УДК 661.898+543.48

А.Н.Козачкова, А.В.Дудко, Н.В.Царик, В.И.Пехньо, В.М.Новоторцев, И.Л.Еременко СИНТЕЗ И МОЛЕКУЛЯРНОЕ СТРОЕНИЕ ГЕТЕРОМЕТАЛЛИЧЕСКИХ Рd(II)—Co(II) и Pd(II)—Ni(II) СОЕДИНЕНИЙ С 1-АМИНО-2-МЕТИЛПРОПИЛИДЕН-1,1-ДИФОСФОНОВОЙ КИСЛОТОЙ

Синтезированы биметаллические соединения Pd(II)-Co(II) (I) и Pd(II)-Ni(II) (II) с 1-амино-2-метилпропилиден-1,1-дифосфоновой кислотой (АМПДФ) с молярными соотношениями Рd: Со: АМПДФ =1:2:4 в соединении I и Pd: Ni: АМПДФ =3:8:16 — в II. По результатам рентгеноструктурного анализа монокристаллов определены их кристаллические структуры. Кристаллическая структура I построена из изолированных молекул [Pd(АМПДФ)₂], молекул гетероядерного Pd(II)-Co(II) комплекса с АМПДФ, NO₃-групп и молекул кристаллизационной воды. Кристаллическая структура II состоит из изолированных молекул [$Pd(AM\Pi Д\Phi)_2$], молекул гетероядерного Pd(II)–Ni(II) комплекса с $AM\Pi Д\Phi$, гексаакваиона Ni(II), NO_3^- -групп и молекул кристаллизационной воды. В молекулах бислигандных и гетерометаллических комплексов палладий(II) находится в плоско-квадратном окружении, образованном при бидентатной координации двух молекул АМПДФ атомами азота аминогруппы и кислорода фосфоновой группы в цис-положении с замыканием двух пятичленных [PdNCPO]циклов. Октаэдрическое окружение кобальта(II) в гетерометаллическом комплексе составляют атомы кислорода молекул воды и атом кислорода монодентатно координированной фосфоновой группы $AM\Pi Д\Phi$, входящей в состав бислигандного комплекса $[Pd(AM\Pi Д\Phi)_2]$. Никель(II) в гетерометаллическом комплексе координирует две фосфоновые группы одной молекулы АМПДФ, входящей в состав бислигандного комплекса $[Pd(AM\Pi \Pi \Phi)_2]$, с замыканием шестичленного цикла $[NiO_2P_2C]$. Оставшиеся позиции в октаэдрическом окружении никеля(II) занимают атомы кислорода молекул воды.

ВВЕДЕНИЕ. Интерес к гетерометаллическим комплексам обусловлен возможностью получения на их основе новых материалов с заданными свойствами, необходимыми для решения ряда практических задач [1—4]. Использование для синтеза гетерометаллических комплексов аминодифосфоновых кислот, которые являются полидентатными лигандами, и металлов разной природы может приводить к образованию комплексов разнообразного состава и геометрии, что важно для развития стереохимических представлений в области координационной химии. Кроме того, объединение в результате комплексообразования в составе одной молекулы биологически активных металлов и аминодифосфоновой кислоты является перспективным направлением создания новых лекарственных препаратов.

Настоящая работа посвящена синтезу и исследованию гетерометаллических комплексов Pd(II)—Co(II) и Pd(II)—Ni(II) с 1-амино-2-метилпропилиден-1,1-дифосфоновой кислотой (АМ-ПДФ, H_4L).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Использовали PdCl₂ фирмы Merck (Pd — 59 %), AgNO₃

(ч.д.а), $Co(NO_3)_2 \cdot 6H_2O$ (ч.д.а) и $Ni(NO_3)_2 \cdot 6H_2O$ (ч.) после перекристаллизации. Синтез 1-амино-2-метилпропилиден-1,1-дифосфоновой кислоты проводили согласно методике [5].

Синтез гетерометаллических соединений Pd(II)-Co(II) (I) и Pd(II)-Ni(II) (II) с 1-амино-2метилпропилиден-1,1-дифосфоновой кислотой (АМПДФ) осуществляли из растворов в две стадии. На первой стадии получали раствор $[Pd(H_2O)_4]^{2+}$, в который добавляли двойной избыток АМПДФ. Для этого к раствору H₂PdCl₄, полученному при растворении навески PdCl₂ в стехиометрическом количестве HCl, добавляли нитрат серебра. Затем осадок AgCl отфильтровывали и к фильтрату добавляли двукратный избыток АМПДФ. На второй стадии синтеза к полученному раствору добавляли эквимолярные палладию(II) количества Со(NO₃)₂⋅6H₂O или $Ni(NO_3)_2 \cdot 6H_2O$. После растворения нитратов кобальта(II) и никеля(II) получали раствор розового и желто-зеленого цветов соответственно. В результате медленного упаривания при комнатной температуре из растворов, содержащих Pd(II) и Co(II), получены монокристаллы розового цвета, Pd (II) и Ni(II) — желто-зеленого цвета, кото-

© А.Н.Козачкова, А.В.Дудко, Н.В.Царик, В.И.Пехньо, В.М.Новоторцев, И.Л.Еременко, 2012

Таблица 1 Результаты химического анализа соединений I и II

Формула	Найдено/вычислено, %						
	Co	Ni	Pd	P	C	Н	N
$C_{32}H_{138}N_9O_{73}P_{16}Pd_4Co_2$ (I)	4.25/4.37	_	14.70/14.90	17.20/17.35	13.60/13.45	4.96/4.83	4.29/4.41
$C_{64}H_{216}N_{18}O_{116}P_{32}Pd_8Ni_3$ (II)	_	3.31/3.44	16.50/16.65	19.50/19.38	15.25/15.03	4.12/4.23	4.81/4.93

рые были пригодны для проведения рентгеноструктурного анализа (РСА). На основании результатов элементного анализа выделенных соединений (табл. 1) установлены молярные соотношения Pd: Со:лиганд = 2:1:4 в соединении I и Pd: Ni:лиганд = 8:3:16 — в соединении II.

РСА монокристаллов проведен на дифрактометре Bruker Smart Арех $\hat{\Pi}$ (Мо K_{α} -излучение, графитовый монохроматор, ССО-детектор). Структуры расшифрованы прямым методом и уточнены методом наименьших квадратов в полноматричном анизотропном приближении по квадратам структурных амплитуд с использованием комплекса программ SHELXTL [6]. Все атомы водорода в молекуле локализованы из геометрических соображений в идеализированных позициях и уточнены в модели "наездника" (соотношение тепловых параметров принимали равным $U_{\text{изо}}(H) = 1.5 U_{3KB}(X)$ (X = CH) и $U_{\text{изо}}(H) = 1.2U_{\text{экв}}(X)$ ($X = \text{CH}_2$). Низкая интенсивность полученных рефлексов не позволяла определить объективно из ряда Фурье атомы водорода при атомах кислорода фосфоновых групп. В процессе уточнения в кристаллических структурах соединений I и II положения молекулы кристаллизационной воды смоделировать не удалось по причине их высокой степени разупорядоченности. Для корректировки

Таблица 2 Кристаллографические данные и условия дифракционного эксперимента

Характеристика	Соединение			
Ларактеристика	I	II		
Брутто-формула	$C_{16}H_{36}CoN_{4.50}O_{37}P_8Pd_2$	$C_8H_{29.25}N_{2.25}O_{14}P_4PdNi_{0.38}$		
Молекулярный вес	1402.98	641.38		
Сингония	Триклинная	Триклинная		
Температура, К	293(2)	293(2)		
Размер, мм	$0.40 \times 0.03 \times 0.03$	$0.40 \times 0.10 \times 0.10$		
a, Å	10.9375(5)	11.0496(3)		
b, Å	12.8113(6)	19.2802(6)		
c, Å	19.0606(9)	25.1051(8)		
v, Å ³	2536.9(2)	4876.44(3)		
Пр. гр.	P-1	P-1		
d_{RMH} , Γ/cm^3	1.837	1.747		
Z	2	8		
m, MM^{-1}	1.368	1.368		
F(000)	1397	2604		
q _{макс} , град	26.46	26.46		
Диапазон h , k , l	$-13 \le h \le 13$	$-13 \le h \le 13$		
	$-14 \le k \le 15$	$-24 \le k \le 24$		
	$0 \le l \le 23$	$-31 \le l \le 31$		
Метод уточнения	Полноматричный ${ m MHK}\ \ { m no}\ \ { m \it \it F}^2$	Полноматричный МНК по F^2		
Число	9976	20065		
независимых				
рефлексов				
Количество уточняемых параметров	697	1087		
Φ актор недостоверности(I > $2\sigma(I)$)	R_1 =0.0475, wR_2 =0.1207, S =0.971	$R_1 = 0.0805, \ wR_2 = 0.1886, $ S = 0.971		

Рис. 1. Молекулярное строение гетерометаллических комплексов Pd(II)–Co(II) (a) и Pd(II)–Ni(II) (δ) с $AM\Pi \ \ \ \,$ (молекулы кристаллизационной воды и NO_3 -группа не приведены).

модели применен алгоритм SQUEEZE [7] в программном комплексе PLATON [8]. Уточнение модели соединения I проводили с учетом полисинтетического двойника, матрицу которого определяли с помощью программы CELLNOW [9]. Набор экспериментальных интенсивностей реинтегрировали, дифференцируя отражения от двух кристаллических доменов по набору алгоритмов SAINT-PLUS [10]. Поглощение учтено по массиву эквивалентных отражений с исполь-

зованием программы TWINABS [11] в случае соединения I и SADABS [12] — для соединения II. Полученные кристаллографические и экспериментальные данные соединений I и II представлены в табл. 2.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. По результатам PCA монокристалла соединения I установлено, что молекулярная упаковка образована изолированными молекулами бислигандного комплекса $[Pd(AM\Pi \Pi \Phi)_2]$, гетероядерного комплекса Pd(II)-Co(II) с АМПДФ, кристаллизационной воды и NO_3^- -групп (рис. 1, a). Кристаллографически независимая часть содержит по одной молекуле бислигандного комплекса $[Pd(AM\Pi Д\Phi)_2]$ и гетероядерной частицы комплекса Pd(II)-Co(II) с АМПДФ, NO₃-группу и молекулы воды. Палладий(II) в бислигандном $[Pd(AM\Pi \coprod \Phi)_2]$ и гетеромметаллическом Pd(II)-Co(II) комплексах координирует две молекулы АМПДФ с образованием двух пятичленных циклов [PdNCPO] с конформацией "полукресла" и формирует плоско-квадратное координационное окружение из донорных атомов кислорода фосфоновых групп и азота аминогрупп в цис-положении.

Геометрические параметры координационного полиэдра палладия(II) в моноядерном бислигандном комплексе и гететерометальном комплексе Рd(II)—Сo(II) с АМПДФ практически идентичны (табл. 3). Фосфоновые группы в этих комплексах имеют тетраэдрическую структуру, как и в исходном комплексоне. Длины связей Р—О в координированном лиганде находятся в диапазоне 1.489(6)—1.572(8) Å, что свидетельствует о незначительном влиянии координированных атомов кобальта(II) на координационное окружение палладия(II) в гетерометаллическом комплексе по сравнению с моноядерным бислигандным комплексом.

В молекулярной структуре соединения I один атом кобальта(II) находится в общей позиции. Октаэдрический комплексный катион кобальта(II) построен из пяти атомов кислорода молекул воды и атома кислорода фосфоновой группы АМПДФ, входящей в состав бислигандного комплекса [$Pd(AM\Pi Д\Phi)_2$]. Второй атом кислорода связанной с кобальтом(II) фосфоновой группы координирован к палладию(II) (рис. 2).

Длина связей и значение углов для полиэдра кобальта(II) хорошо согласуются с литерату-

Таблица 3 Основные длины связей (d) и величины валентных углов в гетерометаллическом комплексе $Pd(\Pi)$ — $Co(\Pi)$ с $AM\Pi \mathcal{I}\Phi$

Связь	d, Å	Угол	Величина угла, °
Pd(1)-O(1)	2.034(5)	N(1)-Pd(1)-N(2)	95.7(2)
Pd(1)-O(7)	2.034(5)	N(2)-Pd(1)-O(7)	84.8(2)
Pd(1)–N(1)	2.016(6)	N(1)-Pd(1)-O(1)	84.8(2)
Pd(1)–N(2)	1.993(6)	O(7)-Pd(1)-O(1)	94.8(2)
Pd(2)-N(4)	2.013(6)	N4-Pd2-N3	96.8(2)
Pd(2)-N(3)	2.015(6)	N4-Pd2-O19	84.8(2)
Pd(2)–O(19)	2.021(5)	N3-Pd2-O13	84.4(2)
Pd(2)–O(13)	2.031(5)	O19-Pd2-O13	93.95(19)
Co(1)-O(21)	2.011(6)	O21-Co1-O26	89.3(2)
Co(1)-O(27)	2.071(7)	O27-Co1-O26	90.6(3)
Co(1)-O(26)	2.098(6)	O21-Co1-O29	88.7(3)
Co(1)-O(29)	2.102(7)	O27-Co1-O29	91.4(3)
Co(1)-O(28)	2.143(9)	O21-Co1-O28	92.2(3)
Co(1)-O(25)	2.153(8)	O27-Co1-O28	88.8(3)
		O26-Co1-O28	86.3(3)
		O29-Co1-O28	92.9(4)
		O21-Co1-O25	88.4(3)
		O27-Co1-O25	90.5(3)
		O26-Co1-O25	90.5(3)
		O29-Co1-O25	90.3(4)

Рис. 2. Координационные полиэдры атомов Co(II) и Pd(II) в гетерометаллическом комплексе Pd(II)—Co(II) с $AM\Pi \Box \Phi$.

рными данными для подобного типа соединений [13] и находятся в пределах 2.102(7)—2.153(8) Å и 86.3(3)—92.2(3)°.

Полное исследование молекулярной упаковки посредством водородных связей в кристаллической структуре I невозможно вследствие большой разупорядоченности молекул воды (рис. 3).

Кристаллическая структура соединения II молекулярная и состоит из изолированных молекул

Рис. 3. Молекулярное строение соединения I, проекция в направлении оси а.

бислигандного комплекса [Pd(AMПДФ)₂], гетероядерного комплекса Pd(II)–Ni(II) с АМПДФ, гексаакваиона Ni(H₂O)₆²⁺, кристаллизационной воды и NO₃⁻-групп (рис. 1, δ). Как видно из рисунка, ион палладия(II) в молекулах моноядерного бислигандного [Pd(AMПДФ)₂] и гетерометаллического Pd(II)–Ni(II) комплексов имеет плоско-квадратное координационное окружение, образованное при бидентатной координации двух молекул АМПДФ в цис-положении атомами кислорода фосфоновых групп и азота аминогрупп.

При этом длины связей и значения углов в пятичленных [PdNCPO]-циклах в моноядерном и гетерометаллическом комплексе имеют схожие значения (см. табл. 4).

В структуре соединения II выявлены два независимых атома никеля(II). Геометрические параметры внешнесферного катиона $[Ni(H_2O)_6]^{2+}$ находятся в стандартных границах для подобного типа структур. Координационное окружение Ni (1) октаэдрическое, с незначительным отклонением от идеального октаэдра (табл 3). Как видно из рис. 4, Ni(1) координирует два атома кислорода двух фосфоновых групп одной молекулы АМ-ПДФ, входящей в состав бислигандного комплекса $[Pd(AM\PiД\Phi)_2]$, с образованием шестичленного $[NiO_2P_2C]$ -цикла с конформацией "твист".

Длины связей Ni(1)—О отвечают литературным данным для подобного типа соединений [14]. Величины валентных углов O—Ni(1)—О незначительно отклоняются от 90° (табл. 4), что объясняется особенностью геометрии шестичленного цикла.

Молекулярное строение соединения II приведено на рис. 5.

ВЫВОДЫ. Таким образом, на основании полученных данных можно заключить, что в крис-

Таблица 4 Основные длины связей (d) и величины валентных углов в гетерометаллическом комплексе $Pd(\Pi)$ — $Ni(\Pi)$ с $AM\Pi \Box \Phi$

Связь	d, Å	Угол	Величина угла, ^о
Pd(1)-N(2)	2.004(9)	N2-Pd(1)-N1	96.7(4)
Pd(1)–N(1)	2.013(9)	N1-Pd(1)-O1	84.7(3)
Pd(1)–O(1)	2.018(7)	N2-Pd(1)-O11	85.3(3)
Pd(1)-O(11)	2.032(7)	O1-Pd(1)-O11	93.4(3)
Ni(1)-O(10)	2.037(8)	O10-Ni1-O7	91.3(3)
Ni(1)-O(7)	2.058(8)	O10-Ni1-O4	89.0(3)
Ni(1)-O(4)	2.075(8)	O7-Ni1-O4	92.2(3)
Ni(1)-O(8)	2.075(9)	O10-Ni1-O8	89.4(3)
Ni(1)-O(9)	2.079(8)	O7-Ni1-O8	87.4(3)
Ni(1)-O(3)	2.099(7)	O10-Ni1-O9	91.8(3)
		O4-Ni1-O9	92.7(3)
		O8-Ni1-O9	87.8(3)
		O7-Ni1-O3	89.9(3)
		O4-Ni1-O3	86.4(3)
		O8-Ni1-O3	95.2(3)
		O9-Ni1-O3	87.4(3)

таллах соединений I и II имеются как гетеро-Pd(II)–Co(II) и Pd(II)–Ni(II) комплексы с $AM\Pi Д\Phi$, так и моноядерные $[Pd(AM\Pi Д\Phi)_2]$. В гетерометаллическом комплексе Co(II) координирует атом кислорода фосфоновой группы $AM\Pi Д\Phi$, входящей в состав бислигандного комплекса $[Pd(AM\Pi Д\Phi)_2]$, тогда как Ni(II) координирует два атома кислорода двух фосфоновых групп одной молекулы $AM\Pi Д\Phi$, входящей в состав бислигандного комплекса $[Pd(AM\Pi Д\Phi)_2]$.

РЕЗЮМЕ. Синтезовано біметалічні сполуки Pd(II) –Co(II) (I) та Pd(II)–Ni(II) (II) з 1-аміно-2-метилпропіліден-1,1-дифосфоновою кислотою (АМПДФ) з молярними співвідношеннями Pd:Co:АМПДФ =1:2:4 у сполуці I та Pd:Ni:АМПДФ =3:8:16 — у II. За результатами рентгеноструктурного аналізу монокристалів визначено їх кристалічні структури. Кристалічна структура I побудована з ізольованих молекул комплексу $Pd(AMПДФ)_2$, молекул гетероядерного комплексу Pd(II)–Co(II) з АМПДФ, NO_3 –груп та молекул кристалізаційної води. Кристалічна структура II складається з ізольованих молекул $[Pd(AMПДФ)_2]$, молекул

гетероядерного комплексу Pd(II)-Ni(II) з АМПДФ, гексаакваіона Ni(II), NO₃-груп та молекул кристалізаційної води. У молекулах біслігандних та гетерометалічних комплексів паладій(II) знаходиться в плоскоквадратному оточенні, утвореному при бідентатній координації двох молекул АМП ДФ атомами азоту аміногрупи та кисню фосфонової групи в цис-положенні із замиканням двох п'ятичленних циклів [PdNCPO]. Октаедричне оточення кобальту(II) в гетерометалічному комплексі складають атоми кисню молекул води та атом кисню монодентатно координованої фосфонової групи АМПДФ, що входить до складу біслігадного комплексу $[Pd(AM\Pi \coprod \Phi)_2]$. Нікель(II) у гетерометалічному комплексі координує дві фосфонові групи однієї молекули АМПДФ, що входить до складу біслігандного комплексу $[Pd(AM\Pi Д\Phi)_2]$, із замиканням шестичленного циклу [NiO₂P₂C]. Позиції, що залишилися в октаедричному оточенні нікелю(II), займають атоми кисню молекул води.

SUMMARY. Bimetallic Pd(II)-Co(II) (I) and Pd(II) -Ni(II) (II) compounds with 1-amino-2-methylpropylidene-1,1-diphosphonic acid (AMPDPA) with the molar ratios Pd:Co:AMPDPA =1:2:4 in I and Pd:Ni:AMPDPA =3:8:16 in II have been synthesized. On the basis of the results of an X-ray structural analysis of single crystals, their crystal structures have been determined. The crystal structure of I is composed of isolated [Pd(AMPDPA)₂] molecules, the molecules of heteronuclear Pd(II)-Co(II) complex with AMPDPA, a Ni(II) hexaaqua ion, NO₃ groups and crystal water molecules. In the molecules of bisligand and heterometallic complexes, palladium(II) is in a square-planar environment, which is formed on the bidentate coordination of two AMPDPA molecules by the nitrogen atom of amine group and oxygen atom of phosphonic group in cis-position with closure of two five-membered [PdNCPO] rings. The octahedral environment of cobalt(II) in the heterometallic complex is composed of the oxygen atoms of water molecules and the oxygen atom of the monodentately coordinated phosphonic group of AMPDPA, which is part of the bisligand complex [Pd(AMPDPA)₂]. Nickel(II) in the heterometallic complex coordinates two phosphonic groups of one AM-PDPA molecule, which is part of the bisligand complex [Pd(AMPDPA)₂], with closure of six-membered [NiO₂P₂C] ring. The other positions in the octahedral environment of nickel(II) are occupied by the oxygen atoms of water molecules.

ЛИТЕРАТУРА

- 1. *Марков А.А.*, *Клягина А.П.*, *Долин С.П. и др. //* Журн. неорган. химии. -2009. -**54**, № 6. -C. 950—957.
- 2. Козицына Н.Ю., Нефедов С.Е., Доброх отова Ж.В. и др. // Рос. нанотехнологии. -2008. -3, № 3-4. -С. 100—114.

- 3. *Zhang J.-S.*, *Lin Y.-J.*, *Jin G.-X.* // Dalton Transaction. -2009. -38, №1. -P. 111—118.
- 4. *Моисеев И.И., Варгафтик М.Н.* // Рос. хим. журн. -2006. -L, № 4. -C. 72—81.
- 5. Пат. на полезную модель № 47927, Украина, МПК C07F 9/00. -Опубл. 25.02.2010.
- 6. Sheldrick G.M. // Acta Cryst. -2008. -A64. -P. 112—122.
- 7. Spek A.L. PLATON.- University of Utrecht, the Netherlands, 2002.
- 8. Spek A.L. // J. Appl. Crys. -2003. -36. -P. 7—13.
- 9. Sheldrick G.M. Cell-now. -University of Gottingen, Germany, 2003.

Институт общей и неорганической химии им. В.И.Вернадского НАН Украины, Киев Институт общей и неорганической химии им. Н.С.Курнакова РАН, Москва

- Bruker. SAINT-Plus. -Bruker AXS Inc., Madison, Wisconsin, USA, 2007.
- Bruker. TWINABS. -Bruker AXS Inc., Madison, Wisconsin, USA, 2001.
- Bruker. SADABS. -Bruker AXS Inc., Madison, Wisconsin, USA, 2001.
- 13. Bon V.V., Dudko A.V., Kozachkova A.N. et al. // Acta Cryst. -2010. -E66. -P. m537—m538.
- 14. Bon V.V., Dudko A.V., Kozachkova A.N. et al. // Ibid. -2010. -E66. -P. m591—m592.

Поступила 16.10.2012