение намагниченности модифицированных ГФБ (рис. 2, вставка) обусловлено увеличением концентрации ферромагнитных ионов (Fe³+ и Co²+) в положительной составляющей $M_s = M_s(12k+2a+2b)$ и уменьшением ионов Fe³+ в отрицательной составляющей $M_s = M_s(4f_1+4f_2)$, что подтверждают

результаты МС (рис. 2). Как видно, параметры МС исследуемых образцов соответствуют высокоспиновым ионам Fe^{3+} с октаэдрической (12k, $4f_2$ и 2a), тетраэдической ($4f_1$) и бипирамидальной (2b) координациями.

Таким образом, исследовано влияние модифицирования на свойства и фазовые превращения при синтезе $\mathrm{BaFe}_{12-2x}\mathrm{Co}_x\mathrm{Si}_x\mathrm{O}_{19\pm\gamma}\,\mathrm{M}$ -типа (в интервалах x=0—0.5). Установлена гомогенная область образования твердых растворов замещения $\mathrm{BaFe}_{12-2x}\mathrm{Co}_x\mathrm{Si}_x\mathrm{O}_{19\pm\gamma}$ при x=0—0.3. Отмечено, что в гексагональных ферритах $\mathrm{BaFe}_{12-2x}\mathrm{Co}_x\mathrm{Si}_x\mathrm{O}_{19\pm\gamma}$ ионы Si^{4+} занимают тетраэдрические позиции $4f_1$, а ионы Co^{2+} — октаэдрические позиции 12k. Показано, что замещение $2\mathrm{Fe}^{3+} \to \mathrm{Co}^{2+}$ + $+\mathrm{Si}^{4+}$ способствует уменьшению размера частиц, снижению температуры ферритизации, существенному снижению коэрцитивной силы (H_c) и увеличению намагниченности (M_s) ГФБ. Полученные результаты позволяют синтезировать ГФБ с заданными свойствами.

РЕЗІОМЕ. Досліджено вплив модифікування на властивості та фазові перетворення при синтезі Ва F_{12-2x} -Со $_x$ Si $_x$ O $_{19\pm\gamma}$ М-типу. Показано, що заміщення $2Fe^{3+}$ \rightarrow Co $^{2+}$ + Si^{4+} сприяє зменшенню розміру часток, зниженню температури феритизації, значному зменшенню коерцитивної сили (H_c) та збільшенню намагніченості (M_c) $\Gamma\Phi F$.

SUMMARY. The effect of modification on the properties and phase transformations in the synthesis of M-type ${\rm BaFe_{12-2x}Co_xSi_xO_{19\pm y}}$. It has been shown that substitution ${\rm 2Fe^{3+}} \rightarrow {\rm Co^{+}} + {\rm Si^{4+}}$ facilitates decreasing of particle size, temperature of single-phase BHF synthesis, coercivity (H_c) and increasing saturation magnitization (M_s) of BHF.

ЛИТЕРАТУРА

- 1. Крупичка С. Физика ферритов и родственных им магнитных окислов. -М.: Мир., 1976. -Т. 2. -С. 504.
- 2. Смит Я., Вейн Х. Ферриты. -М.: Изд-во иностр. лит., 1962. -С. 504.
- 3. Губин С.П., Кокшаров Ю.А., Хомутов Г.Б., Юрков Г.Ю. // Успехи химии. -2005. -74, № 6. -С. 539—574.
- 4. Lei Fu, Xiagang Liu, Zhang Yi et al. // Nano letters. -2003. -3, № 6. -P. 757—760.
- 5. *Pankhurst Q.A.*, *Pollard R.S.* // J. Phys. Condens. Mater. -1993. -№ 5. -P. 8487—8508.
- 6. Lebedev S.V., Patton C.E., Wittenauer M.A. et. al. // J. Appl. Phys. -2002. -91, N_2 7. -P. 4426—4431.
- 7. Haijun Z., Zhichao L., Chenliang Ma et al. // Mater.

- Sci. Eng. -2002. -96. -P. 289.
- 8. Ragotani T., Fujiwara D., Sugimoto S. et.al. // J. Magn. Mater. -2004. -1813. -P. 272—276.
- 9. Meshram M.R., Agarwal N.K., Sinha B., Misra P.S. // J. Magn. Magnet. Mater. -2004. -271. -P. 207.
- Müller R., Hergt R., Dutz S. et al. // J. Phys. Condens. Matter. -2006. -18. -P. 2527—2542.
- 11. Pollert E., Veverka P., Veverka M. et al. // Progr.Solid State Chem. -2009. -P. 1—14.
- 12. He H.Y., Huang J.F, Cao L.Y. et al. // Mater. Techn. -2007. -2. -P. 30—32.
- 13. Koga N., Tsutaoka T. // J. Magn. Magnet. Mater. -2007, -313. -P. 168—175.
- Haijun Z., Zhichao L., Chenliang M. et al. // Mater. Chem. Phys. -2003. -80. -P. 129—134.
- 15. Kim C.S., Lee S.W., An S.Y. // J. Appl. Phys. -2000. -87. -P. 6244—6246.

Институт общей и неорганической химии им. В.И.Вернадского НАН Украины, Киев

- Liu X.S., Hernandez-Gomez P., Huang K. et al. // J. Magn. Magnet. Mater. -2006. -305. -P. 524—528.
- 17. Левин Б.Е., Третьяков Ю.Д., Леток Л.М. Физикохимические основы получения, свойства и применение ферритов. -М.: Металлургия, 1979. -С. 232.
- 18. An S.Y., Lee S.W., Shim I.B., Kim C.S. // J. Appl. Phys. -2002. -91, № 10. -P. 8465—8467.
- 19. Rosler S., Wartewing P., Laugbein H. // Cryst. Res. Technol. -2003. -38, № 11. -P. 927—934.
- Dong-Young Kim, Hong-Yeol Lee, Dong-Suk Jun, Sang-Seog Lee // Jpn. J. Appl. Phys. -2005. -P. 3015—3016.
- 21. Горшков В.С., Савельев В.Г., Федоров Н.Ф. Физическая химия силикатов и других тугоплавких соединений. -М: Высш. шк., 1988.
- 22. Orgel L.E. An introduction to transition metal chemistry. -London: Methuen & Co LTD, 1966.

Поступила 08.09.2011

УДК 546.16: 546.817 + 546.832

Е.В.Тимухин, В.Ф.Зинченко, О.В.Мозговая, В.П.Соболь

ВЗАИМОДЕЙСТВИЕ В СИСТЕМЕ РbF2(PbO)—HfF4 И ЕЕ ОПТИЧЕСКИЕ СВОЙСТВА

Исследован характер твердофазного взаимодействия между PbF2, содержащим примесь PbO, и HfF4. Методами PФA и ИК-спектроскопии установлено образование фазы сложного фторида неустановленной структуры. Выявлен факт батохромного сдвига полосы валентных колебаний связей Hf-F, обусловленного комплексообразованием. Тонкопленочные покрытия, полученные термическим испарением материала в вакууме, неравномерны по толщине и поверхности и обладают недостаточной климатической стойкостью. В то же время по уровню светорассеяния и механической прочности покрытие отвечает предъявляемым требованиям.

 $BCTV\Pi$. Фториды металлов являются основой создания материалов для интерференционной оптики, работающей в широком диапазоне спектра — от вакуумного ультрафиолетового (ВУФ) до среднего инфракрасного (СИК) диапазона, включая так называемое окно прозрачности (ОП) атмосферы Земли (8—14 мкм). Практически ни один из оксидов и фторидов не перекрывает полностью упомянутое выше ОП. Редким исключением являются фториды "сверхтяжелых" металлов, в частности, ThF_4 и PbF_2 . Если не учитывать ThF_4 из-за его радиоактивности, фторид свинца остается единственным материалом для нанесения слоев с низким показателем преломления (в паре с ZnSe) для

интерференционной оптики, функционирующей в ОП атмосферы [1, 2].

ПРОГНОЗИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ В СИСТЕМЕ $PbF_2(PbO)$ — HfF_4 . Главным недостатком фторидных материалов является невысокая механическая прочность и климатическая стойкость наносимых из них покрытий. Основной причиной этого является наличие в них остаточных оксидных примесей (оксиды, карбонаты, гидроксиды), а также склонность к диспропорционированию в процессе нанесения покрытий (особенно, при термическом испарении в вакууме).

Влияние оксидных примесей (что особенно характерно для PbF₂) [3, 4] существенно сказы-

© Е.В.Тимухин, В.Ф.Зинченко, О.В.Мозговая, В.П.Соболь, 2012