УДК 546.43-46'162

В.Ф.Зінченко, С.О.Тарасенко, Є.В.Тімухін, С.Б.Мєшкова, П.Г.Дога ВПЛИВ ВЗАЄМОДІЇ У СИСТЕМІ ВаF2—MgF2, ДОПОВАНОЇ Eu²⁺ ТА Eu³⁺, НА ЇЇ ФОТОЛЮМІНЕСЦЕНТНІ ВЛАСТИВОСТІ *

Досліджено вплив взаємодії на характер люмінесценції системи BaF_2 —MgF₂. Вихідні складні сполуки виявляють слабку люмінесценцію у діапазоні 425—440 нм, що пов'язано з наявністю екситонних рівнів. Натомість для зразків системи, допованих Eu^{2+} та Eu^{3+} , у тому ж блакитному діапазоні спектру є характерною високоінтенсивна люмінесценція завдяки $5d \rightarrow 4f$ -електронним переходам у Eu^{2+} . Слабка ж люмінесценція в червоному діапазоні спектру (570—620 нм) завдячує своїй появі $4f \rightarrow 4f$ -електронним переходам у Eu^{3+} . Обговорено з позицій кислотності — основності вплив складу системи на стабілізацію валентних станів Eu^{2+} та Eu^{3+} .

ВСТУП. Фториди металів є основою важливої групи матеріалів для оптики ультрафіолетового та середнього ІЧ-діапазонів спектру, в тому числі для нанесення тонкоплівкових покриттів з низьким показником заломлення [1]. Індивідуальні фториди мають серйозні недоліки, пов'язані з достатньо високою гігроскопічністю (подекуди — й розчинністю) і, як наслідок, схильністю до гідролізу з утворенням оксигенвмісних домішок. Метод люмінесценції виявився досить ефективним для встановлення структурних особливостей складних фторидів залежно від способу синтезу. Складні фториди барію-магнію, доповані європієм, запропоновано до застосування як основи люмінофорів для ламп та рентгенівських екранів ще наприкінці 70-х років минулого сторіччя [2]. Детально механізм люмінесценції Eu^{2+} у бінарних (MgF₂) та складних фторидах було досліджено у дещо пізніших роботах [3-6]. Стосовно фазового складу та характеру взаємодії в літературі наводяться досить суперечливі відомості [7—9], хоча щодо існування сполуки BaMgF₄ сумнівів практично немає.

ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА. В якості вихідних реагентів використано BaF₂ та MgF₂ високої чистоти виробництва СНВП "Нові матеріали і технології" (Одеса). За вмістом домішок важких металів вказані реактиви відповідали кваліфікації ос.ч. Вміст оксигенвмісних домішок у формі оксидів, гідроксидів, оксофторидів, карбонатів не нормувався. Зразки системи BaF₂ —

 MgF_2 , що відповідали складам Ba_2MgF_6 , $BaMgF_4$, $Ba_2Mg_3F_{10}$ та $BaMg_2F_6$, одержували твердофазним синтезом при температурі 800 °C в атмосфері гелію із застосуванням посудин з кварцевого скла. Допування зразків складних фторидів барію-магнію проводили, уводячи до них EuF_2 (1 та в деяких випадках 2 % мас.) і EuF_3 (1 % мас.). Фториди європію синтезували за методиками, детально описаними в роботі [10].

Синтезовані фториди ідентифікували методом ІЧ-спектроскопії. ІЧ-спектри пропускання в області 4000—400 см⁻¹ записували на спектрометрі Shimadzu FT IR 8400S з Фур'є-перетворенням. Для запису спектра зразки подрібнювали, змішували та запресовували з попередньо прожареним КВг кваліфікації ч.д.а. у співвідношенні 1:20.

Люмінесцентні дослідження проводили за допомогою дифракційного спектрометра СДЛ-1 з фотопомножувачем ФЭУ-79 в області 390— 670 нм. Люмінесценцію збуджували ртутною лампою ДРШ–250, виокремлюючи УФ-випромінювання світлофільтром УФС–2. Необхідну лінію (λ_{36} = 365 нм) зі спектру випромінювання цього джерела виокремлювали за допомогою світлофільтра УФС-2, приймачем слугував фотопомножувач ФЭУ-39А. Спектри люмінесценції Eu²⁺ (у діапазоні 390—520 нм) та Eu³⁺ (570—670 нм) вимірювали зі щілинами діафрагми 0.01—0.02 та 0.1—0.2 відповідно, причому значення останніх підбирали експериментальним шляхом.

^{*} Роботу виконано за рахунок бюджетних коштів, наданих як грант Президента України, для підтримки наукових досліджень молодих учених на 2011 рік (GP/F32/051).

[©] В.Ф.Зінченко, С.О.Тарасенко, Є.В.Тімухін, С.Б.Мєшкова, П.Г.Дога, 2012

Неорганическая и физическая химия

ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ. Складні фториди системи BaF_2 —MgF₂ самі по собі виявляють вельми слабку люмінесценцію у блакитному діапазоні спектра ($\lambda_{\text{макс}} = 425$ —440 нм), хоча індивідуальні фториди (BaF_2 , MgF₂) майже не люмінесціюють. Можливо, це є відображенням наявності дефектів за оксигеном (екситонів) у кристалічній гратці, які виникають через видалення кристалізаційної води. Слід зазначити, що мінімальною інтенсивністю володіють зразки складу $BaMgF_4$ (таблиця). Вихідні фториди європію — EuF_2 та EuF_3 — виявляють характерну люмінесценцію у блакитній (дуже слабка) та червоній областях спектру, що обумовлена $5d \rightarrow 4f$ -та 4f-переходами у йонах Eu^{2+} та Eu^{3+} відповідно.

Допування складних фторидів барію-магнію йонами Eu²⁺ та Eu³⁺ приводить до суттєвої зміни оптичних властивостей, особливо люмінесценції. Характер IЧ-спектрів поглинання допо-

Положення та інтенсивність люмінесценції в максимумах смуг для зразків системи BaF_2 —MgF₂, допованих Eu^{2+} та Eu^{3+}

Зразок	Eu ²⁺		Eu ³⁺	
	λ _{макс} , нм	<i>I</i> , відн. од.	λ _{макс} , нм	<i>I</i> , відн. од.
Ba ₂ MgF ₆	430–431	119	_	_
BaMgF ₄	436–440	43	_	_
$Ba_2Mg_3F_{10}$	425–430	152		
$BaMg_2F_6$	425–427	252	—	—
EuF ₂	428	26		—
$Ba_2MgF_6: Eu^{2+}$ (1 % mac.)	426–428	5200	590 613	13 3
$Ba_2MgF_6: Eu^{2+}$ (2 % mac.)	426–428	3640	590 612	25 6
$Ba_2MgF_6: Eu^{3+}$ (1 % mac.)	428	3900	590 610	24 4
ВаМgF ₄ :Eu ²⁺ (1 % мас.)	426-430	18200	610	3
$BaMgF_4: Eu^{2+}$ (2 % мас.)	425	9100	590	4
ВаМgF ₄ : Eu ³⁺ (1 % мас.)	428	9880	585	14
$Ba_2Mg_3F_{10}$: Eu^{2+} (1 % mac.)	428	16510	610	11
$Ba_2Mg_3F_{10}:Eu^{3+}$ (1 % mac.)	424–428	10400	610	1
ВаМg ₂ F ₆ : Eu ²⁺ (1 % мас.)	425	7670	610	1
ВаМg ₂ F ₆ : Eu ³⁺ (1 % мас.)	425	7540	610	3

Рис. 1. IЧ-спектри пропускання $BaMgF_4$: I — вихідна сполука; 2 — $BaMgF_4$: Eu^{2+} (1 % мас.).

ваних зразків свідчить про суттєве зростання в них вмісту кристалізаційної води: інтенсивність смуги валентних коливань H–O–H (в області $3200-3700 \text{ см}^{-1}$) у випадку BaMgF₄: Eu²⁺ зростає майже у 3 рази порівняно з вихідним зразком. Натомість інтенсивність смуги власних коливань

> гратки Mg–F помітно зменшується, а також дещо змінюється характер піків (рис. 1). Останнє, можливо, пов'язано з певним внеском зв'язків Eu–F, звідки можна зробити висновок про вплив допуючих йонів на структуру фторидів.

> Усі леговані йонами Eu²⁺ та Eu³⁺ зразки виявляють інтенсивну люмінесценцію в області 425-430 нм, зумовлену $5d \rightarrow 4f$ -електронними переходами (Eu^{2+}) , а також слабку люмінесценцію завдяки $4f \rightarrow 4f$ -переходам (Eu³⁺). Зростання вмісту Eu²⁺ з 1 до 2 % мас. призводить до помітного (майже у два рази) зменшення інтенсивності люмінесценції (таблиця), обумовленого, скоріш за все, концентраційним гасінням аналогічно тому, як повідомляється у роботі [6]. Найвищого рівня люмінесценцію Eu²⁺ виявлено у зразку складу ВаМgF₄; при збільшенні вмісту ВаF₂ і MgF₂ у складних фторидах блакитна люмінесценція помітно послаблюється (рис. 2, *a*).

> Що стосується люмінесценції йонів Eu³⁺ у червоній області (смуги переходів ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ з максимумом при 585—590 нм та ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ з максимумом при 610—612 нм), вона проявляє

Рис. 2. Спектри люмінесценції зразків системи BaF_2 —MgF₂, допованих EuF_2 (1% мас.) у діапазонах випромінювання Eu^{2+} (*a*), щілини 0.01—0.02 та Eu^{3+} (*b*), щілини 0.1—0.2: *I* — Ba_2MgF_6 : Eu^{2+} ; *2* — $BaMgF_4$: Eu^{2+} ; *3* — $BaMg_2F_6$: Eu^{2+} .

певну залежність як від типу та вмісту допуючої домішки, так і від складу фторидної матриці. Як і слід було очікувати, уведення йонів Еи³⁺ приводить до більш інтенсивної люмінесценції у червоній області та слабшої люмінесценції у блакитній області, ніж уведення йонів Eu²⁺ тієї ж концентрації (1 % мас.). Цікавим є той факт, що ефект від уведення 1 % мас. Eu³⁺ є приблизно таким же, як й завдяки допуванню 2 % мас. Eu²⁺. Найбільш інтенсивною червона люмінесценція виявляється у фториді складу Ва₂MgF₆; при подальшому ж зростанні вмісту MgF₂ у складному фториді її інтенсивність падає до майже нульових значень (на достатньо високому тлі від люмінесценції Eu²⁺). При цьому відбувається певний перерозподіл між інтенсивностями смуг при 585-590 та 610-612 нм. Так, для зразка складу Ва₂МgF₆ перша смуга є значно інтенсивнішою за другу, що є характерним для кристалічних граток. При переході до зразків з більшим вмістом MgF₂ інтенсивність першої смуги помітно падає і, нарешті, стає слабшою, ніж інтенсивність другої (рис. 2, б).

Звичайно, виникають питання щодо природи люмінесценції у тому чи іншому діапазоні спектру при допуванні певним йоном (Eu²⁺ або Eu³⁺). Дійсно, якщо висвічування Eu²⁺ у блакитному або Eu³⁺ у червоному діапазоні спектру є

цілком передбачуваним, то зворотна картина, безумовно, потребує пояснень. Як є загальновідомо, валентний стан європію у сполуках є досить лабільним і, залежно від зовнішніх чинників (склад атмосфери, наявність в ній окиснювачів або відновників) та складу й структури матриці, може набувати значень Eu^{2+} або Eu^{3+} . Так, стабілізації стану Eu²⁺ сприяє термообробка у вакуумі або відновній чи інертній атмосфері, а також наявність кислотної матриці (у даному випадку — йонів Mg^{2+}). За цих умов має відбуватися часткове відновлення Eu^{3+} до Eu^{2+} за схемами:

$$EuF_{3} + MgF_{2} \xrightarrow{t, He} EuMgF_{4} + \frac{1/2F_{2}}{(1)}$$

або за наявності сорбованої води:

$$4\mathrm{EuF}_{3} + 2\mathrm{H}_{2}\mathrm{O} + 4\mathrm{MgF}_{2} \xrightarrow{t, \mathrm{He}} 4\mathrm{EuMgF}_{4} + \mathrm{O}_{2}\uparrow + 4\mathrm{HF}\uparrow.$$
(2)

Зазначені процеси у даному випадку, скоріш за все, найуспішніше відбуваються у складному фториді $BaMg_2F_6$. Спостережуваний насправді зсув максимальної інтенсивності блакитної люмінесценції у бік іншої сполуки, а саме, $Ba_2Mg_3F_{10}$, ймовірно, пов'язаний зі впливом структурного фактору.

Натомість стабілізації валентного стану Eu³⁺ має сприяти більш лужне середовище у сполуці Ba₂MgF₆, що дійсно має місце, принаймні з точки зору інтенсивності червоної люмінесценції.

Звичайно, обробка на відкритому повітрі має дестабілізувати валентний стан Eu²⁺ через реакцію:

$$4\text{EuF}_2 + \text{H}_2\text{O} + \text{O}_2 \xrightarrow{t, \text{He}} 4\text{Eu(OH)F}_2.$$
 (3)

Цьому має сприяти достатньо лужна матриця у разі сполуки Ba_2MgF_6 завдяки взаємодії за схемою:

$$4\mathrm{Eu(OH)F}_{2} + \mathrm{BaF}_{2} \xrightarrow{t, \mathrm{He}} \mathrm{BaEu}_{2}\mathrm{F}_{8} + 2\mathrm{EuOF} + 2\mathrm{H}_{2}\mathrm{O}\uparrow.$$
(4)

Отже, взаємодія у системі BaF_2 —MgF₂ з утворенням складних сполук суттєво впливає на характер люмінесценції домішок Eu^{2+} та Eu^{3+} .

РЕЗЮМЕ. Исследовано влияние взаимодействия на характер люминесценции системы BaF_2 — MgF_2 . Исходные сложные соединения обнаруживают слабую люминесценцию в диапазоне 425—440 нм, связанную с наличием экситонных уровней. Вместе с тем для образцов этой системы, допированной Eu^{2+} и Eu^{3+} , характерна в том же голубом диапазоне спектра высокоинтенсивная люминесценция, обусловленная $5d \rightarrow 4f$ -электронными переходами в Eu^{2+} . Слабая люминесценция в красном диапазоне спектра (570—620 нм) связана с $4f \rightarrow 4f$ -электронными переходами в Eu^{3+} . Обсуждено с позиций кислотности — основности влияние состава системы на стабилизацию валентных состояний Eu^{2+} и Eu^{3+} .

SUMMARY. Influence of interaction on luminescence character of system BaF_2 —MgF₂ is studied. Initial complex compounds reveal a weak luminescence in a range of 425—440 nm, connected with presence of exciton levels. At the same time the samples of system, doped with Eu²⁺ and Eu³⁺ in the same blue range of a spectrum are characterised by a high-intensity luminescence owing to $5d \rightarrow 4f$ -electronic transitions in Eu²⁺. A weak luminescence in a red range of a spectrum (570—620 nm) is caused by the occurrence of $4f \rightarrow 4f$ -electronic transitions in Eu³⁺. Influence of structure of system from posi-

Фізико-хімічний інститут ім. О.В.Богатського НАН України, Одеса tions of acidity — basicity on stabilization of valence states Eu^{2+} and Eu^{3+} is discussed.

ЛІТЕРАТУРА

- 1. Окатов М.А., Антонов Э.А. и др. Справочник технолога-оптика / Под ред. М.А.Окатова. -2-е изд., перераб.и доп. -СПб.: Политехника, 2004.
- 2. Pat. 4,112,328 U.S. Int.Cl. CO9K 11/46. -Publ. 05.09.1978.
- 3. Banks E., Nakajima S., Shone M. // J. Electrochem. Soc. -1980. -127, № 10. -P. 2234—2239.
- 4. Lizzo S., Velders A.H., Meijerink A. et al. // J. Lumines. -1996. -65. -P. 303—311.
- Kerbe W., Weil M., Kubel F., Hagemann H. // Mater. Res. Bull. -2004. -39. -P. 343—355.
- 6. Ying-Liang Liu, Chun-Shan Shi // Ibid. -2000. -35. -P. 689--694.
- Коршунов Б.Г., Сафонов В.В. Галогениды. Диаграмма плавкости. Справочник. -М.: Металлургия, 1991.
- Shimamura K., Encarnacion G. Villora, Muramatsu K., Ichinose N. // J. Crystal Growth. -2005. -275. -P. 128–134.
- Gingl F. // Z. anorg. allg. Chem. -1997. -623. -P. 705—709.
- Зинченко В.Ф., Еремин О.Г., Ефрюшина Н.П. и др. // Журн. неорган. химии. -2005. -50, № 5. -С. 748—753.

Надійшла 27.10.2011

УДК 541.16:539.213

Г.С.Гунько, Д.П.Савицкий, Ю.Н.Больбух, Г.П.Приходько СТРУКТУРООБРАЗОВАНИЕ В ДИСПЕРСНЫХ СИСТЕМАХ НА ОСНОВЕ ПОЛИСТИРОЛА И МНОГОСЛОЙНЫХ УГЛЕРОДНЫХ НАНОТРУБОК *

Изучены реологические свойства и процессы структурообразования в дисперсных системах на основе толуольного раствора полистирола и многослойных углеродных нанотрубок — исходных и модифицированных HCl, NH₄OH, $(OC_2H_5)_3SiCH=CH_2$. Установлено влияние природы граничных слоев нанотрубок на их распределение в дисперсионной среде. Выявлена аномалия вязкости в дисперсиях полистирола, наполненного нанотрубками, модифицированными винилтриэтоксисиланом.

ВВЕДЕНИЕ. Широкое применение углеродных нанотрубок (УНТ) в качестве наполнителей полимеров направлено на получение материалов с полезными механическими, тепловыми, электрическими и другими свойствами [1–3]. Однако синтез композиционных материалов, на-

^{*} Работа выполнена при частичном финансировании от FP7 Marie Curie Actions People Project "Hybrid nanocomposites and their applications – Compositum", Grant Agreement Number PIRSES-GA-2008-230790.

[©] Г.С.Гунько, Д.П.Савицкий, Ю.Н.Больбух, Г.П.Приходько, 2012