УДК 54-386 : 546.56

Е.К.Трунова, А.В.Шовковая, Э.Вечерникова, А.О.Гудима, Т.А.Макотрик МЕТАЛЛХЕЛАТНЫЕ КОМПЛЕКСЫ Сu(II) С ФОСФОНОМЕТИЛАМИНОЯНТАРНОЙ КИСЛОТОЙ

Исследованы комплексы меди(II) с фосфонометиламиноянтарной кислотой в растворе при соотношении компонентов 1:1, 1:2, 2:1 и $C_{Cu(II)}=10^{-3}$ моль/л в широком интервале pH (1—10). Установлено образование комплексов общего состава $Cu_k(H_mL)_n(OH)_q$ (k = 1, 2; m = 3—0; n = 1, 2; q = 0—1), рассчитаны их константы устойчивости и построены диаграммы распределения. Синтезирован твердый депротонированный комплекс меди, который представляет собой димер состава $Na_4[Cu(PMAS)-(H_2O)]_2$.0.5H₂O. Методами ИК-спектроскопии, ДТА и неколичественной масс-спектрометрии определено, что конечным продуктом разложения комплекса является нестехиометрический гидроксофосфат меди. Показано, что комплексы Cu(II) с H₄PMAS в растворе и твердом состоянии имеют строение искаженного октаэдра, в экваториальной плоскости которого находятся группы CO, PO, NH и H₂O.

ВВЕДЕНИЕ. В последнее время большое количество исследований посвящено изучению систем биометаллов с комплексонами, поскольку в результате их взаимодействия образуются комплексы, проявляющие интересные свойства и высокую биологическую активность. Среди таких лигандов особое место принадлежит смешанным хелантам, сочетающим в своем составе различные кислотные группы (карбоксильные и фосфоновые), наиболее известным является N-(фосфонометил)глицин (глифосат) [1].

Представителем аминокарбоксифосфоновых комплексонов является фосфонометиламиноянтарная кислота НООССН₂(СООН)СНNHCH₂- $PO_{3}H_{2}$ (H₄PMAS, H₄L), содержащая дополнительную β-карбоксильную группу по сравнению с молекулой глифосата. Показано [2], что H₄PMAS проявляет высокую комплексообразующую способность к некоторым 3*d*-металлам, а особенно к ионам меди. Известно [3], что медь является жизненно важным элементом, поскольку входит в состав многих витаминов, гормонов, ферментов, дыхательных пигментов, участвует в процессах обмена веществ, в тканевом дыхании и т.д. Поэтому целью настоящей работы является исследование комплексов фосфонометиламиноянтарной кислоты с ионами меди(II) в растворах и твердом виде.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Фосфонометиламиноянтарная кислота была получена по методике, описанной в работе [2]. Для синтеза комплексоната меди использовали сульфат меди $CuSO_4 \cdot 6H_2O$ марки х.ч. Точную концентрацию ионов Cu^{2+} определяли методом трилонометрического титрования с индикатором мурексид [4].

Комплексообразование исследовали в растворах методом электронной спектроскопии поглощения (ЭСП) в широком интервале pH (1—10) при комнатной температуре (20 ± 2 °C), постоянной ионной силе ($\mu = 0.1$, KNO₃), соотношениях Cu(II) : H₄PMAS = 1:1, 1:2, 2:1 и концентрации $C_{Cu(II)} = 10^{-3}$ моль/л. Измерение pH проводили на pH-метре 150-MA, точность определения ± 0.05 . Электронные спектры поглощения растворов изучаемых систем снимали на спектрометре Specord M-40 (50000—11000 см⁻¹) в кварцевых кюветах, l = 1 см.

Расчет констант устойчивости и равновесных концентраций комплексных форм в растворе проводили с помощью математической программы CLINP 2.1 [5]. В матрицу для расчета вводили константы диссоциации H₄PMAS, определенные в работе [2].

Твердые комплексонаты исследовали с помощью комплекса приборов — дериватографа NETZSCH STA 409 и квадрупольного масс-спектрометра QMS403/4 (Balzers), позволяющего проводить одновременно термический и неколичественный масс-спектроскопический анализ, регистрируя увеличение парциального давления газообразных продуктов сгорания. Образцы весом около 20 мг (α -Al₂O₃) нагревали в атмосфере воздуха (расход воздуха 30 мл/мин) в темпе-

[©] Е.К.Трунова, А.В.Шовковая, Э.Вечерникова, А.О.Гудима, Т.А.Макотрик, 2012

ратурном диапазоне 20—530 °C (скорость нагрева 5 °C/мин) с последующим анализом полученных газообразных продуктов.

ИК-спектры образцов до и после ДТА регистрировали на приборе Nicolet Nexus 670 в диапазоне 4000—400 см⁻¹ в виде таблеток с КВг. Спектры ЭПР записывали на ЭПР-спектрофотометре трисантиметрового диапазона PS 100. Х фирмы ADANI. Спектры диффузного отражения (СДО) снимали на спектрометре марки Specord M-40 с приставкой для диффузного отражения.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. На рис. 1 приведены ЭСП систем Cu(II)—H₄PMAS при рН 3 и 7 с различным соотношением металл : лиганд (1:1 (1а,б), 1:2 (2а,б) 2:1 (3а,б)). В спектрах поглощения наблюдается широкая полоса в области 700—820 нм, которая соответствует электронному переходу ${}^2E_g \rightarrow {}^2T_g$, что характерно для октаэдрических комплексов меди [6]. По сравнению с поглощением акваиона меди(II) (833 нм) [8] наблюдается смещение максимума поглощения в коротковолновую область, что свидетельствует о прохождении процессов комплексообразования. При увеличении рН для всех изученных систем наблюдается гипсохромный сдвиг максимумов поглощения, что связано с образованием комплексов разного протонного состава. Аналогичное смещение λ_{max} происходит в системах с избытком металла или лиганда относительно соответствующих максимумов в эквимолярных системах, что обусловлено образованием бигомоядерных или бис-комплексов соответственно.

Следует также отметить, что в случае системы Cu(II) : H₄PMAS = 2:1 при pH 7 (рис. 1, кривая 3, δ) происходит расщепление максимума поглощения, которое, вероятно, связано с расщеплением уровня ${}^{2}E_{g} = {}^{2}B_{1g} + {}^{2}A_{1g}$ и тетрагональным искажением октаэдрической структуры [7].

С целью получения сведения о количестве молекул лиганда, входящих во внутреннюю координационную сферу комплексов, изучали зависимость оптической плотности (*D*) от концентрации H₄PMAS при постоянной концентрации $C_{Cu^{2+}} = 10^{-3}$ моль/л и значениях pH 3, 5, 7 (метод добавок) (рис. 2) [9]. Как видно из приведенных данных, при всех исследуемых значениях pH величина *D* увеличивается с возрастанием концентрации лиганда и при $C_{H_4PMAS} =$

Рис. 1. ЭСП систем Cu(II)—H₄PMAS при pH 3 (*a*), 7 (б) и соотношении компонентов 1:1 (*I*), 1:2 (2), 2:1 (3), $C_{\text{Cu(II)}} = 10^{-3}$ моль/л.

Рис. 2. Зависимость оптической плотности растворов ($\lambda = 746$ нм) в системе Cu(II)—H₄PMAS от концентрации лиганда. pH 3 (*I*), 5 (2); $C_{\text{Cu(II)}} = 10^{-3}$ моль/л.

=1·10⁻³ моль/л на кривых наблюдается слабо выраженный перегиб, отвечающий образованию эквимолярных комплексов CuH_nL. После достижения двукратного избытка H₄PMAS (2·10⁻³ моль/л) на кривых отмечается перегиб, отвечающий соотношению Cu²⁺: H₄PMAS =1:2. Постоянные значения оптической плотности в области концентраций лиганда 2—5·10⁻³ моль/л соответствует образованию комплексов состава Cu(H_nL)₂. Небольшое увеличение оптической плотности при $C_{H_4PMAS} > 5 \cdot 10^{-3}$ моль/л, вероятно, обусловлено возрастанием межмолекулярных взаимодействий с образованием полиядерных комплексов.

Для определения протонного состава образующихся комплексов изучалась зависимость изменения оптической плотности от pH растворов для всех исследуемых систем (рис. 3). С ростом pH ход зависимости $D \rightarrow$ pH для всех исследуемых систем имеет примерно одинаковый характер. В области pH 0.5—3 одинаковое линейное увеличение значения D указывает на

Рис. 3. Зависимость оптической плотности ($\lambda = 746$ нм) от pH для систем: $I - Cu^{2+}$: H₄PMAS =1:2; $2 - Cu^{2+}$: H₄PMAS =1:1; $3 - Cu^{2+}$: H₄PMAS =2:1.

образование комплексов одинакового протонного состава. При этом точка перегиба на приведенных кривых находится при pH ≈ 2.85 , что соответствует рК диссоциации карбоксильных групп лиганда (р $K_{COOH} = 2.86$ [2]). Следовательно, в этой области рН существует комплекс с дипротонированным анионом H_2L^{2-} . В интервале рН 3-6 оптическая плотность снова возрастает с переходом через максимальное значение при рН ≈ 5.5. Это значение рН соответствует константе диссоциации фосфоновой группы H₄PMAS (р*K*_{PO3H} =5.49 [2]) и, вероятно, в этих условиях образуются монопротонированные комплексы меди. При дальнейшем увеличении рН (6—10) значения D продолжают возрастать, что свидетельствует об образовании устойчивых депротонированных комплексов, которые доминируют в широком кислотном диапазоне. Для системы Cu(II) : H₄PMAS = 1:2 значения D значительно выше, чем для систем 1:1 и 2:1, что, вероятно, связано с образованием более устойчивых бис-комплексов.

Математическая обработка зависимости *D* от pH для изученных систем позволила установить состав образующихся комплексов и рассчитать их константы устойчивости (табл. 1). Как видно из таблицы, значения констант устойчи-

К	 он	ста	ан	гы	v	ст	ойчивости	комплексов	в	системе
C	u(I	I)-	_]	H_	РŇ	Í A	S $(C_{C_{\mu}(II)} =$	=10 ⁻³ моль/л)		

Форма	lgK _{yct}						
комплекса*	1:1	1:2	2:1				
CuH ₂ L	3.15	3.44					
CuH ₂ L	10.57	10.84	10.77				
CuHL	16.67	15.93					
Cu ₂ (HL)L	18.21	_	_				
CuL	21.60	_	_				
CuL(OH)	22.12	_	21.27				
$Cu(H_3L)_2$	—	6.34					
$Cu(H_2L)_2$	—	14.56					
Cu(HL) ₂	—	20.24					
CuL ₂	—	32.80					
$Cu(H_3L)(H_2L)$	—	12.78					
$Cu(H_2L)(HL)$	—	25.46					
$CuL_2(OH)$	—	28.53					
Cu ₂ H ₃ L	—	—	3.58				
Cu_2H_2L	—	—	8.17				
Cu ₂ HL	—	—	13.29				
$Cu_2HL(L)$	—	—	16.43				
Cu ₂ L	—	—	22.46				
Cu ₂ L(OH)		—	23.15				

* Формальные заряды комплексных ионов опущены.

вости закономерно увеличиваются при образовании менее протонированных форм комплексов, что связано с увеличением числа координированных групп или их основности при отщеплении каждого последующего протона. При переходе от монопротонированного к среднему комплексу резкое увеличение констант устойчивости свидетельствует о депротонировании аминогруппы и образовании прочной связи Cu–N.

По значениям констант устойчивости были рассчитаны диаграммы распределения комплексных форм, образующихся в системе Cu(II)— H_4PMAS в зависимости от pH (рис. 4). Из диаграмм распределения видно, что в исследуемых системах, независимо от соотношения компонентов, комплексообразование начинается в кислой среде с образованием три- и дипротонированных форм комплексов. При pH>3 доминирующими являются комплексы с HL³⁻ и L⁴⁻анио-

Таблица 2

Значение λ_{max} и функциональные группы лиганда, входящие в экваториальную плоскость комплексов в системе Cu(II)—H₄PMAS

10	Экваториальные	λ_{max}	• 1		
Комплекс	донорные группы	рассчи- тано	най- дено	Δλ/2	
CuH₃L	PO, 3H ₂ O	782	818	18.0	
CuH ₂ L	CO, PO, 2H ₂ O	749	788	19.5	
CuL	CO, PO, NH, H ₂ O	672	742	35.0	
	2CO, NH, H ₂ O	689		26.5	
CuL(OH)	CO, PO, NH, OH	632	717	41.5	
$Cu(H_2L)_2$	2CO, 2PO	673	746	36.5	
CuL ₂	2CO, 2NH	623	719	48.0	

ном H₄PMAS, существующие в широком диапазоне pH, что, вероятно, связано с образованием связей ц.а. со всеми донорными группами лиганда.

По данным электронной спектроскопии определено ближайшее окружение иона меди в экваториальной плоскости комплексов (табл. 2).

Рис. 4. Диаграммы распределения комплексных форм в системе Cu(II): H₄PMAS = 1:1 (*a*), 1:2 (*b*), 2:1 (*b*). *a*: $I - Cu^{2+}$; $2 - CuH_3L$; $3 - CuH_2L$; 4 - CuHL; $5 - Cu_2(HL)(L)$; 6 - CuL; 7 - CuL(OH); $6: I - Cu^{2+}$; $2 - Cu(H_3L)(H_2L)$; $3 - CuH_2L$; $4 - Cu(H_2L)_2$; $5 - Cu(H_2L)(HL)$; 6 - CuHL; $7 - Cu(HL)_2$; $8 - CuL_2$; $9 - CuL_2(OH)$; *c*: $I - Cu^{2+}$; $2 - Cu_2(H_3L)$; $3 - CuH_2L$; $4 - Cu_2(H_2L)$; $5 - Cu_2(HL)$; $6 - Cu_2(HL)(L)$; $7 - Cu_2L(OH)$; $8 - Cu_2L$. $C_{Cu(II)} = 10^{-3}$ моль/л.

Расчет проводили по формуле:

$$\lambda_{\max} = 10^3 / \sum_{i=4}^4 n_i \, \overline{v_i} \, ,$$

где $\overline{v_i}$ представляет индивидуальный вклад каждой донорной группы в поле лиганда в комплексе [10, 11]. Смещение максимума поглощения в длинноволновую область обусловлено влиянием донорных атомов в аксиальных положениях полиэдра.

Для комплекса CuL ($\lambda_{max} = 742$ нм) можно предположить два различных типа экваториального окружения катионов меди (табл. 2, строки 3, 4). Однако в данном случае образуется комплекс, содержащий в экваториальной плоскости группы CO, PO, NH, H₂O, что обусловлено более высоким значением батохромного сдвига (742 – 672 = 70 нм) данной формы комплекса. Образование комплексоната с экваториальной плоскостью Cu(N–O(CO)–O(PO)–O(H₂O)) хорошо согласуется с пространственным расположением донорных групп фосфонометиламиноянтарной кислоты.

Предполагаемое строение эквимолярного комплекса CuL²⁻ представлено ниже:

Для бис-комплексов N-(фосфонометил)глицинатов меди [12, 13] по низким значениям батохромного смещения в ЭСП предполагалось наличие лишь одного атома азота в экваториальной плоскости комплексоната. Однако для высших комплексов меди с фосфонометиламиноянтарной кислотой высокие значения констант устойчивости комплексов CuL₂ предполагают наличие двух атомов азота в экваториальной плоскости полиэдра. Незначительное смещение максимума в ЭСП в коротковолновую область для CuL₂, вероятно, обусловлено сильным вкладом донорных атомов в аксиальных позициях, что приводит к образованию искаженного октаэдра и к гипсохромному сдвигу полосы поглощения на 48 нм (на каждую карбоксильную группу). Рассчитанное значение близко к экспериментально найденному для эквимолярных комплексов меди с EDTA [11], содержащих два аминных атома в экваториальной плоскости октаэдра.

Для синтеза депротонированного комплекса Cu(II) с H₄PMAS выбраны условия, в которых, согласно диаграммам распределения, данный комплекс является доминирующим. Состав полученного фосфонометиламиносукцината меди устанавливали методом химического анализа и термогравиметрии.

Синтез комплекса осуществляли взаимодействием водных растворов сульфата меди и фосфонометиламиноянтарной кислоты при их эквимолярном соотношении и рН 7. Значения рН корректировали введением NaOH. Реакционную смесь нагревали на водяной бане 3 ч. После охлаждения раствора твердый комплексонат осаждали этанолом (выход ~88 %). Результаты химического анализа комплекса, приведенные ниже, показали, что он выделяется в виде димера и его состав отвечает формуле $Na_4[Cu(PMAS)(H_2O)]_2 \cdot 0.5H_2O.$

Элемент	Cu	Na	С	Ν	Н	Р
Найдено %	17.66	12.79	18.69	3.89	3.34	8.62
Рассчитано, 70	17.36	12.76	18.57	3.78	3.40	8.72

В спектрах ЭПР выделенного соединения наблюдается синглетная полоса g = 2.28, соответствующая иону Cu²⁺, расщепление которой свидетельствует об образовании димерного комплекса. Димерное строение характерно для фосфонатов. При координации донорные атомы лиганда занимают лишь 4 координационных места октаэдра, в остальных находятся атомы кислорода фосфоновой группы соседней молекулы лиганда, образующие мостик O–P–O [14].

Гидратный состав комплекса и его термические характеристики определяли методом ДТА (рис. 5). Разложение комплекса Cu(II) с H₄PMAS происходит в несколько стадий, которым на кривой ТГ соответствуют ступеньки, а на кривой ДТГ — сигналы. При температуре 80 °С на кривой ДТГ имеется широкий расщепленный максимум потери массы, сопровождающийся незначительным эндоэффектом (90 °C) на кривой ДТА. При этом на кривой масс-спектра для H₂O в области t = 90 - 120 °C (с максимумом 108 °C) фиксируется соответствующий сигнал. Величина $-\Delta m_{
m эксп}$ на этом участке составляет 6.6 % ($-\Delta m_{
m teop}$ =6.28 %), что соответствует отщеплению 2.5 молекул воды. Достаточно широкий температурный интервал дегидратации позволяет заключить, что молекулы воды связаны с комплексным ионом как внутренне-, так и внешнесферно. Начиная с 244 °С происходит постепенное разложение органической части комплекса, сопровождающееся декарбоксилированием и отщеплением аминогрупп в виде соответствующих газообразных оксидов. Этот процесс сопровождается сильным экзоэффектом при 256 °C. В интервале температур 340-410 °С процесс разложения идет бурно с выделением тепла (экзоэффекты при 344 и 404 °С) и значительной потерей массы (- $\Delta m_{
m эксп}$ =23.3 %). При этом происходит дальнейшее разрушение органического фрагмента молекулы и окисление углеводородных радикалов. Конечная температура разложения комплекса

Рис. 5. Термограмма комплекса Na4[Cu(PMAS)(H2O)]2·0.5H2O.

480 °С. Следует отметить, что процесс термодеструкции комплекса почти не затрагивает фосфоновую группировку, поскольку масс-спектрометрическая кривая, соответствующая фосфору, остается во всем исследуемом температурном интервале практически неизменной. Небольшое увеличение содержания воды в образце при высоких температурах, вероятно, связано с ее образованием из выделяющегося во время разложения водорода и кислорода воздуха. Поэтому конечным продуктом разложения комплекса является нестехиометрический гидроксофосфат меди, что подтверждается данными ИК-спектроскопии (табл. 3) и работы [15].

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2012. Т. 78, № 5

Для определения геометрии координационного полиэдра фосфонометиламиносукцината меди и характера связывания центрального атома с донорными группами лиганда были сняты спектры диффузного отражения и ИК-спектры (до и после ДТА) комплекса. В СДО наблюдается максимум при λ_{max} =762 нм, соответствующий *d*-*d*-переходу (${}^{2}E_{g} \rightarrow {}^{2}T_{g}$) иона меди в октаэдрическом окружении [6]. Небольшой батохромный слвиг максимума поглошения в спектрах твердого комплекса по сравнению с ЭСП растворов (λ_{max} =746 нм) указывает на уменьшение степени аксиального искажения, причиной которого может быть усиление акцепторных свойств комплексона за счет лимеризации комплекса. Однако при переходе от водных растворов комплекса к его твердому состоянию структура электронных спектров остается прежней из-за отсутствия существенных структурных изменений ближайшего окружения иона меди как в растворе, так и в твердом виде.

Характеристические частоты в ИК-спектрах комплексона и его медного комплексоната приведены в табл. 3. В ИК-

спектре комплекса присутствует широкая полоса в области 3400—3200 см⁻¹, которая относится к валентным колебаниям кристаллизационной (3431 см⁻¹) и координированной (3251 см⁻¹) воды [16]. В спектре комплексоната отсутствуют валентные колебания недиссоциированной карбоксильной группы (для H₄PMAS при 1716 см⁻¹), а симметричные и антисимметричные колебания диссоциированных СОО⁻-групп (1420 и 1616 см⁻¹ соответственно) смещены в область низких частот относительно аналогичных полос в спектрах фосфонометиламиноянтарной кислоты. Причем разница в положении полос v_s COO⁻ и v_{as} СОО⁻ в комплексе составляет $\Delta v = 223$ см⁻¹, что

Т	а	б	П	и	П	а	3
	u	· ·			ц	u	~

Основные	колебательн	ые ч	астоты	ИК-с	пектров	и их
отнесение	в H ₄ PMAS	и ее	компле	ксах с	Cu(II),	см-

Группа	H ₄ PMAS	CuPMAS	CuPMAS *
v(H ₂ O)	3423	3431	3438
$\nu(NH)$	3007	2927	_
v(C=O) _{COOH}	1716	_	_
$v_{as}(C=O)_{COO}$	1637	1623	
$v_s(C=O)_{COO^-}$	1400	1417	_
$v_{as}(PO_3)$	1174	1132	_
$\nu(P=O)$	1070	1055	1043
$v_s(PO)$	923	970	962
v(Cu–O)	_	638; 615	661; 565
v(Cu–N)	_	463	_
* После ДТА.			

свидетельствует о монодентатном характере связывания карбоксильных групп с ионом металла [17]. В спектре комплексоната после ДТА отсутствуют сигналы карбоксильных групп, что связано с их разложением.

Полосы поглощения в области 923—1174 см⁻¹ относятся к колебаниям фосфоновой группы, которые в спектрах комплексах претерпевают существенный сдвиг относительно соответствующих полос для H₄PMAS, что свидетельствует о координации фосфоновых групп ионами меди. Наличие небольшого расщепления сигнала v_{as} (PO₃) при 1132 см⁻¹ подтверждает предположение о димерном строении комплекса. Сигналы фосфоновой группы сохраняются после термического анализа, что обусловлено образованием при распаде комплекса фосфатов меди.

В спектре присутствуют полосы при 615 и 638 см⁻¹, обусловленные v-колебаниями связей Cu–O, а полосе при 463 см⁻¹ соответствуют связи металл–азот.

Таким образом, исследование комплексов Cu(II) с фосфонометиламиноянтарной кислотой показало, что в растворе в широком диапазоне рН образуются высокоустойчивые разнопротонированные комплексы общего состава Cu_k(H_m-L)_n(OH)_q (k = 1, 2; m = 3—0; n = 1, 2; q = 0—1). В исследованном твердом депротонированном комплексе медь связана со всеми функциональными группами — аминным азотом, фосфоновой, карбоксильными и за счет мостиковой функции фосфоновой группы образует димер $Na_4[Cu(PMAS)-(H_2O)]_2 \cdot 0.5H_2O$.

РЕЗЮМЕ. Досліджено комплекси міді(II) з фосфонометиламіноянтарною кислотою в розчині при співвідношенні компонентів 1:1; 1:2; 2:1 та $C_{Cn(II)} = 10^{-3}$ моль/л у широкому інтервалі рН (1—10). Встановлено утворення комплексів загального складу Cu_k(H_mL),- $(OH)_{a}$ (k = 1, 2; m = 3-0; n = 1, 2; q = 0-1), pospaxobaно їх константи стійкості та побудовано діаграми розподілу. Синтезовано твердий депротонований комплекс міді, який є димером складу Na₄[Cu(PMAS)-(H₂O)]₂·0.5H₂O. Методами ІЧ-спектроскопії, ДТА і некількісної мас-спектрометрії визначено, що кінцевим продуктом розкладу комплексу є нестехіометричний гідроксофосфат міді. Показано, що комплекси Cu(II) з H₄PMAS у розчині і твердому стані мають будову викривленого октаедру, в екваторіальній площині якого знаходяться групи CO, PO, NH і H₂O.

SUMMARY. The complexes of copper(II) with phosphonomethylaminosuccinic acid (H₄PMAS) with a ratio of components 1:1; 1:2; 2:1; $C_{\text{Cu(II)}}=10^{-3} \text{ mol/l was}$ investigated over a wide pH range (1-10). The formation of the complexes of general formula $Cu_k(H_mL)_n(OH)_a$ (k =1, 2; m = 3—0; n = 1, 2; q = 0—1) has been established. Stability constants of complexes has been calculated and diagrams of its distribution are presented. It has been established that the solid deprotonated copper complex is a dimer which composition corresponds to the formula Na₄[Cu(PMAS)(H₂O)]₂·0.5H₂O. By IR spectroscopy, DTA and nonquantitatively mass-spectrometry has been determined that the final product of decomposition of the complex is non-stoichiometric copper hydroxyphosphate. It was shown that complexes of Cu(II) with H₄PMAS have the structure of the distorted octahedron, which have CO, PO, NH groups and H₂O in the equatorial plane of complexes.

ЛИТЕРАТУРА

- Franz J.E., Mao M.K., Sikorski J.A. Glyphosate. A Unique Global Herbicide. -Washington, DC, ACS Monograph № 189, 1998. -P. 678.
- 2. Шовкова Г.В., Трунова О.К., Гудима А.О. // Укр. хим. журн. -2010. -76, № 7-8. -С. 79-85.
- 3. Скальный А.В. Химические элементы в физиологии и экологии человека. -М.: Мир, 2004.
- 4. Подчайнова В.Н., Симонова Л.Н. Аналитическая химия элементов. Медь. -М.: Наука, 1990.
- 5. Холин Ю.В. Количественный физико-химический анализ комплексообразования в растворах и на

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2012. Т. 78, № 5

поверхности химически модифицированных кремнеземов: содержательные модели, математические методы и их приложения. -Харьков: Фолио, 2000. -С. 264—281.

- Hathaway B.J. // Comprehensive Coordination Chemistry / Eds. G.Wilkinson, R.D.Gillard, J.A.McCleverty. -Oxford: Pergamon Press, 1987. -P. 533—774. -Vol. 5.
- 7. Волков С.В., Грищенко В.Ф., Делимарский Ю.К. Координационная химия солевых расплавов. -Киев: Наук. думка, 1977.
- 8. Гордон А., Форд Р. Спутник химика. -М.: Мир, 1976.
- 9. Сапрыкова З.А., Боос Г.А., Захаров А.В. Физикохимические методы исследования координационных соединений в растворах. -Казань: Изд-во Казан. ун-та, 1988.
- 10. *Billo E.J.* // Inorg. Nucl. Chem. Lett. -1974. -10, № 8. -P. 613—617.

Институт общей и неорганической химии им. В.И. Вернадского НАН Украины, Киев Институт неорганической химии Чешской академии наук, Прага

- Prenesti E., Daniele P.G., Berto S., Toso S. // Polyhedron. -2006. -25, № 15. -P. 2815—2823.
- 12. Paschevskaya N.V., Bolotin S.N., Sklyar A.A. et al. // J. Mol. Liq. -2006. -126. -P. 89—94.
- Daniele P.G., De Stefano C., Prenesti E., Sammartano S. // Talanta. -1997. -45. -P. 425-431.
- 14. Clearfield A. // Curr. Opin. Solid. State Mat. Sci. -2002. -6, № 6. -P. 495—506.
- Лиферович Р.П., Яковенчук В.Н., Пахомовский Я.А. и др. // Записки Всерос. менделеев. общ-ва, 1997. -№ 4. -С. 80—88.
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. -М.: Мир, 1991.
- 17. Deacon G.B., Phillips R.J. // Coord. Chem. Rev. -1980. -33, № 3. -P. 227-250.

Поступила 12.03.2012