УДК 541.135

Э.А.Стезерянский, И.В.Удод, А.А.Омельчук

КАТОДНОЕ ВОССТАНОВЛЕНИЕ ТИОСУЛЬФАТНЫХ КОМПЛЕКСОВ МЕДИ(I) ПРИ ИЗБЫТКЕ ЛИГАНДА

Методами гидродинамической вольтамперометрии изучено электрохимическое восстановление тиосульфатных комплексов меди(I) из растворов, содержащих 1 ммоль- n^{-1} бис(тиосульфато)купрата(I) натрия Na₃[Cu(S₂O₃)₂], 0.07—0.2 моль- n^{-1} тиосульфата натрия Na₂S₂O₃ (соотношение Cu : S₂O₃ 1:70— 1:200) и разное количество перхлората натрия NaClO₄ ($C_{Na}^+ = 0.5$ моль- n^{-1} , pH 9.6 ± 0.2). Установлено, что переносу электрона при электрохимическом восстановлении тиосульфатного комплекса меди(I) Cu(S₂O₃)₃^{5–} предшествует реакция диссоциации. Электрохимически активным комплексом является Cu(S₂O₃)₂^{3–}. Величины констант скоростей образования из Cu(S₂O₃)₃^{5–} и распада этого комплекса равны 357 ± 14 и (1.92 ± 0.85)·10⁵ с⁻¹ соответственно.

ВВЕДЕНИЕ. Разработка щадящих природу процессов "зеленой химии" привлекает внимание исследователей к использованию тиосульфатных солей как нетоксичного компонента выщелачивающих растворов в гидрометаллургии золота. В присутствии лиганда – иона тиосульфата $S_2O_3^{2-}$ — металлическое золото в рудной породе окисляется кислородом воздуха и переходит в виде соли в раствор [1]. Введение в выщелачивающие растворы солей меди значительно ускоряет процесс растворения золота. Редокспара тиосульфатных солей Cu⁺/Cu²⁺ является медиатором переноса электрона от металлического золота к молекуле кислорода. Наиболее вероятно, что эти химические реакции протекают по электрохимическому механизму, поэтому для управления технологическими процессами выщелачивания необходимо знать закономерности электрохимического поведения тиосульфатных комплексов меди(I).

В ранних работах [2—4] исследовано катодное восстановление тиосульфатных комплексов меди(I) из гальванического электролита меднения. Отмечено, что электролит, приготовленный растворением оксида меди(I) в растворе $Na_2S_2O_3$ и буферирующих соединений, стабилен длительное время. Электролит меднения имеет высокую рассеивающую способность и близкий к 100 % выход по току, что позволяет наносить мелкокристаллические покрытия. Электрохимическое восстановление тиосульфатных комплек-

© Э.А.Стезерянский, И.В.Удод, А.А.Омельчук, 2012

сов меди(I) при соотношении $Cu : S_2O_3$ 1:4— 1:10 протекает в диффузионном режиме.

Для выщелачивающих растворов в процессе эксплуатации характерно значительное изменение соотношения концентраций катионов металлов и лиганда. Представляется интересным изучить процессы электрохимического восстановления тиосульфатных комплексов меди(I) в широком ряду соотношений Cu : S_2O_3 . Цель работы — изучение электрохимического восстановления тиосульфатных комплексов меди при избытке ионов тиосульфата.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Рабочие растворы готовили из бис(тиосульфато)купрата (I) Na₃[Cu(S₂O₃)₂]·2H₂O, тиосульфата Na₂S₂O₃· 5H₂O и перхлората натрия NaClO₄·H₂O. Аналитическая концентрация ионов меди Cu⁺ составляла 1 ммоль·л⁻¹, ионов тиосульфата S₂O₃²⁻ 0.07 — 0.2 моль·л⁻¹ (соотношение Cu : S₂O₃ 1:70—1:200). Постоянную суммарную концентрацию катионов натрия 0.5 моль·л⁻¹ поддерживали введением необходимого количества NaClO₄. Значение кислотности растворов (pH 9.6 ± 0.2) создавали добавлением гидроксида натрия NaOH.

Бис(тиосульфато)купрат(I) натрия Na₃[Cu-(S₂O₃)₂]·2H₂O синтезировали по методике [5] путем взаимодействия растворов сульфата меди CuSO₄ и тиосульфата натрия Na₂S₂O₃ (соотношение 1:3) с последующей очисткой раствора активным углем и высаливанием образующейся соли этанолом. После высушивания осадка на воздухе получали кристаллический порошок белого цвета. Для синтеза соли и приготовления электролитов применяли реактивы квалификации ч.д.а. и бидистиллированную воду.

Кинетику восстановления комплексов меди(I) исследовали методом вращающегося дискового электрода с использованием потенциостата IPC-рго М и электрохимического датчика. Модуль ЕМ-04 (НТФ Вольта, РФ). Управление потенциостатом и первичную обработку данных осуществляли персональным компьютером с помощью программы IPC2000.

Диаметр поликристаллического медного дискового электрода составлял 3 мм. В качестве вспомогательного электрода использовали платиновую проволоку. Электрод сравнения — хлоридсеребряный с насыщенным раствором NaCl. Все потенциалы приведены в шкале этого электрода. Скорость развертки потенциала при получении поляризационных кривых — 5 мВ·с⁻¹. Диапазон скоростей вращения дискового электрода составлял 500—2500 обмин⁻¹. Измерения проводили в стеклянной термостатируемой ячейке при температуре 25 ± 0.5 °C.

Медный рабочий электрод полировали порошком оксида алюминия с размером частиц 0.5 мкм. Перед съемкой поляризационных кривых поверхность электрода обрабатывали в течение 6—8 с в растворе, содержащем смесь фосфорной, азотной, уксусной кислот (190, 56 и 50 г.л⁻¹ соответственно), и протирали влажной пастой гидроксида кальция с про-

мывкой дистиллированной водой после каждой операции. До измерений из растворов удаляли кислород продувкой аргона в течение 20 мин.

Дифрактограмму синтезированного бис(тиосульфато)купрата(I) натрия Na₃[Cu(S₂O₃)₂] регистрировали с помощью дифрактометра ДРОН-ЗМ (ЛОМО, РФ) с использованием Cu K_{α} -излучения (λ =0.15418 нм). ИК-спектр этой соли получали на спектрофотометре Specord M80 в таблетках с КВг. Значения равновесных концентраций комплексных частиц в растворах рассчитывали с помощью программы HySS [6].

Рис. 1. Рентгеновская дифрактограмма синтезированного тиосульфатного комплекса меди(I) (a) и штрих-рентгено-грамма Na₃Cu(S₂O₃)₂·2H₂O [7] (δ).

Рис. 2. ИК-спектр поглощения тиосульфатного комплекса меди(I).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Идентификацию синтезированного координационного тиосульфата меди(I) проводили методами рентгеновского фазового анализа и ИК-спектроскопии. Положения и интенсивности рефлексов на дифрактограмме синтезированной соли (рис. 1, *a*) близки к расположению рефлексов на штрихренгенограмме бис(тиосульфато)купрата(I) натрия Na₃Cu(S₂O₃)₂·2H₂O (рис. 1, *б*) [7]. Частоты полос поглощения ИК-спектра полученной соли (рис. 2) совпадают или близки к частотам невырожденных ($v_1(A_1) = 1020, v_3(A_1) = 660$) и дважды вырожденных ($v_4(E) = 1150$ —1190, $v_6(E) =$ 538 см⁻¹) колебательных частот бис(тиосульфато)купрата(I) натрия $Na_3Cu(S_2O_3)_2 \cdot 2H_2O$ [7, 8]. Полосы валентных v(OH) (в области 3470—3480 см⁻¹) и деформационных колебаний $\delta(H_2O) =$ = 1630 см⁻¹ в спектре подтверждают присутствие кристаллизационной воды [9].

В системе Cu^+ — $S_2O_3^{2-}$ — H_2O присутствует несколько комплексных частиц. Их состав, реакции образования и константы устойчивости приведены в табл. 1.

В исследуемых растворах преобладают две комплексные формы — $Cu(S_2O_3)_2^{3-}$ и $Cu(S_2O_3)_3^{5-}$ (табл. 2). При соотношении Cu : S_2O_3 1:70 в растворе доминирует $Cu(S_2O_3)_2^{3-}$. Примерно равное содержание $Cu(S_2O_3)_2^{3-}$ и $Cu(S_2O_3)_3^{5-}$ наблюдается в растворе при соотношении Cu : S_2O_3 1:100, при большем содержании тиосульфатионов (соотношение Cu : S_2O_3 1:150—1:200) в растворе преобладает Cu(S_2O_3)_3⁵⁻.

Поляризационные кривые восстановления тиосульфатных комплексов меди при одной скорости вращения приведены на рис. 3. Зависимости предельных токов восстановления от

Таблица 1

Реакции образования и константы устойчивости комплексных частиц в системе ${Cu}^+ {-\!\!\!-} S_2 O_3{}^2 {-\!\!\!-} H_2 O$

Частица	Реакция	lgβ	Литера- тура
$\begin{array}{c} CuS_{2}O_{3}^{-}\\ Cu(S_{2}O_{3})_{2}^{3-}\\ Cu(S_{2}O_{3})_{3}^{5-}\\ NaS_{2}O_{3}^{-} \end{array}$	$Cu^{+} + S_{2}O_{3}^{2-} \rightleftharpoons CuS_{2}O_{3}^{-} (1)$ $Cu^{+} + 2S_{2}O_{3}^{2-} \rightleftharpoons Cu(S_{2}O_{3})_{2}^{3-} (2)$ $Cu^{+} + 3S_{2}O_{3}^{2-} \rightleftharpoons Cu(S_{2}O_{3})_{3}^{5-} (3)$ $Na^{+} + S_{2}O_{3}^{2-} \rightleftharpoons NaS_{2}O_{3}^{-} (4)$	9.70 12.27 13.71 0.59	[10] [11] [11] [12]

Таблица 2

Доля тиосульфатных комплексов меди в растворах с разным содержанием тиосульфат-ионов, коэффициенты диффузии D, константы скоростей образования k₁ и распада k₂ Cu(S₂O₃₎₂⁵⁻

Cu:S ₂ O ₃	Мольная доля комплекса, α			$[S_2O_3^{2-}],$	$D \cdot 10^{6}$,	$\partial(i_{\rm mp}\omega^{-0.5})$	k_1^*	$k_2 \cdot 10^{-5}$
	CuS ₂ O ₃ ⁻	$Cu(S_2O_3)_2^{3-}$	Cu(S ₂ O ₃) ₃ ⁵⁻	ммоль·л ⁻¹	$cm^2 \cdot c^{-1}$	$\hat{\partial} i_{np}$	c^{-1}	
1:70	0.06	0.56	0.38	24.4	4.0	_		_
1:100	0.04	0.48	0.48	36.1	4.0	-0.044	373	2.85
1:150	0.02	0.38	0.60	56.9	4.0	-0.045	353	1.71
1:200	0.01	0.31	0.68	79.4	3.8	-0.046	344	1.20
* 0 1			5 . 4 0 5					

^к Среднее $k_1 = 357 \pm 14$; $k_2 = (1.92 \pm 0.85) \cdot 10^3$.

Рис. 3. Поляризационные кривые восстановления тиосульфатных комплексов меди(I) в растворах с соотношением Cu : S₂O₃: *I* —1:70; *2* — 1:100; *3* — 1:150; *4* —1:200. Скорость вращения электрода 1500 обмин⁻¹, $v = 5 \text{ MB} \cdot \text{c}^{-1}$.

скорости вращения электрода $\omega^{0.5}$, полученные в растворах, где в равных количествах присутствует или преобладает комплекс Cu(S₂O₃)₃⁵⁻

> (соотношение Cu : S_2O_3 1:100—1:200), линейны и не проходят через начало координат (рис. 4, кривые 2–4). Это свидетельствует о кинетических или адсорбционных осложнениях электродного процесса.

> На рис. 5 предельные токи восстановления представлены в координатах $i_{\rm np}\omega^{-0.5}$ — $i_{\rm np}$ [13, 14]. Для раствора, содержащего 0.07 моль·л⁻¹ S₂O₃²⁻, величины $i_{\rm np}\omega^{-0.5}$ не изменяются с ростом $i_{\rm np}$ (рис. 5, кривая *I*), что соответству-

Рис. 4. Зависимости предельных токов от $\omega^{0.5}$. Здесь и на рис. 5 обозначение растворов, как на рис. 3.

ет диффузионному режиму восстановления. Зависимости $i_{\rm пp}\omega^{-0.5}$ — $i_{\rm np}$, полученные для растворов с большей концентрацией тиосульфат-ионов (соотношение Cu : S₂O₃ 1:100—1:200), линейно уменьшаются с ростом $i_{\rm np}$ (рис. 5, кривые 2–4), что свидетельствует о протекании предшествующей переносу электрона химической реакции. На основе состава растворов можно предположить, что предшествующей химической реакцией является реакция диссоциации комплекса Cu(S₂O₃)₃⁵⁻:

$$\operatorname{Cu}(S_2O_3)_3^{5-} \xrightarrow[k_2]{k_2} \operatorname{Cu}(S_2O_3)_2^{3-} + S_2O_3^{2-};$$
 (5)

$$\operatorname{Cu}(\operatorname{S}_2\operatorname{O}_3)_2^{3-} + e \longrightarrow \operatorname{Cu} + 2\operatorname{S}_2\operatorname{O}_3^{2-}.$$
 (6)

Для электродного процесса с предшествующей химической реакцией (реакции (5), (6)), зависимость величин $i_{np}\omega^{-0.5}$ от плотности тока i_{np} описывается уравнением [14]:

$$\frac{i_{\Pi p}}{\omega^{1/2}} = \frac{i_g}{\omega^{1/2}} - \frac{0.62(D/v)^{1/6}Ki_{\Pi p}}{(k_1 + k_2[S_2O_3])^{1/2}},$$
(7)

здесь $i_{\rm пp}$ — плотность предельного тока; i_g — гипотетическая плотность предельного тока восстановления всех комплексов меди; k_1 и k_2 — константы скорости прямой и обратной химической реакции; D — коэффициент диффузии; v — кинематическая вязкость раствора (v =0.011 см². с⁻¹); [S₂O₃] — равновесная концентрация тио-сульфат-ионов; K — ступенчатая константа устойчивости Cu(S₂O₃)₃⁵⁻. Значение K_3 равно 27.54 (10^{lgβ₃-lgβ₂).}

Величины констант скоростей образования k_1 и распада k_2 Cu(S₂O₃)₂³⁻, рассчитанные из экспериментальных значений i_{np} по уравнению (7), приведены в табл. 2.

Таким образом, реакции переноса электрона при электрохимическом восстановлении тиосульфатного комплекса меди(I) $Cu(S_2O_3)_3^{5-}$ предшествует реакция диссоциации. Электрохимически активным комплексом является $Cu(S_2O_3)_2^{3-}$. Величины констант скоростей образования и распада этого комплекса из $Cu(S_2O_3)_3^{5-}$ равны 357 ± 14 и (1.92 ± 0.85)·10⁵ с⁻¹ соответственно.

РЕЗЮМЕ. Методами гідродинамічної вольтамперометрії вивчено електрохімічне відновлення тіосульфатних комплексів міді(І) з розчинів, що містять 1 ммоль.л⁻¹ біс(тіосульфато)купрату(І) натрію Na₃-[Cu(S₂O₃)₂], 0.07—0.2 моль.л⁻¹ тіосульфату натрію Na₂S₂O₃ (співвідношення Cu : S₂O₃ 1:70—1:200) і різну кількість перхлорату натрію NaClO₄ ($C_{\rm Na+} = 0.5$ моль.л⁻¹, pH 9.6 ± 0.2). Встановлено, що переносу електрона при електрохімічному відновленні тіосульфатного комплексу міді(І) Cu(S₂O₃)₃^{5–} передує реакція дисоціації. Електрохімічно активним комплексом є Cu(S₂O₃)₂^{3–}. Величини констант швидкостей утворення і розпаду цього комплексу з Cu(S₂O₃)₃^{5–} складають 357 ± 14 і (1.92 ± 0.85)·10⁵ с⁻¹ відповідно.

SUMMARY. The electrochemical reduction of copper(I) thiosulfate complexes from solutions containing 1 mmol·L⁻¹ sodium bis(thiosulfato)cuprate(I) Na₃[Cu(S₂O₃)₂], 0.07—0.2 mol·L⁻¹ sodium thiosulfate

 $Na_2S_2O_3$ (the ratio $Cu: S_2O_3$ was 1:70—1:200) and different amounts of sodium perchlorate $NaClO_4$ ($C_{Na+} = 0.5 \text{ mol}\cdot\text{L}^{-1}$, pH 9.6±0.2) has been studied by hydrodynamic voltammetry methods. It has been found that electron transfer in the electrochemical reduction of copper(I) thiosulfate complex $Cu(S_2O_3)_3^{5-}$ is preceded by a dissociation reaction. Electrochemically active complex is $Cu(S_2O_3)_2^{3-}$. The values of the rate constants of formation and dissociation of this complex from $Cu(S_2O_3)_3^{5-}$ are 357 ± 14 and $(1.92 \pm 0.85) \cdot 10^5 \text{ s}^{-1}$ respectively.

ЛИТЕРАТУРА

- 1. Senanayake G. // Gold Bulletin. -2005. -38, № 4. -P. 170-179.
- 2. Емельяненко Г.А., Симулин Г.Г. // Укр. хим. журн. -1965. -31, № 5. -С. 478—480.
- 3. Емельяненко Г.А., Портретный В.П., Симулин Г.Г. // Там же. -1967. -33, № 9. -С. 969—972.
- 4. *Симулин Г.Г., Мальцев Н.А.* // Защита металлов. -1980. -16, № 4. -С. 492—496.

Институт общей и неорганической химии им. В.И.Вернадского НАН Украины, Киев

- Гаркуша Г.А. // Журн. общ. химии. -1954. -24, № 7. -С 1108—1113.
- Alderighi L., Gans P., Ienco A. et al. // Coord. Chem. Rev. -1999. -184. -P. 311—318.
- 7. Голуб А.М., Добрянская Л.П., Буцко С.С. // Кординац. химия. -1975. -1, № 9. -С. 1237—1242.
- 8. Murgulescu I.G., Sahini V.E., Segal M., Damaschin M. // Rev. Roumain Chem. -1964. -9, № 1. -P. 29—32.
- 9. Nyquist R.A., Kagev R.O. Infrared spectra of inorganic compounds. -New York; London: Akadem. Press, 1971.
- Black J., Spiccia L., McPhail D.C. // Hydrometallurgy 2003: 5th Intern. symp. honoring prof. I.M. Ritchie, Vancouver, Canada; 24–27 Aug. 2003. -Warrendale; TMS, 2003 -1. -P. 183–194.
- 11. *Торопова В.Ф., Сиротина И.А., Лисова Т.И.* // Ученые записки Казанск. ун-та. -1955. -**115**, № 3. -С. 43—52.
- 12. Gimblett F.G.R., Monk C.B. // Trans. Farad. Soc. -1955. -51, № 6. -P. 793-802.
- Плесков Ю.В., Филиновский В.Ю. Вращающийся дисковый электрод. -М.: Наука, 1972.
- 14. Галюс 3. Теоретические основы электрохимического анализа. -М.: Мир, 1974.

Поступила 22.03.2012